王 慶,李玉琛,蒙 飛,袁和剛,李 濤,孫 陽
混沌正余弦算法在含風(fēng)能電力系統(tǒng)經(jīng)濟(jì)排放調(diào)度中的應(yīng)用
王 慶,李玉琛,蒙 飛,袁和剛,李 濤,孫 陽
(國網(wǎng)寧夏電力有限公司調(diào)度控制中心,寧夏 銀川 750001)
風(fēng)能;混沌正余弦算法;最優(yōu)化;經(jīng)濟(jì)排放
為了減少大氣污染,提出安裝燃燒后清潔設(shè)備、改用低排放或零排放清潔能源等措施[4],因此計(jì)及新能源的調(diào)度研究成為研究熱點(diǎn)[3,5-8]。文獻(xiàn)[6]提出考慮新能源出力隨機(jī)特性的多目標(biāo)電網(wǎng)深度調(diào)峰運(yùn)行優(yōu)化調(diào)度策略,通過案例分析驗(yàn)證了其有效性。文獻(xiàn)[7]構(gòu)建了考慮新能源出力最差情況下的配電網(wǎng)雙層魯棒優(yōu)化調(diào)度模型,最終得到計(jì)及新能源波動(dòng)的配電網(wǎng)最大供電能力調(diào)度方法。
從上述分析可以發(fā)現(xiàn),對(duì)于計(jì)及新能源與考慮排放調(diào)度問題,已有一定的研究成果。近些年,正余弦算法是一種新的基于種群的隨機(jī)尋優(yōu)方法,利用正余弦函數(shù)使解震蕩性的趨于全局最優(yōu)解[13-15]?;煦鏪16-17]被認(rèn)為是非線性系統(tǒng)的一種特征,可以用數(shù)學(xué)方法表示為確定性系統(tǒng)產(chǎn)生的隨機(jī)性,由于混沌的不重復(fù),它可以以比依賴概率的隨機(jī)搜索更快的速度進(jìn)行整體搜索[18]。
基于此,本文提出了一種混沌正余弦算法(chaotic sine cosine algorithin, CSCA)來提供最優(yōu)發(fā)電計(jì)劃,以同時(shí)最小化發(fā)電成本和排放。該算法利用混沌序列替代正余弦算法(sine cosine alogrithim, SCA)的隨機(jī)數(shù),避免局部最優(yōu),提高解的精度。
基于種群算法的主要優(yōu)點(diǎn)是能夠避免局部最優(yōu),然而在基于群體的優(yōu)化方法中,尋找最優(yōu)解的過程是隨機(jī)執(zhí)行的,因此不能保證一次運(yùn)行就能達(dá)到全局最優(yōu),特別是對(duì)于非凸問題。但通過足夠數(shù)量的候選解決方案和迭代,可以增加獲得期望解決方案的概率。在基本正余弦算法中,正弦和余弦函數(shù)用于更新當(dāng)前解的位置,如式(1)所示。
在基于隨機(jī)的優(yōu)化算法中,隨機(jī)變量可以用混沌數(shù)代替,得到的基于混沌算法的搜索行為不同于現(xiàn)有的優(yōu)化技術(shù)。
近年來,混沌圖被廣泛地整合到幾種優(yōu)化算法中,混沌變量的遍歷性和準(zhǔn)隨機(jī)特性使得優(yōu)化算法能夠增強(qiáng)種群多樣性,從而提高了混沌優(yōu)化算法的探索能力。
本文中SCA所需的隨機(jī)數(shù)是由混沌映射生成的。本文選用Singer map,如式(3)所示。
圖1 Singer map混沌映射
Fig. 1 Chaotic Singer map
正余弦函數(shù)是基于兩個(gè)相互排斥的方程,在某些情況下,這種搜索過程不能在開發(fā)和探索之間取得良好的平衡。為了緩解這一限制,考慮了第3個(gè)方程,本文所提算法的搜索行為基于以下3個(gè)突變方程。
機(jī)會(huì)約束規(guī)劃(chance-constraint problem, CCP)是繼期望值模型之后,由A.Charnes和W.W.Cooper提出的第二類隨機(jī)規(guī)劃,CCP的原則是:允許所做決策在一定程度上不滿足約束條件,但該決策使約束條件成立的概率不小于某一置信水平。一般形式的機(jī)會(huì)約束可表示為
機(jī)會(huì)約束EED問題的確定性約束是所有熱機(jī)組的發(fā)電極限,表示為
同時(shí),考慮到風(fēng)速的隨機(jī)性,可以用Weibull分布[19-20]來描述風(fēng)速變化,式(15)所描述的雙參數(shù)威布爾通??梢院芎玫乇平L(fēng)速分布。相應(yīng)的累積分布函數(shù)如式(16)所示。
為了測(cè)試所提CSCA在求解包含風(fēng)能的隨機(jī)EED問題時(shí)的準(zhǔn)確性,本節(jié)研究了兩個(gè)不同復(fù)雜性的測(cè)試案例,Case1為不考慮風(fēng)電的10-unit系統(tǒng),Case2為考慮風(fēng)電的10-unit系統(tǒng),并且兩個(gè)案例均考慮了傳輸損耗、閥點(diǎn)效應(yīng)和發(fā)電容量的約束。
本系統(tǒng)單元數(shù)據(jù)來自文獻(xiàn)[1],如表1所示,總電力負(fù)荷為2000MW,損失系數(shù)矩陣見式(17)。
在沒有引入風(fēng)電的前提下,根據(jù)所提的改進(jìn)正余弦算法來計(jì)算,考慮經(jīng)濟(jì)排放調(diào)度的每個(gè)機(jī)組的優(yōu)化結(jié)果如圖2所示。從圖2可以看出,本文所提算法比其他優(yōu)化算法更可靠。
為了進(jìn)一步對(duì)比不同算法的計(jì)算精度,每種算法的精度值都通過總需求與總負(fù)荷和功率損耗之和的差來計(jì)算,如式(18)所示。
表1 10-unit系統(tǒng)參數(shù)
通過計(jì)算可得到圖3所示的精度對(duì)比圖,從計(jì)算精度看,本文所使用的改進(jìn)正余弦算法有著較高的計(jì)算精度。這是因?yàn)樵撍惴ɡ没煦缧蛄刑娲鶶CA的隨機(jī)數(shù),避免了局部最優(yōu),提高了解的精度。
圖2 算例優(yōu)化結(jié)果
圖3 計(jì)算精度對(duì)比
圖4 含風(fēng)電場(chǎng)的求解結(jié)果
圖5 對(duì)經(jīng)濟(jì)排放調(diào)度的影響
本文將含風(fēng)能的經(jīng)濟(jì)排放調(diào)度描述為一個(gè)機(jī)會(huì)約束問題來處理風(fēng)力發(fā)電的隨機(jī)特性,提出了一種混沌正余弦算法來提供最優(yōu)發(fā)電計(jì)劃,以同時(shí)最小化發(fā)電成本和排放。
1) 改進(jìn)的正余弦算法利用混沌序列替代SCA的隨機(jī)數(shù),避免了局部最優(yōu),提高了解的精度。
2) 通過案例分析發(fā)現(xiàn),對(duì)比實(shí)數(shù)編碼化學(xué)反應(yīng)優(yōu)化算法和基于二次逼近的混合人工協(xié)同搜索算法,所提方法更具準(zhǔn)確性。
[1] BASU M. Economic environmental dispatch using multi- objective differential evolution[J]. Applied Soft Computing, 2011, 11(2): 2845-2853.
[2] 沈曉倩. 我國電力行業(yè)碳排放達(dá)峰及減排潛力研究[J]. 應(yīng)用能源技術(shù), 2022(2): 24-26.
SHEN Xiaoqian. Research on peak carbon emission and emission reduction potential of China's power industry[J]. Applied Energy Technology, 2022(2): 24-26.
[3] MOHY-UD-DIN G, MUTTAQI K M, SUTANTO D. Adaptive and predictive energy management strategy for real-time optimal power dispatch from VPPs integrated with renewable energy and energy storage[J]. IEEE Transactions on Industry Applications, 2021, 57(3): 1958-1972.
[4] 趙東元, 胡楠, 傅靖, 等. 提升新能源電力系統(tǒng)靈活性的中國實(shí)踐及發(fā)展路徑研究[J]. 電力系統(tǒng)保護(hù)與控制, 2020, 48(24): 1-8.
ZHAO Dongyuan, HU Nan, FU Jing, et al. Research on China's practice and development path of improving the flexibility of new energy power system[J]. Power System Protection and Control, 2020, 48(24): 1-8.
[5] LI Jinghua, WANG Sai, YE Liu, et al. A coordinated dispatch method with pumped-storage and battery-storage for compensating the variation of wind power[J]. Protection and Control of Modern Power Systems, 2018, 3(1): 21-34.
[6] 應(yīng)益強(qiáng), 王正風(fēng), 吳旭, 等. 計(jì)及新能源隨機(jī)特性的電網(wǎng)深度調(diào)峰多目標(biāo)策略[J]. 電力系統(tǒng)保護(hù)與控制, 2020, 48(6): 34-42.
YING Yiqiang, WANG Zhengfeng, WU Xu, et al. Multi objective strategy of power grid deep peak shaving considering the random characteristics of new energy[J] Power System Protection and Control, 2020, 48(6): 34-42.
[7] 白浩, 袁智勇, 周長城, 等. 計(jì)及新能源波動(dòng)與相關(guān)性的配電網(wǎng)最大供電能力調(diào)度方法[J]. 電力系統(tǒng)保護(hù)與控制, 2021, 49(8): 66-73.
BAI Hao, YUAN Zhiyong, ZHOU Changcheng, et al. Dispatching method of maximum power supply capacity of distribution network considering the fluctuation and correlation of new energy[J]. Power System Protection and Control, 2021, 49(8): 66-73.
[8] MOHANDES B, WAHBAH M, MOURSI M S E, et al. Renewable energy management system: optimum design and hourly dispatch[J]. IEEE Transactions on Sustainable Energy, 2021, 12(3): 1615-1628.
[9] 皮霞, 趙宇洋, 呂金歷, 等. 考慮高載能負(fù)荷消納受阻風(fēng)電收益的荷源協(xié)調(diào)優(yōu)化方法[J]. 可再生能源, 2020, 38(8): 1079-1084.
PI Xia, ZHAO Yuyang, Lü Jinli, et al. A load-source coordinated optimization method considering the benefits of curtailed wind power consumption for energy-intensive loads[J]. Renewable Energy Resources, 2020, 38(8): 1079-1084.
[10]張程飛, 袁越, 張新松, 等. 考慮碳排放配額影響的含風(fēng)電系統(tǒng)日前調(diào)度計(jì)劃模型[J]. 電網(wǎng)技術(shù), 2014, 38(8): 2114-2120.
ZHANG Chengfei, YUAN Yue, ZHANG Xinsong, et al. Daily scheduling plan model of wind power system considering the influence of carbon emission quota[J]. Power System Technology, 2014, 38(8): 2114-2120.
[11]梁作放, 潘華, 何輝, 等. 考慮碳交易的區(qū)域綜合能源系統(tǒng)經(jīng)濟(jì)調(diào)度研究[J]. 山東電力技術(shù), 2020, 47(2): 20-26.
LIANG Zuofang, PAN Hua, HE Hui, et al. Study on economic dispatch of regional integrated energy system considering carbon trading[J]. Shandong Electric Power Technology, 2020, 47(2): 20-26.
[12]盧志剛, 郭凱, 閆桂紅, 等. 考慮需求響應(yīng)虛擬機(jī)組和碳交易的含風(fēng)電電力系統(tǒng)優(yōu)化調(diào)度[J]. 電力系統(tǒng)自動(dòng)化, 2017, 41(15): 58-65.
LU Zhigang, GUO Kai, YAN Guihong, et al. Optimal dispatching of wind power system considering demand response virtual unit and carbon trading[J]. Automation of Electric Power Systems, 2017, 41(15): 58-65.
[13]李佳瑤, 劉偉娜. 考慮碳交易和風(fēng)荷預(yù)測(cè)誤差的電力系統(tǒng)低碳經(jīng)濟(jì)調(diào)度[J]. 浙江電力, 2021, 40(5): 1-6.
LI Jiayao, LIU Weina. Low-carbon economic dispatch of power system considering carbon trading and wind power and load forecast errors[J]. Zhejiang Electric Power, 2021, 40(5): 1-6.
[14]張睿. 基于正余弦優(yōu)化算法的改進(jìn)及其應(yīng)用[D]. 長春:長春工業(yè)大學(xué), 2021.
ZHANG Rui. Improvement and application of sine cosine optimization algorithm[D]. Changchun: Changchun University of Technology, 2021.
[15]王遠(yuǎn). 正余弦算法及其應(yīng)用研究[D]. 西安: 西安理工大學(xué), 2019.
WANG Yuan. Research on sine cosine algorithm and its application[D]. Xi'an: Xi'an University of Technology, 2019.
[16]贠保記, 白森珂, 張國. 基于混沌自適應(yīng)粒子群算法的冷熱電聯(lián)供系統(tǒng)優(yōu)化[J]. 電力系統(tǒng)保護(hù)與控制, 2020, 48(10): 123-130.
YUN Baoji, BAI Senke, ZHANG Guo. Optimization of CCHP system based on chaotic adaptive particle swarm optimization[J]. Power System Protection and Control, 2020, 48(10): 123-130.
[17]林敏洪, 侯祖鋒, 王超, 等. 基于分布式內(nèi)點(diǎn)法的輸配協(xié)同優(yōu)化調(diào)度[J]. 可再生能源, 2020, 38(9): 1226-1232.
LIN Minhong, HOU Zufeng, WANG Chao, et al. Optimal dispatch for transmission distribution coordination system based on distributed interior point method[J]. Renewable Energy Resources, 2020, 38(9): 1226-1232.
[18]陳東海, 蔡振華, 金力, 等. 多源融合下計(jì)及調(diào)頻優(yōu)化的經(jīng)濟(jì)調(diào)度研究[J]. 浙江電力, 2021, 40(4): 32-39.
CHEN Donghai, CAI Zhenhua, JIN Li, et al. Research on economic dispatch considering frequency modulation optimization under multi-source integration[J]. Zhejiang Electric Power, 2021, 40(4): 32-39.
[19]溫華洋, 朱華亮, 劉壯, 等. 基于三參數(shù)Weibull分布的安徽省年最大風(fēng)速均一性檢驗(yàn)[J]. 氣象與環(huán)境學(xué)報(bào), 2021, 37(2): 77-83.
WEN Huayang, ZHU Hualiang, LIU Zhuang, et al. Uniformity test of annual maximum wind speed in Anhui province based on three parameter Weibull distribution[J]. Journal of Meteorology and Environment, 2021, 37(2): 77-83.
[20]丁明, 吳義純, 張立軍. 風(fēng)電場(chǎng)風(fēng)速概率分布參數(shù)計(jì)算方法的研究[J]. 中國電機(jī)工程學(xué)報(bào), 2005, 25(10): 107-110.
DING Ming, WU Yichun, ZHANG Lijun. Study on calculation method of wind speed probability distribution parameters of wind farm[J]. Proceedings of the CSEE, 2005, 25(10): 107-110.
Application of an improved chaotic sine cosine algorithm in the economic emission scheduling of a power system with wind energy
WANG Qing, LI Yuchen, MENG Fei, YUAN Hegang, LI Tao, SUN Yang
(Power Dispatch and Control Center, State Grid Ningxia Electric Power Co., Ltd., Yinchuan 750001, China)
Because of the random availability of wind energy, the economic emission scheduling (EED) problem with wind energy becomes more complex. Therefore, in order to solve this problem, this paper describes the problem as opportunity constrained to deal with the stochastic characteristics of wind power generation. A chaotic sine cosine algorithm (CSCA) is proposed to provide the optimal generation plan to minimize the generation cost and emission at the same time. The algorithm uses a chaotic sequence to replace the random number of an SCA, avoids premature convergence into a local optimum and improves the accuracy of solution. Finally, by comparing the real coded chemical reaction optimization algorithm with the hybrid artificial collaborative search algorithm based on quadratic approximation, the effectiveness and accuracy of the proposed method are demonstrated by two 10-unit case simulations. Finally, the impact of threshold level of constraintson optimization results is studied. Whenincreases, the wind power permeability increases, resulting in the reduction of total production cost and emission value.
wind energy; chaotic sine cosine algorithm; optimization; economic emission
10.19783/j.cnki.pspc.220305
國家電網(wǎng)公司科技項(xiàng)目資助(5108-202040024A- 0-0-00)
This work is supported by the Science and Technology Project of State Grid Corporation of China (No. 5108- 202040024A-0-0-00).
2022-03-10;
2022-05-13
王 慶(1986—),男,學(xué)士,高級(jí)工程師,研究方向?yàn)殡娋W(wǎng)調(diào)度控制;E-mail:jsczxkp@126.com
李玉琛(1972—),男,學(xué)士,高級(jí)工程師,研究方向?yàn)殡娋W(wǎng)建設(shè);
蒙 飛(1987—),男,碩士,高級(jí)工程師,研究方向?yàn)殡娋W(wǎng)調(diào)度控制。
(編輯 姜新麗)