• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance

    2023-02-20 13:15:06JiangnanMa馬江南FengLv馮侶GuofuWang王國富ZhifangLin林志方HongxiaZheng鄭紅霞andHuajinChen陳華金
    Chinese Physics B 2023年1期
    關(guān)鍵詞:華金紅霞王國

    Jiangnan Ma(馬江南), Feng Lv(馮侶), Guofu Wang(王國富), Zhifang Lin(林志方),Hongxia Zheng(鄭紅霞),,?, and Huajin Chen(陳華金),,4,?

    1School of Automation,Guangxi University of Science and Technology,Liuzhou 545006,China

    2School of Electronic Engineering,Guangxi University of Science and Technology,Liuzhou 545006,China

    3State Key Laboratory of Surface Physics and Department of Physics,Fudan University,Shanghai 200433,China

    4Guangxi Earthmoving Machinery Collaborative Innovation Center,Liuzhou 545006,China

    Keywords: optical pulling force,nanoparticle clusters,Fano-like resonance

    1. Introduction

    Optical manipulation based on the optical force has been a subject of intensive research after the pioneering works in optical trapping (well-known as optical tweezers nowadays)by Ashkin and collaborators.[1,2]Optical tweezers together with other optical manipulation techniques have become indispensable tools in various research fields such as biology,[3]chemistry[4,5]as well as physics.[6,7]Optical tweezers make use of the optical gradient force to stably trap particles,generally confining particles around the maximum of light intensity.[1,8,9]The optical scattering force,counterpart of the gradient force,however,usually propels[2,10–12]or pulls[13–16]objects, achieving particle transportation, even along curved trajectories.[12]The optical pulling force,[17,18]a member of the optical scattering force family, has attracted increasing attention in the last decade since it offers an opportunity to present a counterintuitive phenomenon: pull particles against light propagation.In contrast to the traditional ability of an optical force to trap or propel particles,optical pulling force can pull particles toward the source and accelerate particles over a long distance without an equilibrium position defined. In the past decade, some theoretical and experimental scenarios have been proposed to achieve optical pulling of complex particles or structures by various structured light beams besides conventional homogeneous polystyrene sphere,such as particles with chiral, gain, hyperbolic materials via nondiffractive Bessel beam,Airy beams,solenoid beam,interference of multiple beams and, even, a single plane wave.[13–18]However,these studies are mostly limited to a single particle or dimer,optical pulling of cluster has yet been observed,although cluster is extremely critical in many subjects including condensed matter physics, chemistry, biology and so on, in which the cluster can be used as a model to study properties of extended systems such as crystals and proteins.[19]

    In this paper, we focus on exhibiting the optical pulling forces exerted on the nanoparticle clusters with gain. Clusters discussed here are composed of three,four,or five dipolar nanoparticles which make up three different configurations. It is found that, under the illumination of a simple single plane wave,optical pulling force can be achieved for all three clusters via exciting the Fano-like resonance. The Fano-like resonance describing the asymmetric line shape is an extended notion of Fano resonance, which originates from the original work of Fano, characterizing the coupling of a discrete atomic state with a continuum.[20]Recently,the Fano-like resonance has found its application in inducing optical force,but these researches limit in single nanostructure[21–23]or plasmonic dimer.[24–26]However, its effect on tailoring the optical force on clusters,especially optical pulling of clusters,has yet to be explored. Here, based on the full-wave calculation which combines the generalized Lorenz–Mie theory,[27]multiple scattering theory[28]as well as the Maxwell stress tensor approach,[29]we put forward the optical pulling of clusters at its Fano-like resonance. Our sufficient numerical results indicate that the optical pulling forces can be exactly attributed to the interaction between electric and magnetic dipoles excited in the nanoparticle clusters, which suppresses the extinction force giving rise to optical pushing force and,finally,pull clusters against light propagation direction. In addition, besides the adjustable force amplitude through the material gain, the resonant frequencies for clusters with different particle sizes present obvious shift,rendering its possible application in optical sorting of different clusters.

    2. Results and discussion

    Three different configurations illuminated by a single linearly polarized plane wave are schematically demonstrated in Fig.1,which are considered as examples to present the Fanolike resonance-induced optical pulling forces in nanoparticle clusters. The cluster composed of three spheres in Fig. 1(a)forms an isosceles triangle with a sphere adhered to another two spheres,whose Cartesian coordinates are(300,350,0)nm,(0,0,0)nm,and(0,700,0)nm,respectively. The rest two clusters presented in Figs. 1(b) and 1(c) are both symmetric regardingxaxis with spheres attached to each other. Each component particle in clusters is silicon sphere sharing the same radiusR=200 nm and permittivity. In general,the permittivity of material can be described asεr=+and its imaginary part<0 denotes the material gain.[30,31]The gain is given by[32–34]=-(λ/4π)Nδe, whereλis the illuminating wavelength,δeis the emission cross section andNis the concentration ofErions.As a proof-of-concept demonstration of the optical pulling,we takeεr=12.6096-0.5i for different wavelengths in our theoretical calculations,whose gain can be kept constant by adjusting theδeandNin experiments. In this paper, we assume that the irradiance of the plane wave isI0=1.0 mW/μm2and the background is vacuum. Based on the generalized Lorenz–Mie theory,[27]multiple scattering theory,[28]and Maxwell stress tensor approach,[29]one can obtain the optical forces exerted on clusters composed of nanospheres with arbitrary configurations. Let us recapitulate the expression of optical force exerted on a cluster ofNparticles. In our cases, we focus on the longitudinal component of the optical forceFzalong the light propagation direction,which reads[28,35,36]

    wherekandε0are the wave number and permittivity in background, respectively.E0is the amplitude of the electric field, which can be derived by the irradiance throughI0=|E0|2/(2Z0),withZ0being the wave impedance of background. The constant coefficientsc1andc2are given by

    while thef1andf2dependent on the scatters and incident optical field can be formulated as

    The superscript* denotes the complex conjugate.andare the scattering coefficients forj-th particle,whose relationship between the expansion coefficients of the total optical field imping on thej-th particle(and)presented later,can be bridged by the Mie scattering coefficientsandof thej-th particle[37]

    with

    where[x f(x)]′denotes the derivative with respect tox.μ(μj)is the relative permeability of background (particlej).xj=kjRjis the size parameter of particlejwithRjbeing the radius of particlej.mj=kj/kindicates the relative refractive index of thej-th particle.jnandare, respectively, the spherical Bessel function of the first and third kinds.andin Eqs. (3) and (4) are the expansion coefficients of the total optical field imping on thej-th particle in terms of vector spherical wave function.[37]The total optical field imping on thej-th particle consists of two distinct parts: firstly the initial incident wave striking the whole cluster,and secondly the sum of the scattered wave from all other particles except the considered particlej. The expansion coefficients can thus be given by[38]

    whereanddenote the expansion coefficients of the initial incident wave,[39]while the rest represent all the scattered fields from all other particles except particlej.(l,j)and(l,j) are the translation coefficients,[39]referring to the mathematical process that translate the expansion center of each particlelto that of the considered particlej.

    Fig.1. Schematic illustration of clusters composed of three(a),four(b),and five (c) nanoparticles, respectively. The incident optical field is a linearlypolarized plane wave propagating along the positive z direction. Clusters are located in the xoy plane with radius R=200 nm for each constituent particle.

    We next calculate theFzexerted on clusters demonstrated in Fig.1 based on the force formulations presented in Eqs.(1)–(6). The results are shown in Figs.2(a)–2(c)for different clusters corresponding to those in Figs. 1(a)–1(c), respectively.For all three cases, one can see that the Fano-like resonances come into play roughly aroundλ=1500 nm in the range denoted by the two dashed reference lines, which results in remarkably enhanced optical pulling forces withFz <0. The asymmetric Fano-like resonance line shapes are mimicked by the spectrum of total extinction efficienciesQext,as presented by the red lines in Figs.2(a)–2(c). For clusters illuminated by a single plane wave,theQextcan be evaluated according to[40]

    with

    Also, we see from Figs. 1(a)–1(c) that the optical force on the cluster composed of four particles is the weakest by comparing with the ones of three and five particles. This is because the four-particle structure has a smallest cross sectionCpr,[41]to which the magnitude of the optical force in the direction of light propagation is proportional. In addition, one can roughly find that the structures of the three clusters generating the optical pulling force share the following same characteristics.First,these structures can exhibit a Fano-like in the illuminating wavelength. Second,all particles constituting the structures lie in the same plane that is perpendicular to the direction of light propagation and they do not have a crossover in the propagation direction. Third, the structures are symmetric with respect to the axis normal to the direction of both the light propagation and the electric field polarization. These properties can be treated as a reference to generate the optical pulling force on other clusters.

    To trace the physical origin of the optical pulling force,we decompose the optical force into the extinction forceIFzand the recoil forceRFz,which can be expressed as[13]

    with

    The extinction forceIFzis proportional to the polarizability,stemming from the coupling between the multipoles excited in particles and the incident field. It can be physically understood from the process that particles in the light path will intercept the light and then an extinction force will be exerted on the particles due to the optical momentum transfer. The recoil forceRFz, however, has quadratic dependence on the polarizability,arising from the coupling between various multipoles excited in particles with the physical picture that recoil will occur by light re-emitted by the oscillating multipoles.The expressions of extinction forceIFzand the recoil forceRFzcan thus be easily derived by, respectively, splitting the linear and quadratic terms of Mie coefficients in Eqs.(1)–(3).Figures 2(d)–2(f) present the decomposed resultsIFz(orange line) andRFz(pink line) for different clusters in Figs. 1(a)–1(c),whose optical forces have been shown in Figs.2(a)–2(c)and reproduced in Figs. 2(d)–2(f) by black lines for clarity.One can observe that, for all three clusters considered in this paper,the extinction forcesIFzare always along the propagation direction withIFz >0. At the Fano-like resonance, the recoil forcesRFzsurpass the extinction forcesIFz, leading to the optical pulling withFz <0. It is worth noting that the Fano-like resonance-induced optical pulling force is the result of the collective interaction of all particles in clusters,whereas it can not occur for an individual particle due toIFz >RFzin our case.

    Fig.2. The z component of the optical forces and the extinction spectra for different clusters(a)–(c)corresponding to those in Figs.1(a)–1(c),respectively.(d)–(f)The z component of decomposed optical forces corresponding to panels(a)–(c).

    Fig.3. The near-field plots of the z component of the electric field and the x component of the magnetic field for the cluster composed of five particles at the wavelength λ =1525 nm. All the other parameters are the same as those in Fig.1(c).

    A more deep understanding about the underlying physics of the optical pulling can be achieved through distinguishing the coupling between various multipoles, termed as different coupling channels here. After careful investigation, we find that the recoil forces can be thoroughly traced to the lowest coupling channel from the interaction between electric and magnetic dipoles, viz.Fpm, as indicated by the overlap between the cyan line and pink line in Figs. 2(d)–2(f). Contributions from all other coupling channels referring high-order multipoles,viz.Fotherpresented by the green line in Figs.2(d)–2(f), however, can be ignored. The formulations forFpmandFotherare expressed as

    An intuitive demonstration of the excitation of the electric and magnetic dipoles can be visualized by the near-field patterns as shown in Fig. 3, where the cluster composed of five particles is just given as an example. One can roughly observe that thezcomponent of the electric field and thexcomponent of the magnetic field suggest the excitation of the electric and magnetic dipoles in the cluster due to the collective contribution from each particle.

    The Fano-like resonance-induced optical pulling force can be agilely tailored owing to the flexible adjustability of the Fano-like resonance through particle properties. The particle size and material gain of each constituent particle for cluster composed of five particles shown in Fig.1(c)are considered as typical examples here. Figures 4(a)and 4(b)demonstrate the spectra of the optical forces as well as extinction efficiencies for various clusters with different particle sizes. It can be observed in Fig.4(a)that the optical pulling forces exhibit a red shift as the particle size increases,following shift tendency of the resonance of the extinction efficiencies shown in Fig.4(b).The crucial role of the Fano-like resonance in inducing optical pulling is thus suggested, in agreement with the results in Fig. 2. It should be also noticed that the maximum of the optical pulling forces always occurs aroundλ/R=7.6, one can therefore selectively pull clusters of different particle sizes with an appropriate operating wavelength. Furthermore, the optical forces and the corresponding extinction efficiencies for the cluster composed of five nanoparticles with different gains are also calculated in Fig.5. One can see that the emergence of the optical pulling forces for different gains lies always in the range around the Fano-like resonance. With increasing the gain from-0.4 to-0.55, the pulling force is significantly enhanced, while the optical pushing forces exhibit nearly no graphically discernible difference, as illustrated in Fig. 5(a).It is therefore concluded that the Fano-like resonance-induced optical pulling force can be flexibly tailored through both the particle size and gain, providing alternative degrees of freedom to manipulate particle clusters.

    Fig.4. The z component of the optical forces(a)and the extinction spectra(b) for the cluster composed of five nanoparticles with different radii. All other parameters are the same as those in Fig.1(c).

    Fig.5. The z component of the optical forces(a)and the extinction spectra(b) for the cluster composed of five nanoparticles with different gains. All other parameters are the same as those in Fig.1(c).

    3. Conclusions

    We have demonstrated that, using the full-wave calculation, the Fano-like resonance can induce the optical pulling forces on different nanoparticle clusters with gain immersed in a plane wave with linear polarization. It is revealed that the Fano-like resonance-induced optical pulling force comes entirely from the recoil force,which is mostly dominated by the interaction between electric and magnetic dipoles while other higher-order coupling channels have a negligible contribution.Besides,the Fano-like resonance-induced optical pulling force can be flexibly tailored by both the particle size and gain, it thus may find application in optical sorting and separation of particle clusters. As Fano or Fano-like resonances are widely occurred in various systems such as plasmonic structures and photonic devices,[42–44]the Fano-like resonance-induced optical pulling force is expected to be universal for other systems exhibiting Fano or Fano-like resonances.

    Data availability statement

    The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.j00113.00087.

    Acknowledgments

    Project supported by the Natural Science Foundation of Guangxi Province of China (Grant No. 2021GXNSFDA196001), the National Natural Science Foundation of China (Grant Nos. 12174076, 12074084, and 12204117), Guangxi Science and Technology Project (Grant Nos. AD22080042 and AB21220052), and Open Project of State Key Laboratory of Surface Physics in Fudan University(Grant No.KF202215).

    猜你喜歡
    華金紅霞王國
    請你幫個忙
    地下王國
    薛景 趙云 華金濤
    逃離鼠王國
    建立新王國
    NBA特刊(2018年21期)2018-11-24 02:47:48
    A Study of Combination of English Language Teaching and Context
    大東方(2018年1期)2018-05-30 01:27:23
    藍色蝴蝶夢
    藍色蝴蝶夢
    上海故事(2018年1期)2018-03-02 18:13:10
    “光的直線傳播”“光的反射”練習
    黑白王國
    親子(2014年7期)2014-08-12 18:00:10
    亚洲精品影视一区二区三区av| 一级毛片我不卡| 一个人观看的视频www高清免费观看| 男人和女人高潮做爰伦理| 欧美3d第一页| 国产乱人偷精品视频| 免费看不卡的av| 欧美三级亚洲精品| 成人国产麻豆网| 亚洲最大成人av| 亚洲国产色片| 秋霞伦理黄片| 亚洲欧美一区二区三区黑人 | 日本黄大片高清| 日韩欧美精品v在线| 国产黄a三级三级三级人| 欧美亚洲 丝袜 人妻 在线| 亚洲综合色惰| 一区二区三区乱码不卡18| 男人狂女人下面高潮的视频| 欧美高清成人免费视频www| 国产免费福利视频在线观看| 亚洲国产欧美在线一区| 日韩亚洲欧美综合| 亚洲丝袜综合中文字幕| 男女啪啪激烈高潮av片| 丰满乱子伦码专区| 狂野欧美激情性bbbbbb| 波多野结衣巨乳人妻| 久久久久久九九精品二区国产| 各种免费的搞黄视频| 亚洲精品影视一区二区三区av| 午夜精品国产一区二区电影 | 国产精品国产三级国产av玫瑰| 一级二级三级毛片免费看| 日本av手机在线免费观看| 中文乱码字字幕精品一区二区三区| 亚洲四区av| 高清在线视频一区二区三区| av.在线天堂| 久久99热这里只有精品18| 亚洲,一卡二卡三卡| 亚洲精品中文字幕在线视频 | 在线免费观看不下载黄p国产| 中文字幕人妻熟人妻熟丝袜美| 国产精品.久久久| 久久精品国产亚洲av涩爱| 国产色爽女视频免费观看| 在线a可以看的网站| 黄片无遮挡物在线观看| 91在线精品国自产拍蜜月| 国产中年淑女户外野战色| 欧美97在线视频| 99视频精品全部免费 在线| 精华霜和精华液先用哪个| 国产成人精品婷婷| 亚洲欧美中文字幕日韩二区| 久热这里只有精品99| 永久免费av网站大全| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产精品成人久久小说| 国产午夜精品一二区理论片| av播播在线观看一区| 深爱激情五月婷婷| a级毛色黄片| 亚洲av中文字字幕乱码综合| 美女脱内裤让男人舔精品视频| 欧美亚洲 丝袜 人妻 在线| xxx大片免费视频| 久久久久久国产a免费观看| av卡一久久| 丰满少妇做爰视频| 男人和女人高潮做爰伦理| 天堂俺去俺来也www色官网| 尾随美女入室| 看十八女毛片水多多多| 亚洲av二区三区四区| 色播亚洲综合网| 国产黄频视频在线观看| 久久热精品热| 欧美bdsm另类| xxx大片免费视频| 少妇猛男粗大的猛烈进出视频 | 亚洲精品成人av观看孕妇| 久久午夜福利片| 国产免费视频播放在线视频| 亚洲欧美一区二区三区国产| 国产精品久久久久久精品古装| 97在线人人人人妻| 色5月婷婷丁香| 精品国产一区二区三区久久久樱花 | 91久久精品国产一区二区三区| 女人十人毛片免费观看3o分钟| 日本一二三区视频观看| 韩国av在线不卡| 老师上课跳d突然被开到最大视频| 国产探花在线观看一区二区| 国内少妇人妻偷人精品xxx网站| 91久久精品国产一区二区三区| 久久精品久久久久久久性| 国产伦理片在线播放av一区| 草草在线视频免费看| 亚洲精品久久午夜乱码| 新久久久久国产一级毛片| 亚洲国产高清在线一区二区三| 午夜激情久久久久久久| 国产中年淑女户外野战色| 人人妻人人爽人人添夜夜欢视频 | 亚洲,欧美,日韩| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩卡通动漫| 中文字幕免费在线视频6| 国产精品.久久久| 亚洲一级一片aⅴ在线观看| 日本欧美国产在线视频| 中文资源天堂在线| 日本wwww免费看| 精品久久久精品久久久| 看黄色毛片网站| 2021天堂中文幕一二区在线观| 日韩成人av中文字幕在线观看| 欧美成人精品欧美一级黄| 成年版毛片免费区| 大片电影免费在线观看免费| 女人被狂操c到高潮| 我的老师免费观看完整版| 男人舔奶头视频| 国产成人福利小说| 干丝袜人妻中文字幕| 黄色配什么色好看| 久久人人爽人人爽人人片va| 一级av片app| 岛国毛片在线播放| 各种免费的搞黄视频| 欧美xxxx性猛交bbbb| 欧美+日韩+精品| 最新中文字幕久久久久| 好男人视频免费观看在线| 久久久a久久爽久久v久久| 国内精品美女久久久久久| 九色成人免费人妻av| 亚洲精品第二区| 伊人久久精品亚洲午夜| 黑人高潮一二区| 国产成人aa在线观看| 99re6热这里在线精品视频| 26uuu在线亚洲综合色| 亚洲va在线va天堂va国产| 联通29元200g的流量卡| 精品国产乱码久久久久久小说| 丰满少妇做爰视频| 欧美老熟妇乱子伦牲交| 欧美日韩在线观看h| 男男h啪啪无遮挡| 最近最新中文字幕大全电影3| 亚洲精品aⅴ在线观看| 国产高清国产精品国产三级 | 色5月婷婷丁香| 亚洲欧美成人综合另类久久久| 亚洲欧美清纯卡通| 伦精品一区二区三区| 亚洲美女视频黄频| 最近的中文字幕免费完整| 亚洲,欧美,日韩| 亚洲精品成人久久久久久| 嫩草影院入口| 国产成人午夜福利电影在线观看| av免费观看日本| av国产久精品久网站免费入址| 成人美女网站在线观看视频| 亚洲天堂av无毛| 性色avwww在线观看| 99久久精品一区二区三区| 国产午夜精品久久久久久一区二区三区| 在线观看免费高清a一片| 99热这里只有是精品50| 97人妻精品一区二区三区麻豆| 插阴视频在线观看视频| 人妻一区二区av| 免费av毛片视频| 日韩 亚洲 欧美在线| 亚洲国产日韩一区二区| 国产黄a三级三级三级人| 亚洲精品456在线播放app| 老司机影院毛片| 精品久久久久久久久av| 内地一区二区视频在线| 婷婷色麻豆天堂久久| 免费观看无遮挡的男女| 另类亚洲欧美激情| 成人国产av品久久久| 三级国产精品欧美在线观看| av在线天堂中文字幕| 日本三级黄在线观看| 天天躁夜夜躁狠狠久久av| 一二三四中文在线观看免费高清| 赤兔流量卡办理| 精品国产乱码久久久久久小说| 精品一区二区三区视频在线| 欧美最新免费一区二区三区| 亚洲av电影在线观看一区二区三区 | 亚洲精品亚洲一区二区| 最后的刺客免费高清国语| 免费看不卡的av| www.色视频.com| 少妇人妻精品综合一区二区| 五月开心婷婷网| 国产一区二区亚洲精品在线观看| 如何舔出高潮| 男女边摸边吃奶| 亚洲,一卡二卡三卡| 天堂网av新在线| av免费观看日本| 精品一区二区三区视频在线| 大陆偷拍与自拍| 激情五月婷婷亚洲| 免费少妇av软件| 国产真实伦视频高清在线观看| 亚洲最大成人手机在线| 久久女婷五月综合色啪小说 | 欧美一级a爱片免费观看看| 少妇人妻一区二区三区视频| 亚洲欧美清纯卡通| 成人亚洲精品一区在线观看 | 午夜福利视频精品| 欧美日本视频| 久久人人爽人人爽人人片va| 新久久久久国产一级毛片| 亚洲真实伦在线观看| 97热精品久久久久久| 美女被艹到高潮喷水动态| 亚洲美女视频黄频| 如何舔出高潮| 国产黄频视频在线观看| 亚洲人与动物交配视频| 亚洲成色77777| 国产视频首页在线观看| 欧美97在线视频| 国内揄拍国产精品人妻在线| 性色av一级| 成年女人看的毛片在线观看| videossex国产| 欧美高清成人免费视频www| 最近最新中文字幕免费大全7| 成年免费大片在线观看| 肉色欧美久久久久久久蜜桃 | 插逼视频在线观看| 久久6这里有精品| 看黄色毛片网站| 国产精品国产三级国产av玫瑰| 嘟嘟电影网在线观看| 两个人的视频大全免费| 日韩欧美精品免费久久| 黄色一级大片看看| 偷拍熟女少妇极品色| 成人综合一区亚洲| 亚洲av男天堂| 91精品国产九色| 中文字幕av成人在线电影| 亚洲国产最新在线播放| 国产成人一区二区在线| 国产精品爽爽va在线观看网站| 中文在线观看免费www的网站| 久久99蜜桃精品久久| 国产精品熟女久久久久浪| 看免费成人av毛片| 国产精品精品国产色婷婷| 又黄又爽又刺激的免费视频.| 成人黄色视频免费在线看| 男人爽女人下面视频在线观看| 少妇高潮的动态图| 日韩av免费高清视频| 亚洲人成网站在线播| 午夜日本视频在线| 亚洲欧美一区二区三区国产| 日韩欧美 国产精品| 91精品伊人久久大香线蕉| 欧美高清成人免费视频www| xxx大片免费视频| 丝瓜视频免费看黄片| 日产精品乱码卡一卡2卡三| 久久久久网色| 亚洲电影在线观看av| 国精品久久久久久国模美| 赤兔流量卡办理| 国产欧美另类精品又又久久亚洲欧美| 亚洲天堂国产精品一区在线| 精品国产三级普通话版| 香蕉精品网在线| 男女啪啪激烈高潮av片| 国产综合精华液| 中文在线观看免费www的网站| 日韩欧美 国产精品| 有码 亚洲区| 免费黄色在线免费观看| 国产又色又爽无遮挡免| 亚洲精品成人久久久久久| 欧美日韩国产mv在线观看视频 | 尾随美女入室| 99热国产这里只有精品6| 最近手机中文字幕大全| 成人午夜精彩视频在线观看| 国产真实伦视频高清在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲在线观看片| 国产精品福利在线免费观看| 久久97久久精品| 免费黄频网站在线观看国产| 国产高潮美女av| 久久精品久久精品一区二区三区| 老女人水多毛片| 亚洲av欧美aⅴ国产| 日韩强制内射视频| 精品99又大又爽又粗少妇毛片| 午夜福利在线观看免费完整高清在| 91久久精品国产一区二区三区| 亚洲精品国产av蜜桃| 欧美三级亚洲精品| 噜噜噜噜噜久久久久久91| 亚洲av不卡在线观看| 日本免费在线观看一区| 男女边吃奶边做爰视频| 久久99热6这里只有精品| 黄色一级大片看看| 国产精品人妻久久久影院| 青春草国产在线视频| 少妇高潮的动态图| 我要看日韩黄色一级片| 国产精品国产av在线观看| 777米奇影视久久| 新久久久久国产一级毛片| 一区二区av电影网| 97在线人人人人妻| 中国三级夫妇交换| 免费少妇av软件| 亚洲一级一片aⅴ在线观看| 亚洲国产精品国产精品| 亚洲av.av天堂| 直男gayav资源| 精品久久久久久久久亚洲| 青春草国产在线视频| 亚洲精品亚洲一区二区| 三级国产精品片| 亚洲av中文av极速乱| 日韩 亚洲 欧美在线| 91久久精品电影网| 在线免费观看不下载黄p国产| 欧美精品人与动牲交sv欧美| 少妇 在线观看| 欧美精品人与动牲交sv欧美| 51国产日韩欧美| 日韩欧美 国产精品| 男人爽女人下面视频在线观看| 日本黄大片高清| 日本欧美国产在线视频| 欧美精品一区二区大全| 丝袜脚勾引网站| 大话2 男鬼变身卡| 中文乱码字字幕精品一区二区三区| 日本-黄色视频高清免费观看| 最近手机中文字幕大全| 国产精品一区二区性色av| 国产精品熟女久久久久浪| 国产午夜福利久久久久久| 日韩欧美精品免费久久| 制服丝袜香蕉在线| 水蜜桃什么品种好| av在线观看视频网站免费| 99热6这里只有精品| 婷婷色麻豆天堂久久| 亚洲精品第二区| 婷婷色麻豆天堂久久| 日韩一区二区三区影片| 亚洲欧美精品专区久久| 晚上一个人看的免费电影| 国产真实伦视频高清在线观看| 热re99久久精品国产66热6| 免费高清在线观看视频在线观看| 免费看av在线观看网站| 99热国产这里只有精品6| 精品99又大又爽又粗少妇毛片| 亚洲欧美成人综合另类久久久| 高清毛片免费看| 九九久久精品国产亚洲av麻豆| 免费黄网站久久成人精品| 国产精品秋霞免费鲁丝片| 伊人久久国产一区二区| 18禁裸乳无遮挡动漫免费视频 | 99九九线精品视频在线观看视频| 高清视频免费观看一区二区| 91在线精品国自产拍蜜月| 国产成人精品福利久久| 一级毛片我不卡| 日本免费在线观看一区| 黄色视频在线播放观看不卡| 午夜日本视频在线| 亚洲精品中文字幕在线视频 | 国产精品一区二区在线观看99| 午夜福利视频精品| 免费观看在线日韩| 最近2019中文字幕mv第一页| 中文欧美无线码| 晚上一个人看的免费电影| 久久精品久久久久久噜噜老黄| 狠狠精品人妻久久久久久综合| 少妇丰满av| 欧美高清性xxxxhd video| 久久久成人免费电影| 久久久久久久久久久丰满| 最近最新中文字幕免费大全7| 久久久久久久亚洲中文字幕| 九色成人免费人妻av| 人人妻人人看人人澡| 久久综合国产亚洲精品| 欧美激情久久久久久爽电影| 欧美xxxx黑人xx丫x性爽| 亚洲电影在线观看av| 亚洲国产色片| 自拍偷自拍亚洲精品老妇| 蜜桃亚洲精品一区二区三区| 亚洲伊人久久精品综合| 国产探花在线观看一区二区| 亚洲av电影在线观看一区二区三区 | 一级片'在线观看视频| 成人午夜精彩视频在线观看| 天美传媒精品一区二区| 伊人久久精品亚洲午夜| 丰满少妇做爰视频| 男的添女的下面高潮视频| 少妇 在线观看| 欧美日韩在线观看h| 狠狠精品人妻久久久久久综合| 少妇人妻久久综合中文| 成年女人在线观看亚洲视频 | 夫妻性生交免费视频一级片| 国产精品嫩草影院av在线观看| 边亲边吃奶的免费视频| 国产成人午夜福利电影在线观看| 色哟哟·www| 91精品一卡2卡3卡4卡| 视频中文字幕在线观看| 在线a可以看的网站| 一本一本综合久久| 午夜日本视频在线| 成人亚洲精品av一区二区| 男插女下体视频免费在线播放| 欧美三级亚洲精品| 国产中年淑女户外野战色| 亚洲天堂av无毛| 伊人久久国产一区二区| 日本猛色少妇xxxxx猛交久久| 另类亚洲欧美激情| 亚洲aⅴ乱码一区二区在线播放| 国产av码专区亚洲av| 一本一本综合久久| 国产黄频视频在线观看| 亚洲av在线观看美女高潮| 在线观看三级黄色| 色5月婷婷丁香| 男男h啪啪无遮挡| 永久网站在线| 少妇人妻精品综合一区二区| 26uuu在线亚洲综合色| 久久久a久久爽久久v久久| 久久久久久国产a免费观看| 欧美激情国产日韩精品一区| 精品久久久精品久久久| 亚洲精品自拍成人| 国产一级毛片在线| 日日撸夜夜添| 人人妻人人看人人澡| av在线播放精品| 一级毛片黄色毛片免费观看视频| 亚洲欧美日韩另类电影网站 | 亚洲伊人久久精品综合| 秋霞伦理黄片| 少妇裸体淫交视频免费看高清| 国产男女超爽视频在线观看| 国产淫片久久久久久久久| 日产精品乱码卡一卡2卡三| 香蕉精品网在线| 深夜a级毛片| 国产乱来视频区| 婷婷色综合大香蕉| 免费黄频网站在线观看国产| 各种免费的搞黄视频| 最近最新中文字幕大全电影3| 国产男女内射视频| 久久鲁丝午夜福利片| 禁无遮挡网站| 中文欧美无线码| 97在线人人人人妻| 国产精品爽爽va在线观看网站| 精品酒店卫生间| 老司机影院成人| 国产亚洲5aaaaa淫片| 国产久久久一区二区三区| 国产男女内射视频| 国产成人精品福利久久| 国产淫片久久久久久久久| 国产 一区精品| 国产日韩欧美亚洲二区| 男女国产视频网站| 看十八女毛片水多多多| 久久久久网色| eeuss影院久久| 国产精品麻豆人妻色哟哟久久| 亚洲精品国产成人久久av| 看免费成人av毛片| 在线免费十八禁| 精品久久久久久久久亚洲| 成人美女网站在线观看视频| 黄色怎么调成土黄色| 熟女电影av网| 麻豆乱淫一区二区| 高清日韩中文字幕在线| 国产精品人妻久久久久久| 好男人视频免费观看在线| 日韩av不卡免费在线播放| 欧美日韩亚洲高清精品| 黑人高潮一二区| 欧美激情国产日韩精品一区| 99久国产av精品国产电影| 一区二区三区精品91| videos熟女内射| 精品一区在线观看国产| 看十八女毛片水多多多| 简卡轻食公司| 少妇人妻 视频| 一级毛片aaaaaa免费看小| 免费观看无遮挡的男女| 午夜福利高清视频| 狠狠精品人妻久久久久久综合| 精品久久久久久久久av| 看十八女毛片水多多多| 97精品久久久久久久久久精品| 少妇丰满av| 日韩一区二区视频免费看| 午夜福利视频精品| 亚洲精品自拍成人| 中文字幕人妻熟人妻熟丝袜美| 听说在线观看完整版免费高清| 插逼视频在线观看| 超碰97精品在线观看| 成人国产av品久久久| 国产男女内射视频| 国产毛片a区久久久久| 国产人妻一区二区三区在| 美女主播在线视频| 精品视频人人做人人爽| 久久6这里有精品| 我的老师免费观看完整版| 美女视频免费永久观看网站| 少妇的逼好多水| h日本视频在线播放| 少妇熟女欧美另类| 国产精品久久久久久精品电影| 欧美高清成人免费视频www| 插阴视频在线观看视频| 亚洲欧美日韩无卡精品| 男女无遮挡免费网站观看| 91久久精品国产一区二区成人| 日韩av不卡免费在线播放| 亚洲人成网站在线播| 欧美另类一区| 亚洲经典国产精华液单| 最近2019中文字幕mv第一页| 久久久久久久久大av| 国产成人一区二区在线| 好男人在线观看高清免费视频| 黄片wwwwww| 赤兔流量卡办理| 插阴视频在线观看视频| 精品人妻视频免费看| 成人美女网站在线观看视频| 丝袜美腿在线中文| 亚洲精品亚洲一区二区| 免费黄频网站在线观看国产| 日本av手机在线免费观看| 欧美精品人与动牲交sv欧美| 日日啪夜夜爽| 中国国产av一级| 亚洲第一区二区三区不卡| 又爽又黄无遮挡网站| 啦啦啦在线观看免费高清www| 黄色一级大片看看| 一级黄片播放器| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费电影在线观看免费观看| 午夜免费观看性视频| 国产毛片在线视频| 嫩草影院新地址| 一个人看的www免费观看视频| 热99国产精品久久久久久7| 男女啪啪激烈高潮av片| 久久久久久久国产电影| 亚洲欧美成人综合另类久久久| 日韩视频在线欧美| 在线观看国产h片| 欧美激情国产日韩精品一区| 王馨瑶露胸无遮挡在线观看| 一个人看的www免费观看视频| 最后的刺客免费高清国语| 欧美三级亚洲精品| 国产精品99久久99久久久不卡 | av一本久久久久| a级毛色黄片| 美女cb高潮喷水在线观看| 亚洲精品456在线播放app| 精品国产露脸久久av麻豆| 精品久久国产蜜桃| 涩涩av久久男人的天堂| 久久久久精品久久久久真实原创| 热re99久久精品国产66热6| 亚洲精品一区蜜桃|