• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Integrated,reliable laser system for an 87Rb cold atom fountain clock

    2023-02-20 13:14:52ZhenZhang張鎮(zhèn)JingFengXiang項靜峰BinXu徐斌PanFeng馮盼GuangWeiSun孫廣偉YiMingMeng孟一鳴SiMinDaDeng鄧思敏達(dá)WeiRen任偉JinYinWan萬金銀andDeSheng呂德勝
    Chinese Physics B 2023年1期
    關(guān)鍵詞:徐斌金銀

    Zhen Zhang(張鎮(zhèn)), Jing-Feng Xiang(項靜峰), Bin Xu(徐斌), Pan Feng(馮盼), Guang-Wei Sun(孫廣偉),Yi-Ming Meng(孟一鳴), Si-Min-Da Deng(鄧思敏達(dá)), Wei Ren(任偉),Jin-Yin Wan(萬金銀), and De-Sheng L¨u(呂德勝)1,,?

    1Key Laboratory of Quantum Optics and Center of Cold Atom Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China

    2College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China

    3Aerospace Laser Engineering Department,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China

    Keywords: cold atoms,laser system,atomic fountain clock,reliability

    1. Introduction

    The cold atom fountain clock has been widely used as a precision frequency standard equipment in fields such as satellite navigation and basic physics since it was first developed in 1991.[1–3]As complex quantum systems, most fountain clocks are bulky and operate in a fixed laboratory environment. Most of the complexity of the fountain clock lies in the laser system,which is used for laser cooling and detection of cold atoms.[4–7]The output of the laser system is connected with the physical unit of the fountain clock by several singlemode polarization maintaining fibers.The stability of the laser power of the fiber output significantly affects the stability of the fountain clock.[8]

    A reliable fountain clock with more portability would be very helpful for time keeping and time services.[9–12]In a previously developed fountain clock system,we integrated commercial lasers,laser amplifiers,frequency shifting components and laser beam splitter components into an optical table to create a transportable rubidium fountain clock. Long-term tests of the fountain clock were conducted in Shanghai and Beijing,with performance being similar in the two cities.[13,14]

    In this article,we introduce an upgraded laser system with improvements to its vibrational resistance, thermal stability,and maintainability for developing a reliable, commercially available high-precision fountain atomic clock. Such a system is essential to promoting and applying high-precision cold atom quantum sensing devices,such as cold atom gravimeters,gravity gradiometers,and gyroscopes.[15–19]

    The remainder of the article is organized as follows. Section 2 introduces the design principle and overall structure of the laser system. Section 3 demonstrates the design of the laser source component. In presenting the integrated operation of the overall system,the integrated design scheme of the tapered amplifier (TA), one of the core system components,is explained. Section 4 presents the design of the laser splitting and frequency shifting module, optimization of the thermal stability of the critical components, such as the reflector assembly,and the experimental results of the system’s thermal stability design. Section 5 presents the conditions and results of experiments conducted on system reliability and stability.Section 6 evaluates the performance of the laser system connected with the physical unit of the fountain clock. Section 7 gives concluding remarks.

    2. Laser system design scheme

    The function of the laser system in a rubidium fountain clock is to provide six-beam laser in optical fibers for cooling and trapping atoms and two-beam laser in optical fibers for detecting cold atoms. The cooling and trapping fibers contain the cooling laser frequency and the repumping laser frequency,which are independent for the two detection fibers. The laser frequency of the cooling component is locked to the crossover resonant peaks of|F=2〉→|F′=3〉and|F=2〉→|F′=2〉of the saturated absorption spectrum of the87Rb D2line,while the repumping component is locked to the crossover resonant peaks of|F=1〉→|F′=2〉and|F=1〉→|F′=1〉. After power amplification by the TA, the cooling laser beam is divided into seven beams,one for detecting and six for cooling.The frequency of the detecting light is red-detuned by approximately 3 MHz from the|F=2〉→|F′=3〉transition frequency,and the cooling light is red-detuned by approximately 18 MHz from the|F=2〉→|F′=3〉transition frequency.The frequency of the repumping laser is locked to the resonance line of the87Rb|5S1/2,F=1〉→|5P3/2,F′=2〉transition frequency.

    The overall topological design of the optical path is nearly identical to that of the previous fountain clock.[13,14]We divided the laser system into four modules according to function to facilitate the replacement of modules and satisfy the maintainability requirement. Figure 1 is a schematic of the laser system. Input and output laser travels within an optical fiber outside modules,whereas laser beams travel in free space inside modules. Among the four modules, the cooling and repumping modules house the laser sources required for cooling and repumping light, the TA module amplifies the power of the cooling laser, and the laser-beam splitting and frequency shifting module splits and combines the laser beam,modulates the frequency and power,and couples the laser to the fibers of each beam.The following sections describe the design of each module in detail. We designed a structure for integration and reliability based on this scheme,as depicted in Fig.2.

    Fig.1. Optical schematic.

    Fig.2. The three-dimensional model of laser system.

    For the purpose of higher mechanical reliability, the entire system is assembled with as few adjustable mechanical components as possible and the positioning of all devices are reinforced with fasteners and glue. Eventually,the entire system is completely fixed with no adjustable components.

    We adopted three methods for higher integration. First,we designed the structural size of each component as small as possible.Second,we used a folded optical path to optimize the layout and maximize the usage of space.Third,we verified the system’s structural strength through simulation to reduce volume and weight while satisfying the strength requirements.

    The dimensions of the final laser system solution are 77 cm×36 cm. Consequently, our laser system is more compact than previous schemes and mechanically reliable.[2–13,13–22]

    3. Laser source component

    The cooling, repumping, and TA modules in Fig. 1 provide the laser source of the overall system,referred to collectively as the laser source component. The repumping module is structurally similar to the cooling component, and we introduced the cooling module and TA module. Photographs of these two components are shown in Fig.3.

    In the cooling module, a distributed Bragg reflector(DBR) laser diode is chosen as the seed laser for its compact size and high mechanical stability compared with the external-cavity diode laser, typically used in frequency standards.[13,14,23–27]The output power of the DBR laser diode is approximately 100 mW. After passing through an optical isolator with 60 dB isolation,the laser beam is divided into two components by a polarization beam splitter. The lower-power beam is approximately 1 mW and enters a saturated absorption frequency stabilization optical path to lock the frequency of the laser to the|F=2〉→|F′=3〉and|F=2〉→|F′=2〉crossover resonant peaks of the saturated absorption spectrum of the87Rb D2line. The higher-power one is approximately 80 mW and passes twice through an acousto-optic modulator(AOM)to shift the laser frequency between 180 MHz and 240 MHz.[28]Then, such laser with the power of approximately 40 mW is coupled to a fiber. The output power of the fiber is approximately 20 mW.The output is injected into the TA through a fiber for amplification to more than 400 mW and then transmitted to the laser splitting and frequency shifting module through an optical fiber.

    The difficulty of integrating the TA amplification module is the beam alignment and coupling in both directions,the high precise temperature control, the rapid heat dissipation, and the ultra-clean surface maintenance of the TA chip.In the previous fountain clock,[13,14]we used BoosTA series products produced by TOPTICA, with typical dimensions of 275 mm×115 mm×90 mm,with a mass of 3.9 kg.

    We designed a TA module based on microscale packaging technology to integrate the TA. This design, as displayed in Fig. 4(a), consists of the injected seed laser coupling, the amplified outputs collimating, the thermal controlling and an interface of the chip’s current source.

    Lens 1 is an aspherical lens(4.5 mm focal length)that focuses and injects the seed laser into the TA chip. Lens 2 is an aspherical lens(2 mm focal length)that collimates the magnified laser beam in the vertical direction. Lens 3 is a cylindrical lens (15 mm focal length) that shapes the output beam in the horizontal direction so that the final output beam is a nearly collimated Gaussian beam.

    Fig.3. Photographs of(a)the cooling section and(b)the TA section.

    Fig.4.Design and implementation of TA component integration:(a)optical principle design,(b)analysis of the output beam quality for verification of the optical scheme,(c)design scheme of the TA component integrated structure,and(d)photograph of integrated TA components.

    We built an experimental system to verify the design scheme. The final output spot was monitored by a beam quality analyzer, as exhibited in Fig. 4(b). The laser system’s output quality is high and satisfies our application requirements. Accordingly, we designed a complete TA structure based on the butterfly packaging process, as depicted in Fig.4(c). In our design scheme, we integrated lens 1, lens 2,and the TA chip on the same base and connected them to a gold-plated stainless steel case with a thermo-electric cooler(TEC). These lenses, structural components, and TEC were jointed through laser welding after surface metallization. After debugging and assembling of the overall system, the case was filled with dry air and sealed to provide a stable operating environment. The final assembled TA component is presented in Fig.4(d). The dimensions and weight of the TA component are 55 mm×55 mm×21 mm and 0.1 kg, only 2.2% of the volume and 2.6%of the weight of the TOPTICA product.

    As for the form of the TA output, a free-space output is applied instead of optical fibers, anticipating that the TA system will have a broader range of applications. Users can directly use free-space output or optical fiber-coupled output according to the needs of their systems. In our system, a fiber coupling component was added to the TA component to transmit the output laser to the laser splitting and frequency shifting module through an optical fiber. There are three advantages to this design. The first is decoupling the laser source component from the laser splitting and frequency shifting module,for convenient maintenance and device replacement. The second is that each module can be debugged separately during installation and adjustment to improve the efficiency of system integration and assembly. The third is that the beam quality of the laser output from the fiber is a nearly perfect Gaussian fundamental mode,ensuring that the optical fiber coupled output,AOM,and other components in the laser splitting and frequency shifting module work optimally, which improves the systemic reliability. Finally, the reliability of the TA component was verified by conducting thermal cycling tests and mechanical vibration experiments.There was no apparent change in TA component performance during the tests.

    4. Laser splitting and frequency shifting module

    Figure 5 is a photograph of the laser splitting and frequency shifting module. After beam split, the cooling laser from the TA passes through three AOMs with different driving frequencies,and then coupled into seven optical fibers for output. Three of them are used as upward cooling light,three for downward cooling, and the remaining one plays the role of detection light. The input repumping laser is split into two components: one coupled to the cooling light and the other coupled output to the physical system through another fiber.

    The primary characteristic of the laser splitting and frequency shifting module is the high stability of the laser power from the input fiber to the output fiber. The stability of output laser power is related to the mechanical structure and thermal variation. The mechanical stability has been achieved by the structural design and assembly process while the thermal stability is still the difficulty and critical content of the laser system.

    Fig.5. Photograph of the laser splitting and frequency shifting module.

    From the input fiber to the output, the laser beam passes through polarizing beam splitters, AOMs, reflectors, wave plates,an optical fiber coupler,and other optical components.The effects of the temperature variation will change the beam orientation after the beam passes through the components,therefor it should be considered to maintain the stability of the output optical power. The structure and material of the most sensitive fiber coupling component were optimized while analyzing and optimizing the effect of the uniformity of the thermal expansion coefficient of the material on thermal stability. The results have been published elsewhere and are not described in this paper.[29]

    In addition to the fiber coupling components, many reflective elements in the system deform under a temperature change(e.g.,the 45°C reflector component),misaligning the output beam and affecting the power output through the fiber coupling.

    We performed a finite element simulation analysis of the thermal expansion of the existing reflector assembly, as depicted in Fig. 6(a). The structure is stainless steel, and the temperature fluctuations condition is heating by 20°C. The reflector structure experiences distinct forward tilting deformation under such conditions,resulting in beam deflection,so we optimized the structure accordingly. The optimized structure was simulated under the same material and temperature conditions, as depicted in Fig. 6(b). The optimized structure undergoes no noticeable deformation,and the tendency to lean forward is minimized. The effectiveness of our simulation and optimization was verified by designing a set of optical verification paths,as depicted in Fig.6(c). The reflector components before and after optimization were inserted into two sets of single-mode fiber optical coupling paths with the same structure and equal optical paths. We then evaluated the effect of the reflector structure on the thermal stability of the optical path based on the change in the output power. This is the same as the effect of the reflector assembly on the thermal stability of the complete laser splitting and frequency shifting module. We conducted two groups of temperature experiments,one for the large temperature variation and the other for the small change.

    Fig.6. (a) Simulation of the thermal expansion of the reflector structure before optimization (1000× magnification), (b) simulation of the thermal expansion of the optimized reflector structure (1000× magnification), and(c)optical path design of the tests for verifying the optimization result.

    Fig.7. Validation tests on temperature for optimizing the thermal stability of the reflector structure: (a) validation results of tests with large temperature changes from 5°C to 43°C and(b)validation results of tests with small temperature changes of less than 0.1 °C.

    The results of a large temperature change (in a range of 5°C to 43°C) are depicted in Fig. 7(a). The change in the coupling efficiency of the optical path on which the optimized reflector is located is approximately 25%smaller than before optimization. The experiment results for a small temperature change(less than 0.1°C)are depicted in Fig.7(b).The change in the output power of the optical path on which the optimized structure is located is less than half of that before optimization.It can be concluded that the thermal stability of our structure is optimal and the total stability of the output power is effectively increased.

    5. Reliability tests and results

    We conducted several tests to evaluate the reliability of our fountain clock’s laser system. Consistent with an environmental reliability testing standard of the space cold atomic clock,[23,24]the above system is to experience a temperature cycling test and a vibration test.In the thermal cycling test,the selected temperature conditions are varied from 8°C to 43°C,with a rate of 3°C per hour. We calculate the fluctuation in laser power of the cooling and detecting beams by the corresponding photo-current of fiber-in-built photodetectors,and experimental results are presented in Fig. 8. Because of the large amount of data, we present results for only three channels: two cooling lights and the detecting light. Under such conditions of temperature change, the peak-to-peak change rate of the output power of each light is less than 20%, and the output power of each light does not change appreciably during the test. These results satisfy our design and application requirements. Consequently,the thermal reliability of the overall laser system was successfully optimized.

    Fig.8. Test results of thermal reliability.

    Another aspect of verifying reliability is a random vibration test for the entire laser system, with an order of magnitude of 6.11gRMS for a period of 90 s in the three directions ofx,y, andz. The changes in output power before and after vibration are presented in Table 1. The output power of the cooling and detecting light changes by less than 5%during the mechanical test, which can be compensated by changing the radio-frequency power of AOMs. These results indicate that the design of our laser system satisfies the mechanical reliability requirements.

    Table 1. Test results verifying mechanical reliability.

    6. Functional verification

    Random vibration and thermal cycling test illustrate that the laser system’s structural reliability ensures the power stability of the laser output from the fibers. Frequency stability is achieved by a saturated absorption spectrum. The detailed electronic design for frequency stabilization and the software control method have been described previously.[30]The swept spectrum of the frequency stabilization process is depicted in Fig.9.Figure 9(a)illustrates the spectrum of the cooling laser,and Fig.9(b)illustrates that of the repumping laser. The laser frequency is locked at the target peak after the software identifies the characteristic spectral line during the laser frequency scanning process. The fountain clock can be operated normally using the control system to drive the AOMs in the laser system based on the clock’s timing sequences. Figure 9(c)is a cold atom image obtained using our integrated laser system in the fountain clock revealing normal laser system function.

    Fig.9. Experimental results of the functional verification of the laser system: (a) the frequency stabilization of the cooling laser, (b) the frequency stabilization of the repumping laser,and(c)a photograph of cold atoms cloud obtained by a magneto-optical trap.

    7. Conclusion

    In this paper, we developed an integrated and highly reliable laser system for87Rb cold atom fountain clocks, conducted performance evaluating tests, and verified system’s functionality with a fountain clock. This study establishes a technical foundation for achieving a new generation of longdistance transportable87Rb cold atom fountain clocks. This technology can be applied to high-precision cold atom quantum sensors,such as cold atom gravimeters and gyroscopes.

    猜你喜歡
    徐斌金銀
    社會主義核心價值觀(二)
    Quantitative structure-plasticity relationship in metallic glass:A machine learning study*
    燃情歲月金銀潭
    海峽姐妹(2020年5期)2020-06-22 08:25:58
    “三八”節(jié),來自金銀潭醫(yī)院的最美心愿
    海峽姐妹(2020年3期)2020-04-21 09:27:44
    美洲金銀公司簡介
    工友
    工友(2019年6期)2019-06-27 03:37:02
    粉刷匠
    工友(2019年4期)2019-04-24 02:46:10
    昔日“氣死龍王爺” 如今變身金銀山
    飛行員養(yǎng)熊貓豬自闖銷路年銷300萬元
    一袋胡蘿卜
    派出所工作(2016年9期)2016-05-30 10:48:04
    成人漫画全彩无遮挡| 啦啦啦韩国在线观看视频| 一级爰片在线观看| 菩萨蛮人人尽说江南好唐韦庄| 男女下面进入的视频免费午夜| 深夜a级毛片| 日本与韩国留学比较| 日韩欧美精品v在线| 国产高清不卡午夜福利| 久久久久久九九精品二区国产| 麻豆久久精品国产亚洲av| 亚洲精品亚洲一区二区| 午夜日本视频在线| 97人妻精品一区二区三区麻豆| 亚洲精品日韩av片在线观看| 免费av毛片视频| 亚洲熟女精品中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费黄频网站在线观看国产| 国产色婷婷99| 搞女人的毛片| 免费观看在线日韩| 国产精品福利在线免费观看| 日本wwww免费看| 国产精品人妻久久久影院| 最近视频中文字幕2019在线8| 卡戴珊不雅视频在线播放| 午夜老司机福利剧场| 国内精品宾馆在线| 亚洲成人一二三区av| 午夜久久久久精精品| 欧美高清成人免费视频www| 日韩,欧美,国产一区二区三区| 夫妻性生交免费视频一级片| 久久久亚洲精品成人影院| 大话2 男鬼变身卡| 亚洲欧美日韩无卡精品| 99热网站在线观看| 精品久久国产蜜桃| av卡一久久| 久久久久精品性色| 狠狠精品人妻久久久久久综合| 亚洲人成网站高清观看| 高清视频免费观看一区二区 | 男女国产视频网站| 日日摸夜夜添夜夜爱| 我要看日韩黄色一级片| 好男人视频免费观看在线| 日韩亚洲欧美综合| 午夜精品在线福利| 成人无遮挡网站| 中文资源天堂在线| h日本视频在线播放| 国产精品一区二区性色av| 国产三级在线视频| 亚洲精品自拍成人| 亚洲欧美成人综合另类久久久| 美女大奶头视频| 国产欧美另类精品又又久久亚洲欧美| 精品一区在线观看国产| 久久99热这里只频精品6学生| 禁无遮挡网站| 建设人人有责人人尽责人人享有的 | 少妇被粗大猛烈的视频| 国产av不卡久久| av在线播放精品| 国产一级毛片在线| 成人高潮视频无遮挡免费网站| 国产精品福利在线免费观看| av在线播放精品| 成年av动漫网址| 白带黄色成豆腐渣| 精品人妻偷拍中文字幕| 亚洲欧美成人综合另类久久久| 亚洲欧洲日产国产| 一个人观看的视频www高清免费观看| 91久久精品国产一区二区成人| 日韩亚洲欧美综合| 久久精品国产亚洲av天美| 小蜜桃在线观看免费完整版高清| 亚洲成色77777| 在线观看av片永久免费下载| 91午夜精品亚洲一区二区三区| 日韩精品有码人妻一区| 一级毛片电影观看| 97热精品久久久久久| 国产视频内射| 欧美97在线视频| 久久久久久久亚洲中文字幕| 国产一区二区三区综合在线观看 | 日日啪夜夜撸| 色综合亚洲欧美另类图片| 秋霞在线观看毛片| 九九爱精品视频在线观看| 国产激情偷乱视频一区二区| 国产老妇女一区| 免费高清在线观看视频在线观看| 国产高清不卡午夜福利| 日本色播在线视频| 天堂√8在线中文| 国产高清有码在线观看视频| 一本一本综合久久| 极品教师在线视频| 成年av动漫网址| 午夜免费男女啪啪视频观看| 国产老妇女一区| 街头女战士在线观看网站| 日日撸夜夜添| 久久99热这里只频精品6学生| 国内精品宾馆在线| 亚洲不卡免费看| 国产在线男女| 99re6热这里在线精品视频| 两个人的视频大全免费| 成人毛片a级毛片在线播放| 男女下面进入的视频免费午夜| av一本久久久久| 国产精品一区二区三区四区久久| 亚洲aⅴ乱码一区二区在线播放| 午夜福利视频精品| 国产精品久久久久久av不卡| 午夜激情欧美在线| 中文字幕久久专区| 国产毛片a区久久久久| 国产女主播在线喷水免费视频网站 | 亚洲成人精品中文字幕电影| 国产亚洲午夜精品一区二区久久 | 嫩草影院入口| 啦啦啦啦在线视频资源| 成年女人在线观看亚洲视频 | 又黄又爽又刺激的免费视频.| 国内精品一区二区在线观看| 精品人妻视频免费看| 国产真实伦视频高清在线观看| 色吧在线观看| 在线 av 中文字幕| 成人亚洲精品av一区二区| 中文字幕av在线有码专区| 久久久久久久亚洲中文字幕| 国产成人一区二区在线| 两个人的视频大全免费| 最近最新中文字幕免费大全7| 日本免费a在线| 简卡轻食公司| 青春草视频在线免费观看| h日本视频在线播放| 亚洲自拍偷在线| 九色成人免费人妻av| 国精品久久久久久国模美| 能在线免费观看的黄片| 国产色爽女视频免费观看| 黄色一级大片看看| 国产午夜精品久久久久久一区二区三区| 欧美另类一区| 午夜免费激情av| 在现免费观看毛片| 国产综合懂色| 91狼人影院| 日韩一本色道免费dvd| 久久99热这里只有精品18| 最近视频中文字幕2019在线8| 国产精品熟女久久久久浪| 成人亚洲精品av一区二区| 国产午夜精品论理片| 午夜福利网站1000一区二区三区| 日韩大片免费观看网站| 日日摸夜夜添夜夜爱| 欧美3d第一页| 国产一区有黄有色的免费视频 | 国产高清有码在线观看视频| 最近的中文字幕免费完整| 国产在视频线在精品| 日韩,欧美,国产一区二区三区| 国产精品福利在线免费观看| 日韩强制内射视频| 亚洲美女搞黄在线观看| 亚洲第一区二区三区不卡| 国产视频首页在线观看| 亚洲不卡免费看| 男的添女的下面高潮视频| 免费看美女性在线毛片视频| 麻豆久久精品国产亚洲av| 97在线视频观看| 久热久热在线精品观看| 熟女电影av网| 青春草亚洲视频在线观看| 蜜桃亚洲精品一区二区三区| 国产精品1区2区在线观看.| 精品久久国产蜜桃| av线在线观看网站| 国产一级毛片七仙女欲春2| 亚洲欧洲国产日韩| 舔av片在线| www.色视频.com| 深爱激情五月婷婷| 国产v大片淫在线免费观看| 久久鲁丝午夜福利片| 国产三级在线视频| 国产高清有码在线观看视频| 狠狠精品人妻久久久久久综合| 久久久久久久久中文| 免费高清在线观看视频在线观看| 一夜夜www| 精品99又大又爽又粗少妇毛片| 人人妻人人澡人人爽人人夜夜 | 国产 一区精品| 国产av国产精品国产| 亚洲精品乱码久久久v下载方式| 一个人看的www免费观看视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩制服骚丝袜av| 18禁在线无遮挡免费观看视频| 亚洲欧美成人综合另类久久久| 久久99热这里只频精品6学生| 人妻系列 视频| 美女被艹到高潮喷水动态| 日韩欧美 国产精品| 免费av毛片视频| 国模一区二区三区四区视频| 一级毛片aaaaaa免费看小| 22中文网久久字幕| 偷拍熟女少妇极品色| 麻豆乱淫一区二区| 欧美潮喷喷水| 午夜福利高清视频| 狂野欧美激情性xxxx在线观看| 在线 av 中文字幕| 久久久久久久大尺度免费视频| 日日啪夜夜爽| 99久久精品一区二区三区| 亚洲国产高清在线一区二区三| 在线免费观看的www视频| 亚洲国产精品成人综合色| 国产人妻一区二区三区在| 大又大粗又爽又黄少妇毛片口| 永久免费av网站大全| 国产成年人精品一区二区| 国产精品熟女久久久久浪| 国产精品麻豆人妻色哟哟久久 | 久久午夜福利片| 免费黄网站久久成人精品| 高清视频免费观看一区二区 | 天堂影院成人在线观看| av福利片在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品成人综合色| 国产午夜精品一二区理论片| 97超视频在线观看视频| 99热这里只有是精品在线观看| 美女脱内裤让男人舔精品视频| 欧美性猛交╳xxx乱大交人| 国产日韩欧美在线精品| 亚洲成人精品中文字幕电影| 成年人午夜在线观看视频 | 成人特级av手机在线观看| 直男gayav资源| 汤姆久久久久久久影院中文字幕 | 欧美激情久久久久久爽电影| 一级毛片电影观看| 国产色婷婷99| 日日撸夜夜添| 成年av动漫网址| av在线观看视频网站免费| 男人和女人高潮做爰伦理| 99久久九九国产精品国产免费| 久久久久久国产a免费观看| av线在线观看网站| 亚洲成人中文字幕在线播放| 婷婷色综合www| 亚洲在久久综合| 精品久久久久久久久av| 国产精品麻豆人妻色哟哟久久 | 99久久人妻综合| 黄色日韩在线| 亚洲av福利一区| 国产精品国产三级国产专区5o| 国产熟女欧美一区二区| 毛片一级片免费看久久久久| 麻豆成人av视频| 男女边吃奶边做爰视频| 天堂影院成人在线观看| 亚洲欧洲国产日韩| 18禁动态无遮挡网站| 国产永久视频网站| 99久久精品国产国产毛片| 成人高潮视频无遮挡免费网站| 综合色av麻豆| 国产精品麻豆人妻色哟哟久久 | 日韩电影二区| 国产一区亚洲一区在线观看| 国产久久久一区二区三区| 自拍偷自拍亚洲精品老妇| 麻豆成人午夜福利视频| 你懂的网址亚洲精品在线观看| 日本免费a在线| 中文字幕av在线有码专区| 精品午夜福利在线看| 精品久久久久久久久久久久久| 日日啪夜夜撸| 免费黄色在线免费观看| 成人毛片60女人毛片免费| 亚洲高清免费不卡视频| 免费av观看视频| 777米奇影视久久| 国产在视频线在精品| 男人舔女人下体高潮全视频| 亚洲成人一二三区av| 日韩av在线免费看完整版不卡| 婷婷色综合www| 亚洲欧美精品专区久久| 69av精品久久久久久| 亚洲av在线观看美女高潮| 日产精品乱码卡一卡2卡三| 午夜老司机福利剧场| 欧美潮喷喷水| 亚洲av男天堂| 国产在视频线在精品| 亚洲欧美成人综合另类久久久| 又爽又黄无遮挡网站| 男女边摸边吃奶| 一本一本综合久久| 亚洲欧美一区二区三区黑人 | 亚洲激情五月婷婷啪啪| 国产美女午夜福利| 日韩一本色道免费dvd| 中文乱码字字幕精品一区二区三区 | 久久久久久国产a免费观看| 成人美女网站在线观看视频| 日韩大片免费观看网站| 高清在线视频一区二区三区| 亚洲综合色惰| 99热这里只有精品一区| 国产一区二区在线观看日韩| 亚洲av不卡在线观看| 深夜a级毛片| 麻豆av噜噜一区二区三区| 边亲边吃奶的免费视频| 91久久精品国产一区二区成人| 国产伦精品一区二区三区四那| 亚洲成人精品中文字幕电影| 久久久色成人| 欧美激情久久久久久爽电影| 久久精品综合一区二区三区| a级一级毛片免费在线观看| 天堂√8在线中文| 国产在视频线在精品| 日韩中字成人| 极品教师在线视频| 97人妻精品一区二区三区麻豆| 美女高潮的动态| 亚洲av国产av综合av卡| 简卡轻食公司| 亚洲精品自拍成人| 51国产日韩欧美| 两个人的视频大全免费| 能在线免费观看的黄片| 久久久久久九九精品二区国产| 国产精品久久视频播放| 少妇高潮的动态图| 亚洲欧美成人综合另类久久久| 久久99热6这里只有精品| 少妇被粗大猛烈的视频| 国产精品蜜桃在线观看| 亚洲欧美日韩无卡精品| 午夜福利成人在线免费观看| 国产不卡一卡二| 又爽又黄无遮挡网站| 亚洲自拍偷在线| 最近2019中文字幕mv第一页| 久久久亚洲精品成人影院| 精品人妻熟女av久视频| 国产免费一级a男人的天堂| 国产亚洲精品久久久com| 免费观看av网站的网址| 亚洲av免费高清在线观看| 夜夜看夜夜爽夜夜摸| 日韩欧美精品免费久久| 一级毛片黄色毛片免费观看视频| av国产久精品久网站免费入址| h日本视频在线播放| 亚洲国产精品成人综合色| 白带黄色成豆腐渣| 午夜老司机福利剧场| 国产有黄有色有爽视频| 中文乱码字字幕精品一区二区三区 | 啦啦啦中文免费视频观看日本| 国产探花极品一区二区| 日本免费a在线| 久久鲁丝午夜福利片| 亚洲aⅴ乱码一区二区在线播放| 99久久九九国产精品国产免费| 国产成人a∨麻豆精品| .国产精品久久| 一级毛片我不卡| 亚洲国产高清在线一区二区三| 亚洲av免费高清在线观看| 国产免费一级a男人的天堂| av女优亚洲男人天堂| 天堂中文最新版在线下载 | 久热久热在线精品观看| 成人国产麻豆网| 精品久久久久久久久久久久久| 丰满人妻一区二区三区视频av| 欧美高清性xxxxhd video| 国产午夜精品久久久久久一区二区三区| 两个人视频免费观看高清| 春色校园在线视频观看| 久久久精品94久久精品| 一区二区三区乱码不卡18| 韩国高清视频一区二区三区| 国产伦在线观看视频一区| 国产一区二区三区av在线| 成人性生交大片免费视频hd| 高清午夜精品一区二区三区| 久久久国产一区二区| 国产在线一区二区三区精| 美女大奶头视频| 51国产日韩欧美| 精品熟女少妇av免费看| 丝袜美腿在线中文| 国产又色又爽无遮挡免| www.色视频.com| 中文字幕亚洲精品专区| 1000部很黄的大片| 最近手机中文字幕大全| 色综合色国产| 国产国拍精品亚洲av在线观看| 人妻少妇偷人精品九色| 搞女人的毛片| 中国国产av一级| 精品久久久久久久久久久久久| 欧美日韩精品成人综合77777| 春色校园在线视频观看| 99re6热这里在线精品视频| 男女国产视频网站| 青春草视频在线免费观看| 亚洲av男天堂| 中文字幕亚洲精品专区| 国产黄频视频在线观看| 成年人午夜在线观看视频 | 国产不卡一卡二| 中文字幕亚洲精品专区| 黄片无遮挡物在线观看| 日韩 亚洲 欧美在线| 大话2 男鬼变身卡| 一级毛片我不卡| 看十八女毛片水多多多| 综合色丁香网| 欧美变态另类bdsm刘玥| 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线播| 亚洲精品,欧美精品| 亚洲国产色片| 美女脱内裤让男人舔精品视频| 水蜜桃什么品种好| 亚洲精品视频女| 如何舔出高潮| 免费不卡的大黄色大毛片视频在线观看 | 欧美日韩在线观看h| 久久草成人影院| 精品久久久久久电影网| 久久久久久久大尺度免费视频| av播播在线观看一区| 日韩 亚洲 欧美在线| 亚洲精品乱码久久久久久按摩| 午夜精品在线福利| 国产一级毛片七仙女欲春2| 亚洲四区av| 国产午夜福利久久久久久| 午夜福利视频1000在线观看| 黄色日韩在线| 一个人观看的视频www高清免费观看| 国内精品一区二区在线观看| 久久97久久精品| 少妇高潮的动态图| 69av精品久久久久久| 91狼人影院| 日韩强制内射视频| 一级爰片在线观看| 汤姆久久久久久久影院中文字幕 | 观看免费一级毛片| 最新中文字幕久久久久| 狂野欧美白嫩少妇大欣赏| 人体艺术视频欧美日本| 日日干狠狠操夜夜爽| av在线亚洲专区| 淫秽高清视频在线观看| 亚洲人成网站高清观看| 亚洲国产av新网站| 97精品久久久久久久久久精品| 美女脱内裤让男人舔精品视频| or卡值多少钱| 国产激情偷乱视频一区二区| 国产成人福利小说| 国产在线一区二区三区精| 日本wwww免费看| 嘟嘟电影网在线观看| 亚洲欧美日韩无卡精品| 99热全是精品| 神马国产精品三级电影在线观看| 国产片特级美女逼逼视频| 天堂中文最新版在线下载 | 色综合站精品国产| 啦啦啦韩国在线观看视频| 在线免费观看的www视频| 老师上课跳d突然被开到最大视频| 99久久精品热视频| 国产乱人偷精品视频| 国产成人91sexporn| 亚洲天堂国产精品一区在线| 国产成人免费观看mmmm| 精品亚洲乱码少妇综合久久| 精品国产三级普通话版| 免费黄网站久久成人精品| 又大又黄又爽视频免费| 久久精品国产亚洲av天美| 日韩精品有码人妻一区| 日日啪夜夜爽| 高清日韩中文字幕在线| 日日啪夜夜爽| 色综合亚洲欧美另类图片| 久久精品国产亚洲av天美| 亚洲成人中文字幕在线播放| 美女cb高潮喷水在线观看| 十八禁网站网址无遮挡 | 亚洲精品国产av成人精品| 少妇熟女aⅴ在线视频| 久久精品久久精品一区二区三区| 日日摸夜夜添夜夜添av毛片| 少妇的逼好多水| a级一级毛片免费在线观看| 色综合站精品国产| 欧美高清成人免费视频www| 成人漫画全彩无遮挡| 色5月婷婷丁香| 69人妻影院| 九草在线视频观看| 日本av手机在线免费观看| 国产成人freesex在线| 国产黄片视频在线免费观看| 色综合色国产| 97热精品久久久久久| 肉色欧美久久久久久久蜜桃 | 亚洲精品日本国产第一区| 日韩欧美 国产精品| 亚洲精品第二区| 国产极品天堂在线| 国产一级毛片在线| 亚洲美女视频黄频| 伊人久久国产一区二区| 亚洲国产av新网站| 精品一区二区三卡| 亚洲熟妇中文字幕五十中出| 又爽又黄a免费视频| 国产成人91sexporn| 高清毛片免费看| 免费播放大片免费观看视频在线观看| 99久国产av精品| 日本午夜av视频| 国产精品蜜桃在线观看| 热99在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 99热网站在线观看| 精品一区二区三卡| 久久久精品欧美日韩精品| 免费看光身美女| 免费观看性生交大片5| 三级男女做爰猛烈吃奶摸视频| 一本一本综合久久| 日韩精品青青久久久久久| 99热这里只有是精品在线观看| 3wmmmm亚洲av在线观看| 国产久久久一区二区三区| 亚洲18禁久久av| 久久久欧美国产精品| 一夜夜www| 老司机影院毛片| 毛片女人毛片| 久久热精品热| 欧美3d第一页| 99热网站在线观看| 国产精品人妻久久久久久| 美女cb高潮喷水在线观看| 亚洲精品成人久久久久久| 国产伦精品一区二区三区四那| 欧美xxxx黑人xx丫x性爽| 午夜福利在线在线| 国产日韩欧美在线精品| 色播亚洲综合网| 日韩av在线免费看完整版不卡| 老师上课跳d突然被开到最大视频| 日本av手机在线免费观看| 精品人妻偷拍中文字幕| 乱码一卡2卡4卡精品| 啦啦啦中文免费视频观看日本| 日韩人妻高清精品专区| 精品亚洲乱码少妇综合久久| 国产综合精华液| 国产一级毛片七仙女欲春2| 成年av动漫网址| 99九九线精品视频在线观看视频| 三级国产精品欧美在线观看| 日本三级黄在线观看| 青青草视频在线视频观看| 日韩欧美 国产精品| av黄色大香蕉| 国产高清有码在线观看视频| 午夜日本视频在线| 天堂网av新在线| 欧美zozozo另类| 亚洲真实伦在线观看| 联通29元200g的流量卡| 欧美日韩国产mv在线观看视频 | 午夜福利网站1000一区二区三区| 亚洲精品乱码久久久v下载方式|