陶瑩 廖長(zhǎng)秀
摘要:肝細(xì)胞癌(HCC)是世界范圍內(nèi)最常見(jiàn)的惡性腫瘤之一。程序性死亡受體1及其配體和細(xì)胞毒T淋巴細(xì)胞相關(guān)蛋白4等免疫檢查點(diǎn)抑制劑的面世為HCC的治療帶來(lái)了重大突破。但由于HCC為高異質(zhì)性腫瘤,單藥治療僅對(duì)少部分患者有效且可能因耐藥而無(wú)法持久獲益,因此仍需探索新的免疫檢查點(diǎn)抑制劑在HCC防治中的潛力。本文分析和歸納了新型免疫檢查點(diǎn)T淋巴細(xì)胞免疫球蛋白和免疫受體酪氨酸抑制基序結(jié)構(gòu)域(TIGIT)、T淋巴細(xì)胞激活抑制物免疫球蛋白可變區(qū)結(jié)構(gòu)域(VISTA)、B和T淋巴細(xì)胞弱化因子(BTLA)及含V-set域T淋巴細(xì)胞激活抑制因子(B7-H4)的生物學(xué)特性以及在HCC癌組織中的表達(dá)與功能。分析表明TIGIT、VISTA、BTLA和B7-H4在HCC癌組織中高表達(dá),與HCC患者預(yù)后差相關(guān),靶向阻斷相應(yīng)通路可有效抑制HCC進(jìn)展,是極具潛力的腫瘤治療靶點(diǎn),深入研究可為HCC免疫治療提供新方向。
關(guān)鍵詞:癌, 肝細(xì)胞; 免疫抑制劑; 分子靶向治療
基金項(xiàng)目:國(guó)家自然科學(xué)基金(81660642); 廣西學(xué)位與研究生教育改革課題(JGY2022278)
Role of new potential immune blocking molecules in the development and progression of hepatocellular carcinoma
TAO Ying1,2, LIAO Zhangxiu1. (1. School of Pharmacy, Youjiang Medical University for Nationalities, Bose, Guangxi 533000, China; 2. School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Bose, Guangxi 533000, China)
Corresponding author: LIAO Zhangxiu, liaozhangxiu@163.com (ORCID:0000-0001-5130-0642)
Abstract:
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors around the world. The emergence of immune checkpoint inhibitors targeting programmed death-1/programmed death-ligand 1 and cytotoxic T lymphocyte-associated antigen-4 has brought great breakthroughs in the treatment of HCC. However, since HCC is a type of tumor with high heterogeneity, monotherapy is only effective for a small number of patients and may not be able to achieve long-lasting benefits due to drug resistance, and therefore, it is necessary to explore the potential of new immune checkpoint inhibitors in the prevention and treatment of HCC. This article analyzes and summarizes the biological characteristics of the new immune checkpoints T cell immunoglobulin and ITIM domain (TIGIT), V-domain immunoglobulin suppressor of T-cell activation (VISTA), B and T lymphocyte attenuator (BTLA), and B7 homologous protein-4 (B7-H4) and their expression and function in HCC. The analysis shows that TIGIT, VISTA, BTLA, and B7-H4 are highly expressed in HCC tissue and are associated with the prognosis of HCC patients, and targeted blocking of corresponding pathways can effectively inhibit the progression of HCC, suggesting that these molecules are potential targets for tumor treatment and that in-depth studies can provide new directions for HCC immunotherapy.
Key words:
Carcinoma, Hepatocellular; Immunosuppressive Agents; Molecular Targeted Therapy
Research funding:
National Natural Science Foundation of China (81660642); Degree and Graduate Education Reform Project in Guangxi (JGY2022278)
根據(jù)2020年世界癌癥報(bào)告[1]顯示,全球原發(fā)性肝癌的新發(fā)病例數(shù)為905 677例,其中我國(guó)新發(fā)病例數(shù)為410 038例[2],約占全球的45.3%,肝細(xì)胞癌(HCC)為主要發(fā)病類型(占75%~85%),我國(guó)已成為全球HCC負(fù)擔(dān)最重的國(guó)家之一。早期HCC治療首選手術(shù)切除,但大多數(shù)患者初診時(shí)已為晚期,失去手術(shù)治療的機(jī)會(huì),中位生存期不足1年[3],嚴(yán)重影響患者的生命安全。HCC免疫原性較高,在病毒及腫瘤抗原的不斷刺激下,其表面負(fù)性共刺激分子表達(dá)水平升高,細(xì)胞因子分泌減少,致使免疫微環(huán)境失衡,腫瘤中心的T淋巴細(xì)胞數(shù)量較少,出現(xiàn)T淋巴細(xì)胞耗竭,促進(jìn)免疫逃逸的發(fā)生和HCC發(fā)生發(fā)展[4-5]。
免疫負(fù)性共刺激分子是一類重要的免疫調(diào)節(jié)蛋白,與配體結(jié)合產(chǎn)生抑制信號(hào),抑制免疫細(xì)胞的過(guò)度活化和增殖,并在免疫應(yīng)答期間保護(hù)周圍組織免受損傷[6]。目前研究較多的負(fù)性共刺激分子有程序性死亡受體1(programmed death-1, PD-1)、細(xì)胞毒T淋巴細(xì)胞相關(guān)蛋白4(cytotoxic T lymphocyte associated antigen-4, CTLA-4)、淋巴細(xì)胞活化基因-3(lymphocyte activation gene-3, LAG-3)和T淋巴細(xì)胞免疫球蛋白黏蛋白-3(T cell immune globulin-and mucin domain containing molecule-3, TIM-3)。以抗PD-1及其配體(PD-L1)抗體(納武單抗、派姆單抗、阿特珠單抗)和抗CTLA-4抗體(伊匹單抗、曲美木單抗)為代表的經(jīng)典免疫檢查點(diǎn)抑制劑在HCC治療中展現(xiàn)出不俗的優(yōu)勢(shì)[7-8],但由于部分患者存在天然耐受、后期耐藥及免疫不良反應(yīng)等問(wèn)題,導(dǎo)致其對(duì)免疫檢查點(diǎn)抑制劑無(wú)法產(chǎn)生持久的反應(yīng)[9]。近年來(lái)新型免疫檢查點(diǎn)分子T淋巴細(xì)胞免疫球蛋白和免疫受體酪氨酸抑制基序結(jié)構(gòu)域(T cell immunoglobulin and ITIM domain, TIGIT)、T淋巴細(xì)胞激活抑制物免疫球蛋白可變區(qū)結(jié)構(gòu)域(V-domain immunoglobulin suppressor of T-cell activation, VISTA)、B/T淋巴細(xì)胞弱化因子(B and T lymphocyte attenuator, BTLA)及含V-set域T淋巴細(xì)胞激活抑制因子(B7 homologous protein-4, B7-H4)的出現(xiàn),拓展了HCC治療靶點(diǎn)的范圍,免疫檢查點(diǎn)單克隆抗體通過(guò)阻斷免疫受體與配體的結(jié)合,增強(qiáng)機(jī)體抗癌效應(yīng)(圖1)。這些新出現(xiàn)的免疫檢查點(diǎn)抑制劑中,部分已針對(duì)腫瘤治療開(kāi)展臨床試驗(yàn)(表1,數(shù)據(jù)來(lái)源于clinicaltrials.gov),是未來(lái)HCC免疫檢查點(diǎn)抑制劑聯(lián)合治療中不可或缺的一部分。本文就當(dāng)前新興的免疫阻斷分子在HCC中的研究進(jìn)展進(jìn)行闡述。
1 TIGIT在HCC中的研究進(jìn)展
TIGIT,也稱為Vsig9、Vstm3,是一種與PD-1和TIM-3類似的共抑制分子,在T淋巴細(xì)胞和自然殺傷細(xì)胞(NK細(xì)胞)中表達(dá),并抑制這些細(xì)胞的活化[10]。其基因定位于染色體3q13.31,由免疫球蛋白可變片段、Ⅰ型跨膜蛋白結(jié)構(gòu)域和免疫受體酪氨酸抑制基序(immunoreceptor tyrosine-based inhibitory motif, ITIM)3個(gè)功能部分組成[11]。研究[12]表明,ITIM基序是一個(gè)關(guān)鍵結(jié)構(gòu)域,其負(fù)責(zé)TIGIT在NK細(xì)胞上的表達(dá)并抑制NK細(xì)胞殺傷力。TIGIT的配體包括脊髓灰質(zhì)炎病毒受體(也被稱為CD155)、脊髓灰質(zhì)炎病毒受體相關(guān)蛋白2和脊髓灰質(zhì)炎病毒受體相關(guān)蛋白3,其中CD155親和力最強(qiáng)。TIGIT可通過(guò)與CD155結(jié)合產(chǎn)生IL-10從而抑制CD8+T淋巴細(xì)胞增殖和IFNγ、TNFα以及IL-17的產(chǎn)生,進(jìn)而降低機(jī)體抗腫瘤效應(yīng)[12]。
多項(xiàng)研究均發(fā)現(xiàn)TIGIT在HCC中表達(dá)增高。HCC患者組織樣本的腫瘤浸潤(rùn)性CD8+T淋巴細(xì)胞檢測(cè)到TIGIT表達(dá)[13]。HCC患者外周血中同樣發(fā)現(xiàn)TIGIT在CD4+T淋巴細(xì)胞、CD8+T淋巴細(xì)胞上表達(dá)增高,且高表達(dá)TIGIT的T淋巴細(xì)胞凋亡率明顯增加[14]。HBV感染是我國(guó)肝癌的主要誘因,有研究[15]在HBV攜帶小鼠NK細(xì)胞和T淋巴細(xì)胞中也發(fā)現(xiàn)了TIGIT的高表達(dá)。進(jìn)一步研究表明,高表達(dá)的TIGIT參與HCC中T淋巴細(xì)胞耗竭和肝癌細(xì)胞的生物學(xué)功能。Ostroumov等[13]首次通過(guò)小鼠肝癌模型轉(zhuǎn)錄組分析將TIGIT鑒定為T(mén)淋巴細(xì)胞衰竭的標(biāo)志物,與PD-1相比,TIGIT可導(dǎo)致細(xì)胞因子TNFα和IFNγ的水平下降,造成T淋巴細(xì)胞耗竭,并能識(shí)別處于不同分化階段耗竭的CD8+T淋巴細(xì)胞。劉娟喜[14]在探討TIGIT負(fù)性共刺激分子調(diào)控肝癌細(xì)胞、免疫細(xì)胞生物學(xué)功能的機(jī)制研究發(fā)現(xiàn),將TIGIT siRNA、CD155 siRNA分別轉(zhuǎn)染至肝癌細(xì)胞后均可顯著抑制肝癌細(xì)胞體外的增殖、遷移和侵襲能力,促進(jìn)肝癌細(xì)胞凋亡。
以上研究表明,TIGIT在HCC發(fā)生發(fā)展過(guò)程中具有重要作用,抑制TIGIT將可能恢復(fù)CD8+T淋巴細(xì)胞而達(dá)到抗HCC的作用。Ge等[16]發(fā)現(xiàn)對(duì)抗PD-1無(wú)應(yīng)答的HCC腫瘤浸潤(rùn)淋巴細(xì)胞在進(jìn)行TIGIT/PD-1雙阻斷后,CD8+T淋巴細(xì)胞的增殖、細(xì)胞因子的產(chǎn)生和細(xì)胞毒作用均有所增加。Ostroumov等[13]聯(lián)合使用PD-1和TIGIT抑制劑可協(xié)同抑制小鼠體內(nèi)肝癌的生長(zhǎng)。以上研究提示TIGIT/PD-1共阻斷可增強(qiáng)機(jī)體抗腫瘤能力。此外,也有研究[15]發(fā)現(xiàn)抗體阻斷HBV攜帶小鼠TIGIT后,小鼠血清HBsAg轉(zhuǎn)陰率增高,肝臟中NK細(xì)胞及T淋巴細(xì)胞數(shù)量增加。以上研究提示,在HBV免疫治療中靶向阻斷TIGIT,或可抑制由HBV發(fā)展而來(lái)的HCC發(fā)展。
許多臨床試驗(yàn)正在評(píng)估抗TIGIT單克隆抗體作為單一療法或與PD-1/PD-L1聯(lián)合阻斷治療各種癌癥的安全性和有效性。自2019年以來(lái)關(guān)于抗TIGIT治療腫瘤的臨床試驗(yàn)共有33項(xiàng),其中2022年注冊(cè)的研究有6項(xiàng)(表1)。一項(xiàng) Ⅱ 期CITYSCAPE試驗(yàn)[17]研究了抗TIGIT 抗體Tiragolumab聯(lián)合抗PD-L1抗體Atezolizumab在PD-L1陽(yáng)性非小細(xì)胞肺癌中的顯著緩解率,結(jié)果顯示,聯(lián)合組與單藥組相比,客觀緩解率顯著提高(37% vs 21%),無(wú)進(jìn)展生存期延長(zhǎng)(5.6個(gè)月vs 3.9個(gè)月,風(fēng)險(xiǎn)比為0.58)。綜上所述,抑制TIGIT將是一種很有前景的抗腫瘤免疫治療策略。
2 VISTA在HCC中的研究進(jìn)展
VISTA是一種抑制性B7家族免疫檢查點(diǎn)分子,由位于10號(hào)染色體基因VISIR編碼[18]。VISTA蛋白主要表達(dá)于外周血和正常脾臟的髓系中,在多種髓系造血細(xì)胞(如單核細(xì)胞、巨噬細(xì)胞、樹(shù)突狀細(xì)胞)、T淋巴細(xì)胞(如CD4+T淋巴細(xì)胞、FoxP3+ Treg、TCRγδ T淋巴細(xì)胞、CD8+T淋巴細(xì)胞)和NK細(xì)胞表面表達(dá)[19]。VISTA為Ⅰ型跨膜蛋白,N末端為免疫球蛋白(Ig)V結(jié)構(gòu)域,柄由30個(gè)氨基酸組成,胞質(zhì)尾有95個(gè)氨基酸。VISTA蛋白分子量為55~65 kD。VISTA亦被稱為PD-1同源物,但與PD-1不同的是,VISTA結(jié)構(gòu)不包含經(jīng)典胞質(zhì)結(jié)構(gòu)中的ITIM或免疫受體酪氨酸轉(zhuǎn)換基序(immunoreceptor tyrosine-based switch motif, ITSM),而在胞內(nèi)尾部包含2個(gè)潛在的蛋白激酶C結(jié)合位點(diǎn)和可能起作用的脯氨酸富集區(qū)作為對(duì)接位點(diǎn),提示VISTA可能同時(shí)具有受體和配體的功能[20]。最新研究[21]發(fā)現(xiàn)含V-set和lg結(jié)構(gòu)域3(V-set and immunoglobulin domain containing 3, VSIG-3)為VISTA的配體,VSIG-3或VISTA的多點(diǎn)突變會(huì)削弱二者之間的相互作用。當(dāng)VISTA在T淋巴細(xì)胞表面表達(dá)時(shí),可發(fā)揮受體的作用,接受免疫刺激信號(hào),增強(qiáng)原始T淋巴細(xì)胞的免疫沉默[22],并直接抑制CD4+T淋巴細(xì)胞、CD8+T淋巴細(xì)胞、TCRγδ T淋巴細(xì)胞的激活與功能,促進(jìn)Treg的分化[23]。
目前,VISTA在HCC中的表達(dá)及影響相關(guān)研究持續(xù)深入。HCC中VISTA主要表達(dá)于肝間質(zhì)淋巴細(xì)胞,該分子高表達(dá)患者腫瘤體積更大、總體生存期縮短,是HCC患者死亡的獨(dú)立風(fēng)險(xiǎn)因素[24]。Shrestha等[25]通過(guò)HCC患者公共數(shù)據(jù)庫(kù)對(duì)不同免疫檢查點(diǎn)是否可作為預(yù)測(cè)HCC預(yù)后的生物標(biāo)志物進(jìn)行綜合評(píng)估,結(jié)果顯示VISTA高表達(dá)的HCC患者其總生存期和無(wú)復(fù)發(fā)生存期顯著降低,預(yù)后明顯更差。然而,另有研究[26]揭示腫瘤微環(huán)境中VISTA高表達(dá)的HCC患者與VISTA低表達(dá)患者的預(yù)后未見(jiàn)顯著性差異,但VISTA陽(yáng)性的患者總生存期比陰性表達(dá)者顯著延長(zhǎng)(74個(gè)月 vs 41個(gè)月,P=0.037);VISTA+/CD8+雙陽(yáng)性患者的總生存期比其他免疫分型顯著延長(zhǎng)(74個(gè)月 vs 53個(gè)月,P=0.023)。VISTA評(píng)估HCC患者預(yù)后價(jià)值不同的原因尚需要更多的研究去闡明,深入研究VISTA在HCC中的作用對(duì)于抗腫瘤免疫治療具有重要意義。
已有研究[27-28]發(fā)現(xiàn)VISTA和PD-1/CTLA4聯(lián)合阻斷可抑制荷瘤小鼠的腫瘤生長(zhǎng),目前進(jìn)入臨床試驗(yàn)的抗VISTA單克隆抗體及小分子抑制劑主要有JNJ-61610588、CI-8993、HMBD-002和CA-170(表1),其中JNJ-61610588的臨床試驗(yàn)因細(xì)胞因子釋放綜合征相關(guān)副作用而終止研究;CA-170是一種雙重靶向VISTA和PD-L1的口服制劑,針對(duì)CA-170在晚期實(shí)體瘤和淋巴瘤患者的Ⅰ/Ⅱ期臨床試驗(yàn)(NCT02812875)正在進(jìn)行中[29]。目前尚無(wú)抗VISTA抗體用于治療HCC的臨床試驗(yàn)研究。但基于前述VISTA對(duì)HCC發(fā)生發(fā)展的影響,未來(lái)VISTA很可能會(huì)成為HCC免疫治療中極具潛力的治療靶點(diǎn)。
3 BTLA在HCC中的研究進(jìn)展
BTLA是重要的免疫協(xié)同信號(hào)分子之一,屬于CD28超家族[30],基因定位于3號(hào)染色體q13.2區(qū),由5個(gè)外顯子組成,核酸片段全長(zhǎng)870 bp。BTLA廣泛表達(dá)于淋巴結(jié)、胸腺和脾臟,在心臟、腎臟、大腦和肝臟等臟器中鮮少表達(dá)[31]。在免疫細(xì)胞上,CD4+T淋巴細(xì)胞比CD8+T淋巴細(xì)胞檢測(cè)出更高的BTLA表達(dá)[32],此外,BTLA還高表達(dá)于瘤周區(qū)的T淋巴細(xì)胞和巨噬細(xì)胞中[33]。BTLA蛋白在結(jié)構(gòu)上與PD-1和CTLA-4相似[34],主要分為胞外結(jié)構(gòu)域、胞質(zhì)結(jié)構(gòu)域和跨膜結(jié)構(gòu)域3個(gè)部分[35]。胞質(zhì)結(jié)構(gòu)域包含生長(zhǎng)因子受體結(jié)合蛋白-2結(jié)合基序、ITSM和ITIM。目前皰疹病毒侵入介體(herpes virus entry mediator, HVEM)是唯一可在人類細(xì)胞中檢測(cè)到的BTLA配體,屬于腫瘤壞死因子受體超家族。BTLA在腫瘤浸潤(rùn)淋巴細(xì)胞中高表達(dá)后激活胞質(zhì)區(qū)的ITIM,使酪氨酸磷酸化,吸引含有Src同源結(jié)構(gòu)域2的蛋白酪氨酸磷酸酶SHP-1和SHP-2向BTLA聚集,抑制T淋巴細(xì)胞受體激活,從而介導(dǎo)免疫抑制作用[33,36]。
BTLA上調(diào)可促進(jìn)HCC的發(fā)展并與預(yù)后相關(guān)。Liu等[37]研究觀察到HCC患者的腫瘤浸潤(rùn)性CD4+T淋巴細(xì)胞中BTLA的表達(dá)顯著增加,IFNγ分泌減少。趙綺毅等[38]進(jìn)一步研究發(fā)現(xiàn)正常情況下BTLA和HVEM可順式結(jié)合成復(fù)合異二聚體從而抑制相鄰細(xì)胞間的信號(hào)傳遞,維持幼稚T淋巴細(xì)胞的穩(wěn)定及機(jī)體免疫的平衡;而HCC患者出現(xiàn)CD4+T BTLA高表達(dá)、CD8+T HVEM低表達(dá)的失衡狀態(tài),使得BTLA與HVEM之間形成反式構(gòu)象后無(wú)法維持免疫穩(wěn)態(tài)。阻斷BTLA/HVEM信號(hào)通路后機(jī)體可通過(guò)循環(huán)CD4+T淋巴細(xì)胞促進(jìn)IFNγ分泌,使免疫功能增強(qiáng),提示BTLA/HVEM通路在HCC患者的外周血T淋巴細(xì)胞抑制中具有重要作用[33,37]。
Dong等[33]抽取53例晚期HCC患者索拉非尼治療第1周、第2周和第4周的血漿樣本,并使用多重?zé)晒饷庖邷y(cè)定法檢測(cè)可溶性BTLA(sBTLA)的濃度。多變量分析顯示,高sBTLA水平是總生存率差的獨(dú)立預(yù)測(cè)因子(P=0.038)。另有研究[38]發(fā)現(xiàn)肝癌中超過(guò)85%的BTLA+CD4+T淋巴細(xì)胞同時(shí)表達(dá)PD-1分子,在抗PD-1單抗治療中,這種新型BTLA+PD-1+耗竭T淋巴細(xì)胞亞群對(duì)PD-1單抗的反應(yīng)最為敏感。目前進(jìn)入臨床試驗(yàn)的抗BTLA單抗藥物只有上海君實(shí)公司生產(chǎn)的TAB004(JS004),6項(xiàng)臨床試驗(yàn)多為針對(duì)晚期實(shí)體瘤、頭頸部鱗癌、黑色素瘤和晚期肺癌的研究(表1),尚無(wú)抗BTLA單抗用于治療HCC的臨床試驗(yàn)研究。
4 B7-H4在HCC中的研究進(jìn)展
屬于B7家族第三類分子,也稱為VTCN1[39]。其基因位于1號(hào)染色體,由5個(gè)內(nèi)含子和6個(gè)外顯子組成,B7-H4的開(kāi)放閱讀框全長(zhǎng)849 bp。編碼的蛋白具有Ⅰ型跨膜蛋白的整體結(jié)構(gòu),含282個(gè)氨基酸殘基。B7-H4在小鼠和人類同源基因間的一致性較高(約87%),表明B7-H4在進(jìn)化上高度保守。與其他B7家族嚴(yán)格的mRNA表達(dá)模式不同,B7-H4 mRNA廣泛表達(dá)于人體大部分器官中,但在新分離的人類T淋巴細(xì)胞、B淋巴細(xì)胞、單核細(xì)胞和樹(shù)突狀細(xì)胞的表面則不表達(dá),利用脂多糖、植物血凝素、IFNγ或離子霉素刺激分離細(xì)胞后,可誘導(dǎo)以上細(xì)胞表達(dá)B7-H4[39]。有研究[40]發(fā)現(xiàn)B7-H4可被IL-6、IL-10和腫瘤相關(guān)巨噬細(xì)胞誘導(dǎo),并通過(guò)分泌IL-6和IL-10保護(hù)腫瘤細(xì)胞免受T淋巴細(xì)胞的攻擊。在癌細(xì)胞缺氧后,缺氧誘導(dǎo)因子1α與B7-H4啟動(dòng)子內(nèi)近端缺氧反應(yīng)元件位點(diǎn)結(jié)合,促進(jìn)腫瘤細(xì)胞生長(zhǎng)[41]?,F(xiàn)有研究尚未確定B7-H4的配體[42]。
近年B7-H4在肝癌預(yù)后評(píng)估中的價(jià)值也是不可忽視的。有研究[43]發(fā)現(xiàn)在HCC組織樣本中,B7-H4在HCC組織中的表達(dá)明顯高于癌旁組織,且HCC中B7-H4表達(dá)越高,患者越容易復(fù)發(fā)。HCC患者的外周血血清中同樣發(fā)現(xiàn)B7-H4水平顯著高于健康對(duì)照組,且與HCC患者血清AFP水平和TNM分期呈正相關(guān),隨訪發(fā)現(xiàn)高血清B7-H4組HCC患者預(yù)后結(jié)局差,5年總體生存率較低(P=0.028)[44]。體外和體內(nèi)實(shí)驗(yàn)均證明B7-H4下調(diào)抑制了肝癌細(xì)胞的增殖和遷移[45],并可通過(guò)PI3K信號(hào)通路促進(jìn)肝癌細(xì)胞凋亡和自噬。
B7-H4單克隆抗體及抗體-藥物偶聯(lián)物(antibody drug conjugate, ADC)均具有良好的抗腫瘤效果。目前有關(guān)B7-H4抗體抗腫瘤的臨床試驗(yàn)為5項(xiàng)(表1),其中SGN-B7H4V和FPA150為單抗,PF-07260437與GEN1047為靶向CD3和B7-H4的雙特異性抗體;HS-20089為國(guó)內(nèi)首個(gè)針對(duì)B7-H4的ADC,利用單克隆抗體的靶向識(shí)別作用和人體細(xì)胞的內(nèi)吞作用將藥物送入腫瘤細(xì)胞內(nèi),達(dá)到更高效的殺死體內(nèi)腫瘤的目的[46]。雖然目前尚未查詢到關(guān)于抗B7-H4抗體治療HCC的臨床試驗(yàn),但以上研究均表明B7-H4在HCC中高表達(dá)并促進(jìn)了癌癥的發(fā)展,而下調(diào)其表達(dá)后疾病得到了有效控制,因此B7-H4是值得深入研究的靶點(diǎn)。
5 小結(jié)與展望
綜上所述,TIGIT、VISTA、BTLA及B7-H4在HCC中高表達(dá)并與患者預(yù)后密切相關(guān),是HCC免疫治療中重要的靶點(diǎn)。而這些新興免疫檢查點(diǎn)抑制劑應(yīng)用于治療HCC的臨床試驗(yàn)較少的原因可能與一些問(wèn)題尚未解決有關(guān),如未識(shí)別B7-H4的配體,基因多態(tài)性是如何影響VISTA和配體VSIG-3的相互作用等,這些問(wèn)題可能是充分了解其治療潛力的關(guān)鍵。此外,單藥治療結(jié)果雖令人欣喜,但仍需要尋找合理的免疫治療組合增強(qiáng)HCC的抗腫瘤效應(yīng)??梢灶A(yù)見(jiàn),免疫檢查點(diǎn)抑制劑聯(lián)合治療是擴(kuò)大病理反應(yīng)率和避免耐藥性的潛在策略。未來(lái)有理由期待新輔助免疫檢查點(diǎn)抑制劑在臨床試驗(yàn)證據(jù)的指引下走向新的高度。目前對(duì)這些潛力分子的了解尚處于早期階段,如何使更多的候選藥物轉(zhuǎn)化為臨床用藥,如何優(yōu)化用藥配比以及減少免疫不良反應(yīng)的發(fā)生,為HCC患者帶來(lái)新的希望,是臨床研究者日后砥礪奮斗的共同目標(biāo)。
利益沖突聲明:所有作者均聲明不存在利益沖突。
作者貢獻(xiàn)聲明:陶瑩負(fù)責(zé)選題,擬定寫(xiě)作思路,論文初稿撰寫(xiě)及修改;廖長(zhǎng)秀負(fù)責(zé)選題,擬定寫(xiě)作思路,論文審閱及修訂。
參考文獻(xiàn):
[1]SUNG H, FERLAY J, SIEGEL RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]CAO W, CHEN HD, YU YW, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7): 783-791. DOI: 10.1097/CM9.0000000000001474.
[3]General Office of National Health Commission. Standard for diagnosis and treatment of primary liver cancer (2022 edition)[J]. J Clin Hepatol, 2022, 38(2): 288-303. DOI: 10.3969/j.issn.1001-5256.2022.02.009.
國(guó)家衛(wèi)生健康委辦公廳. 原發(fā)性肝癌診療指南(2022年版)[J]. 臨床肝膽病雜志, 2022, 38(2): 288-303. DOI: 10.3969/j.issn.1001-5256.2022.02.009.
[4]FLECKEN T, SCHMIDT N, HILD S, et al. Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma[J]. Hepatology, 2014, 59(4): 1415-1426. DOI: 10.1002/hep.26731.
[5]CHANG YY, YAN B, LI R. Research progress in the mechanism of T cell exhaustion and its application in the immunotherapy for cancer[J]. Current Immunol, 2022, 42(2): 170-174.
常媛媛, 顏波, 李榕. T細(xì)胞耗竭發(fā)生機(jī)制及其在免疫治療中的研究進(jìn)展[J]. 現(xiàn)代免疫學(xué), 2022, 42(2): 170-174.
[6]HUANG C, ZHU HX, YAO Y, et al. Immune checkpoint molecules. Possible future therapeutic implications in autoimmune diseases[J]. J Autoimmun, 2019, 104: 102333. DOI: 10.1016/j.jaut.2019.102333.
[7]SCHEINER B, KIRSTEIN MM, HUCKE F, et al. Programmed cell death protein-1 (PD-1)-targeted immunotherapy in advanced hepatocellular carcinoma: efficacy and safety data from an international multicentre real-world cohort[J]. Aliment Pharmacol Ther, 2019, 49(10): 1323-1333. DOI: 10.1111/apt.15245.
[8]SANGRO B, GOMEZ-MARTIN C, DE LA MATA M, et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C[J]. J Hepatol, 2013, 59(1): 81-88. DOI: 10.1016/j.jhep.2013.02.022.
[9]ZHAO RP, LUO HF, CHEN LJ, et al. Observation and nursing of common adverse reactions of PD-1 inhibitor in the treatment of liver cancer[J]. Chin Gen Pract Nurs, 2022, 20(7): 975-977. DOI: 10.12104/j.issn.1674-4748.2022.07.030.
趙汝平, 駱惠芬, 陳柳堅(jiān), 等. PD-1抑制劑治療肝癌常見(jiàn)不良反應(yīng)的觀察與護(hù)理[J]. 全科護(hù)理, 2022, 20(7): 975-977. DOI: 10.12104/j.issn.1674-4748.2022.07.030.
[10]ZHANG C, WANG Y, XUN X, et al. TIGIT can exert immunosuppressive effects on CD8+ T cells by the CD155/TIGIT signaling pathway for hepatocellular carcinoma in vitro[J]. J Immunother, 2020, 43(8): 236-243. DOI: 10.1097/CJI.0000000000000330.
[11]YU X, HARDEN K, GONZALEZ LC, et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells[J]. Nat Immunol, 2009, 10(1): 48-57. DOI: 10.1038/ni.1674.
[12]STANIETSKY N, SIMIC H, ARAPOVIC J, et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity[J]. Proc Natl Acad Sci U S A, 2009, 106(42): 17858-17863. DOI: 10.1073/pnas.0903474106.
[13]OSTROUMOV D, DUONG S, WINGERATH J, et al. Transcriptome profiling identifies TIGIT as a marker of T-cell exhaustion in liver cancer[J]. Hepatology, 2021, 73(4): 1399-1418. DOI: 10.1002/hep.31466.
[14]LIU JX. Study on the mechanism of negative co-stimulatory molecule TIGIT regulating the biological functions liver cancer cells and immune cells[D]. Yinchuan: Ningxia Medical University, 2020.
劉娟喜. TIGIT負(fù)性共刺激分子調(diào)控肝癌細(xì)胞、免疫細(xì)胞生物學(xué)功能的機(jī)制研究[D]. 銀川: 寧夏醫(yī)科大學(xué), 2020.
[15]LU Y, SUN R, TIAN ZG, et al. Study on role of TIGIT in HBV immunotherapy[J]. Chin J Immunol, 2022, 38(2): 129-134. DOI: 10.3969/j.issn.1000-484X.2022.02.001.
盧楊, 孫汭, 田志剛, 等. TIGIT分子在HBV免疫治療中的作用探究[J]. 中國(guó)免疫學(xué)雜志, 2022, 38(2): 129-134. DOI: 10.3969/j.issn.1000-484X.2022.02.001.
[16]GE Z, ZHOU G, CAMPOS CARRASCOSA L, et al. TIGIT and PD1 co-blockade restores ex vivo functions of human tumor-infiltrating CD8+ T cells in hepatocellular carcinoma[J]. Cell Mol Gastroenterol Hepatol, 2021, 12(2): 443-464. DOI: 10.1016/j.jcmgh.2021.03.003.
[17]Tiragolumab impresses in multiple trials[J]. Cancer Discov, 2020, 10(8): 1086-1087. DOI: 10.1158/2159-8290.CD-NB2020-063.
[18]WANG L, RUBINSTEIN R, LINES JL, et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses[J]. J Exp Med, 2011, 208(3): 577-592. DOI: 10.1084/jem.20100619.
[19]SLATER BT, HAN X, CHEN L, et al. Structural insight into T cell coinhibition by PD-1H (VISTA)[J]. Proc Natl Acad Sci U S A, 2020, 117(3): 1648-1657. DOI: 10.1073/pnas.1908711117.
[20]FLIES DB, WANG S, XU H, et al. Cutting edge: A monoclonal antibody specific for the programmed death-1 homolog prevents graft-versus-host disease in mouse models[J]. J Immunol, 2011, 187(4): 1537-1541. DOI: 10.4049/jimmunol.1100660.
[21]XIE X, CHEN C, CHEN W, et al. Structural basis of VSIG3: The ligand for VISTA[J]. Front Immunol, 2021, 12: 625808. DOI: 10.3389/fimmu.2021.625808.
[22]ELTANBOULY MA, ZHAO Y, NOWAK E, et al. VISTA is a checkpoint regulator for nave T cell quiescence and peripheral tolerance[J]. Science, 2020, 367(6475): eaay0524. DOI: 10.1126/science.aay0524.
[23]WANG G, TAI R, WU Y, et al. The expression and immunoregulation of immune checkpoint molecule VISTA in autoimmune diseases and cancers[J]. Cytokine Growth Factor Rev, 2020, 52: 1-14. DOI: 10.1016/j.cytogfr.2020.02.002.
[24]XIANG J. Expression and clinical significance of negative immune checkpoint regulator VISTA in hepatocellular carcinoma[D]. Fuzhou: Fujian Medical University, 2018.
向娟. 負(fù)性共刺激分子VISTA在肝細(xì)胞肝癌中的表達(dá)及其臨床價(jià)值的研究[D]. 福州: 福建醫(yī)科大學(xué), 2018.
[25]SHRESTHA R, PRITHVIRAJ P, ANAKA M, et al. Monitoring immune checkpoint regulators as predictive biomarkers in hepatocellular carcinoma[J]. Front Oncol, 2018, 8: 269. DOI: 10.3389/fonc.2018.00269.
[26]ZHANG M. Expression of immune checkpoint protein VISTA in hepatocellular carcinoma and its effect on tumor microenvironment and prognosis of patients with liver cancer[D]. Guangzhou: Southern Medical University, 2018.
張明. 免疫檢查點(diǎn)蛋白VISTA在肝細(xì)胞癌中的表達(dá)及對(duì)腫瘤微環(huán)境和肝癌患者預(yù)后的影響[D]. 廣州: 南方醫(yī)科大學(xué), 2018.
[27]LIU J, YUAN Y, CHEN W, et al. Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses[J]. Proc Natl Acad Sci U S A, 2015, 112(21): 6682-6687. DOI: 10.1073/pnas.1420370112.
[28]KONDO Y, OHNO T, NISHII N, et al. Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma[J]. Oral Oncol, 2016, 57: 54-60. DOI: 10.1016/j.oraloncology.2016.04.005.
[29]DEMPKE W, FENCHEL K, UCIECHOWSKI P, et al. Second- and third-generation drugs for immuno-oncology treatment-The more the better?[J]. Eur J Cancer, 2017, 74: 55-72. DOI: 10.1016/j.ejca.2017.01.001.
[30]CEERAZ S, NOWAK EC, NOELLE RJ. B7 family checkpoint regulators in immune regulation and disease[J]. Trends Immunol, 2013, 34(11): 556-563. DOI: 10.1016/j.it.2013.07.003.
[31]CHEUNG TC, OBORNE LM, STEINBERG MW, et al. T cell intrinsic heterodimeric complexes between HVEM and BTLA determine receptivity to the surrounding microenvironment[J]. J Immunol, 2009, 183(11): 7286-7296. DOI: 10.4049/jimmunol.0902490.
[32]DEL RIO ML, KAYE J, RODRIGUEZ-BARBOSA JI. Detection of protein on BTLAlow cells and in vivo antibody-mediated down-modulation of BTLA on lymphoid and myeloid cells of C57BL/6 and BALB/c BTLA allelic variants[J]. Immunobiology, 2010, 215(7): 570-578. DOI: 10.1016/j.imbio.2009.09.008.
[33]DONG MP, ENOMOTO M, THUY L, et al. Clinical significance of circulating soluble immune checkpoint proteins in sorafenib-treated patients with advanced hepatocellular carcinoma[J]. Sci Rep, 2020, 10(1): 3392. DOI: 10.1038/s41598-020-60440-5.
[34]PAULOS CM, JUNE CH. Putting the brakes on BTLA in T cell-mediated cancer immunotherapy[J]. J Clin Invest, 2010, 120(1): 76-80. DOI: 10.1172/JCI41811.
[35]GONZALEZ LC, LOYET KM, CALEMINE-FENAUX J, et al. A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator[J]. Proc Natl Acad Sci U S A, 2005, 102(4): 1116-1121. DOI: 10.1073/pnas.0409071102.
[36]GAVRIELI M, WATANABE N, LOFTIN SK, et al. Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2[J]. Biochem Biophys Res Commun, 2003, 312(4): 1236-1243. DOI: 10.1016/j.bbrc.2003.11.070.
[37]LIU J, LI J, HE M, et al. Distinct changes of BTLA and HVEM expressions in circulating CD4+ and CD8+ T cells in hepatocellular carcinoma patients[J]. J Immunol Res, 2018, 2018: 4561571. DOI: 10.1155/2018/4561571.
[38]ZHAO QY, HUANG ZL, WU ZB, et al. New BTLA+ PD-1+ depleted T cells predict the treatment of liver cancer with PD-1 monoclonal antibody[Z]. The Third Affiliated Hospital of Sun Yat-sen University, 2020.
趙綺毅, 黃湛鐮, 鄔喆斌, 等. 新型BTLA+PD-1+耗竭T細(xì)胞預(yù)測(cè)PD-1單抗治療肝癌[Z]. 中山大學(xué)附屬第三醫(yī)院, 2020.
[39]SICA GL, CHOI IH, ZHU G, et al. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity[J]. Immunity, 2003, 18(6): 849-861. DOI: 10.1016/s1074-7613(03)00152-3.
[40]CHE F, HENG X, ZHANG H, et al. Novel B7-H4-mediated crosstalk between human non-Hodgkin lymphoma cells and tumor-associated macrophages leads to immune evasion via secretion of IL-6 and IL-10[J]. Cancer Immunol Immunother, 2017, 66(6): 717-729. DOI: 10.1007/s00262-017-1961-7.
[41]JEON YK, PARK SG, CHOI IW, et al. Cancer cell-associated cytoplasmic B7-H4 is induced by hypoxia through hypoxia-inducible factor-1α and promotes cancer cell proliferation[J]. Biochem Biophys Res Commun, 2015, 459(2): 277-283. DOI: 10.1016/j.bbrc.2015.02.098.
[42]JOHN P, WEI Y, LIU W, et al. The B7x immune checkpoint pathway: from discovery to clinical trial[J]. Trends Pharmacol Sci, 2019, 40(11): 883-896. DOI: 10.1016/j.tips.2019.09.008.
[43]HAO TT. Study on the effect and mechanism of B7-H4 on apoptosis and autophagy of liver cancer cells[D]. Chongqing: Chongqing Medical University, 2020.
郝團(tuán)團(tuán). B7-H4對(duì)肝癌細(xì)胞凋亡和自噬的影響及機(jī)制研究[D]. 重慶: 重慶醫(yī)科大學(xué), 2020.
[44]CHEN FS, ZHANG SA, WU ZX, et al. Diagnostic and prognostic prediction value of serum B7-H4 level for hepatocellular carcinoma[J]. Prog Mod Biomed, 2018, 18(10): 1960-1964. DOI: 10.13241/j.cnki.pmb.2018.10.032.
陳豐穗, 張世安, 吳志賢, 等. 血清B7-H4水平對(duì)肝細(xì)胞癌的診斷及預(yù)后價(jià)值[J]. 現(xiàn)代生物醫(yī)學(xué)進(jìn)展, 2018, 18(10): 1960-1964. DOI: 10.13241/j.cnki.pmb.2018.10.032.
[45]HE T, HU H, XIE N, et al. The expression of B7-H4 in liver cancer and its effect on cell invasion and migration[J]. Anhui Med Pharm J, 2019, 23(9): 1774-1778, back insert 3. DOI: 10.3969/j.issn.1009-6469.2019.09.019.
何濤, 胡洪, 謝楠, 等. B7-H4在肝癌組織中的表達(dá)及其對(duì)肝癌細(xì)胞侵襲、遷移的影響[J]. 安徽醫(yī)藥, 2019, 23(9): 1774-1778, 后插3. DOI: 10.3969/j.issn.1009-6469.2019.09.019.
[46]TARANTINO P, CARMAGNANI PESTANA R, CORTI C, et al. Antibody-drug conjugates: Smart chemotherapy delivery across tumor histologies[J]. CA Cancer J Clin, 2022, 72(2): 165-182. DOI: 10.3322/caac.21705.
收稿日期:
2022-08-03;錄用日期:2022-09-07
本文編輯:葛俊