郝君玉 劉光偉 謝露 范文艷 陳虹秀
摘要:自身免疫性肝炎作為一種由免疫耐受缺失導(dǎo)致的慢性肝臟炎癥,其發(fā)病受多種信號(hào)通路的調(diào)控,例如NF-κB /NLRP3通路、SIRT1/Nrf2/HO-1通路、Hippo-YAP/TAZ通路、JAK/STAT通路、PI3K/Akt通路和TRAF6/JNK通路等,這些通路能夠通過(guò)參與細(xì)胞因子的增殖和凋亡、免疫反應(yīng)以及氧化應(yīng)激等過(guò)程來(lái)發(fā)揮抗免疫性肝炎的作用。針對(duì)臨床應(yīng)用激素和免疫制劑治療自身免疫性肝炎出現(xiàn)的應(yīng)答不佳、不良反應(yīng)明顯及復(fù)發(fā)率高等問(wèn)題,本文對(duì)自身免疫性肝炎相關(guān)信號(hào)傳導(dǎo)通路的研究文獻(xiàn)進(jìn)行了總結(jié),并梳理了苷類、萜類、黃酮類、醌類及酚類中藥有效成分通過(guò)以上信號(hào)通路干預(yù)自身免疫性肝炎疾病進(jìn)程的機(jī)制,以期為科學(xué)有效地利用中藥有效成分研發(fā)抗自身免疫性肝炎藥物提供理論參考依據(jù)。
關(guān)鍵詞:肝炎, 自身免疫性; 中草藥; 信號(hào)傳導(dǎo)
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(81573933); 河南省自然科學(xué)基金(222300420490); 河南省特色骨干學(xué)科中醫(yī)學(xué)學(xué)科建設(shè)項(xiàng)目(STG-ZYXKY-2020017)
Research advances in effective constituents of traditional Chinese medicine in intervention of autoimmune hepatitis-related signaling pathways
HAO Junyu1, LIU Guangwei2, XIE Lu1, FAN Wenyan1, CHEN Hongxiu1. (1. The First Clinical Medical College of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China; 2. Department of Hepatology and Spleen-Stomach, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China)
Corresponding author:
LIU Guangwei, Liuguangwei1975@163.com (ORCID:0000-0002-6641-1625)
Abstract:
As a chronic liver inflammation disease caused by the lack of immune tolerance, autoimmune hepatitis is regulated by various signaling pathways, such as the NF-κB/NLRP3 pathway, the SIRT1/Nrf2/HO-1 pathway, the Hippo-YAP/TAZ pathway, the JAK/STAT pathway, the PI3K/Akt pathway, and the TRAF6/JNK pathway. These pathways can play a role against autoimmune hepatitis by participating in the processes including the proliferation and apoptosis of cytokines, immune response, and oxidative stress. In view of the problems of suboptimal response, obvious adverse reactions, and high recurrence rate in the clinical application of hormones and immune preparations for the treatment of autoimmune hepatitis, this article summarizes the research articles on autoimmune hepatitis-related signaling pathways and the mechanism of effective constituents (glycosides, terpenoids, flavonoids, quinones, and phenols) in traditional Chinese medicine intervening against the disease process of autoimmune hepatitis through the above signaling pathways, in order to provide a theoretical basis for scientific and effective utilization of effective constituents in traditional Chinese medicine to develop anti-autoimmune hepatitis drugs.
Key words:
Hepatitis, Autoimmune; Drugs, Chinese Herbal; Signal Transduction
Research funding:
National Natural Science Foundation of China (81573933); Natural Science Foundation of Henan Province(222300420490); Traditional Chinese Medicine Discipline Construction Project of Henan Province Characteristic Backbone Discipline(STG-ZYXKY-2020017)
自身免疫性肝炎(AIH)的臨床特點(diǎn)包括血清氨基轉(zhuǎn)移酶水平升高、高免疫球蛋白G血癥、血清自身抗體陽(yáng)性,肝組織學(xué)上存在中重度界面性肝炎等[1]。遺傳易感性、免疫調(diào)節(jié)失衡和環(huán)境因素可能與其發(fā)病機(jī)制有關(guān)[2],后期可能會(huì)進(jìn)展為肝硬化、肝衰竭和終末期肝病等。針對(duì)目前治療中單獨(dú)使用糖皮質(zhì)激素或與免疫抑制劑聯(lián)合所導(dǎo)致的副作用或不能耐受等情況,急需尋求新療法和新途徑?,F(xiàn)代醫(yī)學(xué)認(rèn)為中藥有效成分是中藥發(fā)揮藥物作用的物質(zhì)基礎(chǔ),能參與疾病發(fā)病進(jìn)程的諸多方面,可以作為治療AIH的潛在藥物。信號(hào)傳導(dǎo)通路是疾病發(fā)生發(fā)展的重要分子機(jī)制,近年來(lái)研究發(fā)現(xiàn),中藥有效成分靶向作用于不同信號(hào)通路可以干預(yù)AIH的疾病進(jìn)展,故本文對(duì)中藥有效成分干預(yù)AIH相關(guān)信號(hào)通路的研究進(jìn)行綜述,以期為防治AIH提供新思路。
1 AIH相關(guān)信號(hào)通路
1.1 NF-κB/NLRP3信號(hào)通路 NF-κB調(diào)節(jié)免疫和炎癥反應(yīng)的基因轉(zhuǎn)錄主要通過(guò)以下3種途徑。(1)經(jīng)典途徑:由TNFα或IL-1等細(xì)胞因子和Toll樣受體激動(dòng)劑觸發(fā),當(dāng)刺激物到達(dá)細(xì)胞時(shí),會(huì)發(fā)生磷酸化,然后以蛋白酶體依賴的方式泛素化和降解其抑制蛋白,從而釋放NF-κB,然后轉(zhuǎn)移到細(xì)胞核,通過(guò)啟動(dòng)基因轉(zhuǎn)錄發(fā)揮作用;(2)非經(jīng)典途徑:在B淋巴細(xì)胞中,信號(hào)因子引發(fā)前體蛋白p100裂解產(chǎn)生p52亞基,從而釋放p52/RelB二聚體并發(fā)生核易位,隨后啟動(dòng)基因轉(zhuǎn)錄;(3)由DNA損傷誘導(dǎo)的NF-κB活化途徑[3]。Tan等[4]發(fā)現(xiàn)NF-κB信號(hào)通路對(duì)細(xì)胞極化和焦亡過(guò)程具有重要的調(diào)控作用,其啟動(dòng)后能夠促進(jìn)巨噬細(xì)胞向M1型極化,進(jìn)而誘導(dǎo)炎癥反應(yīng)的發(fā)生。NLRP3炎癥小體是一種多蛋白復(fù)合物,由受體蛋白NLRP3、銜接蛋白ASC、效應(yīng)蛋白pro-caspase-1組成,在先天免疫系統(tǒng)的炎癥途徑中發(fā)揮關(guān)鍵作用[5]。胱天蛋白酶原-1能介導(dǎo)啟動(dòng)半胱天冬酶-1和分泌參與先天免疫防御的IL-1家族成員,以回應(yīng)感染和細(xì)胞應(yīng)激的免疫反應(yīng)。抑制NF-κB下游促炎介質(zhì)信號(hào)的啟動(dòng)以及減弱NLRP3和其相關(guān)基因的mRNA表達(dá)有益于AIH的治療。
1.2 SIRT1/Nrf2/HO-1信號(hào)通路 SIRT1是煙酰胺腺苷二核苷酸依賴的脫乙酰化酶,屬于Sirtuins家族[6]。SIRT1對(duì)細(xì)胞氧化還原狀態(tài)高度敏感,在細(xì)胞對(duì)炎癥、代謝和氧化應(yīng)激源的反應(yīng)中發(fā)揮作用。研究[7]表明,SIRT1不僅能通過(guò)調(diào)控某些轉(zhuǎn)錄因子(如STAT3、PTEN、PDK1等)來(lái)控制炎癥,還是一種重要的免疫調(diào)節(jié)劑。Nrf2屬亮氨酸-拉鏈轉(zhuǎn)錄啟動(dòng)因子家族,可被機(jī)體的氧化應(yīng)激反應(yīng)所啟動(dòng)。通過(guò)調(diào)節(jié)Nrf2可以控制刀豆蛋白(Con A)誘導(dǎo)的肝炎,在氧化應(yīng)激條件下,Nrf2被啟動(dòng)并引發(fā)抗氧化基因和抗氧化酶的轉(zhuǎn)錄,從而控制細(xì)胞氧化性炎癥損傷的進(jìn)展[8]。血紅素氧化酶是血紅素代謝的限速酶,劉會(huì)敏[9]發(fā)現(xiàn),增加Nrf2/HO-1的表達(dá)能夠改變巨噬細(xì)胞的極化狀態(tài),刺激巨噬細(xì)胞由促炎的M1型轉(zhuǎn)化為抑炎的M2型,從而降低了肝細(xì)胞凋亡和炎癥水平。
1.3 Hippo-YAP/TAZ信號(hào)通路 Hippo通路由絲/蘇氨酸激酶MST1/2、腫瘤抑制激酶1/2、支架蛋白sav、YAP及YAP/TAZ組成[10]。MST1/2已被證明是T淋巴細(xì)胞發(fā)育、分化和凋亡的重要調(diào)節(jié)因子,該基因敲除時(shí)會(huì)導(dǎo)致T淋巴細(xì)胞凋亡增加[11]。而YAP是T淋巴細(xì)胞免疫應(yīng)答反應(yīng)的負(fù)性調(diào)節(jié)因子,特異性YAP缺乏的T淋巴細(xì)胞中,參與T淋巴細(xì)胞活化、遷移的基因表達(dá)水平顯著升高。研究[12]表明,調(diào)節(jié)Hippo-YAP/TAZ信號(hào)通路可以啟動(dòng)先天免疫,促進(jìn)髓源性抑制細(xì)胞(MDSC)的積累及T淋巴細(xì)胞的增殖與分化,進(jìn)而擴(kuò)大功能性MDSC并上調(diào)免疫抑制細(xì)胞的產(chǎn)生,同時(shí)還抑制促炎細(xì)胞因子的生成。Zhang等[13]通過(guò)YAP啟動(dòng)劑對(duì)MDSC和T淋巴細(xì)胞共培養(yǎng)系統(tǒng)的干預(yù)發(fā)現(xiàn)MDSC比例增加,相關(guān)下游分子的表達(dá)增加,炎性細(xì)胞因子的分化下降。諸多研究證明Hippo-YAP/TAZ通路可以通過(guò)調(diào)節(jié)MDSC和T淋巴細(xì)胞的免疫微環(huán)境平衡從而可能成為AIH治療的一個(gè)關(guān)鍵通路。
1.4 JAK/STAT信號(hào)通路 JAK激酶是一類胞質(zhì)酪氨酸激酶,STAT蛋白家族是存在于胞漿內(nèi)的轉(zhuǎn)錄啟動(dòng)因子,該家族成員包括STAT1、STAT2、STAT3、STAT4、STAT5α、STAT5β及STAT6,許多干擾素和白細(xì)胞介素家族成員可以與Ⅰ/Ⅱ型細(xì)胞因子受體結(jié)合,再與JAK選擇性結(jié)合,啟動(dòng)下游相應(yīng)的STAT家族中的特定成員,進(jìn)而參與免疫應(yīng)答的諸多方面[14],產(chǎn)生不同的調(diào)節(jié)趨勢(shì)。詳細(xì)來(lái)說(shuō),STAT1可以誘導(dǎo)多種趨化因子和黏附分子的產(chǎn)生,通過(guò)促進(jìn)中性粒細(xì)胞和嗜酸性粒細(xì)胞的浸潤(rùn)進(jìn)而產(chǎn)生促炎作用。Hong等[15]發(fā)現(xiàn),破壞STAT1基因可抑制自然殺傷T淋巴細(xì)胞的活化,并下調(diào)干擾素調(diào)節(jié)因子1和細(xì)胞因子信號(hào)抑制物1的表達(dá),從而減輕肝損傷。STAT6能通過(guò)強(qiáng)化嗜酸細(xì)胞活化趨化因子的表達(dá),促進(jìn)中性粒細(xì)胞和嗜酸性粒細(xì)胞的募集,引起廣泛肝組織壞死[16]。STAT3減輕免疫相關(guān)性肝炎的機(jī)制之一可能是因?yàn)橐种屏丝扇苄远垠w細(xì)胞因子IFNγ的生成;另外,活化的STAT3可以上調(diào)抗凋亡蛋白B淋巴細(xì)胞淋巴瘤/白血病-2基因和抗凋亡蛋白Bcl-XL的水平,還能上調(diào)對(duì)肝臟有保護(hù)作用的血清淀粉樣蛋白A2和KC蛋白在肝內(nèi)的表達(dá)[17],這些蛋白質(zhì)能有效抑制Con A誘導(dǎo)的肝炎。特別強(qiáng)調(diào)的是,STAT4對(duì)AIH存在著雙向調(diào)控作用。一方面,STAT4被啟動(dòng)后通過(guò)誘導(dǎo)Th1和Th2細(xì)胞因子促進(jìn)炎癥反應(yīng);另一方面,這種啟動(dòng)還能下調(diào)自然殺傷T淋巴細(xì)胞中凋亡相關(guān)因子配體的表達(dá),從而減少肝細(xì)胞損傷[18]。總之,STAT4的凈效應(yīng)啟動(dòng)對(duì)肝損傷進(jìn)展的影響取決于抑制凋亡相關(guān)因子配體表達(dá)和上調(diào)促炎細(xì)胞因子之間的平衡。由此可見(jiàn),若想利用JAK/STAT信號(hào)通路干預(yù)AIH的疾病進(jìn)展,需進(jìn)一步明確該通路各家族成員之間的相互影響,將其各自的作用路線細(xì)化后分別進(jìn)行干預(yù)。
1.5 PI3K/Akt信號(hào)通路 PI3K屬于磷酸化的脂質(zhì)激酶家族磷脂酰肌醇,通過(guò)調(diào)控PI3K能調(diào)節(jié)體內(nèi)抗炎細(xì)胞因子和促炎細(xì)胞因子的表達(dá),從而抑制肝細(xì)胞的炎癥反應(yīng),并抑制肝星狀細(xì)胞的增殖和侵襲[19]。作為信號(hào)轉(zhuǎn)導(dǎo)分子,被啟動(dòng)的PI3K可促進(jìn)第二信使磷脂酰?。?,4,5)-三磷酸的形成,再通過(guò)磷酸化進(jìn)一步啟動(dòng)Akt,并導(dǎo)致其從細(xì)胞質(zhì)轉(zhuǎn)移到細(xì)胞膜。Akt是一種絲氨酸/蘇氨酸激酶,被啟動(dòng)的Akt磷酸化下游因子GSK-3β上的絲氨酸殘基,Akt p-GSK-3β會(huì)抑制細(xì)胞色素C的釋放以及Caspase-3的活性,引起一系列與細(xì)胞凋亡相關(guān)的細(xì)胞因子變化,從而調(diào)節(jié)細(xì)胞的增殖、分化、凋亡、遷移等重要過(guò)程[20]。Wang等[21]發(fā)現(xiàn)甲基丁香酚可以通過(guò)調(diào)控 PI3K/Akt 信號(hào)通路抑制炎癥因子的表達(dá),降低肝細(xì)胞凋亡率。Shen等[22]認(rèn)為調(diào)控PI3K/Akt通路可以降低IL-1β和TNFα的表達(dá),減輕肝臟炎癥反應(yīng)。Zheng等[23]揭示出可以通過(guò)調(diào)控PI3K/Akt通路抑制免疫炎癥級(jí)聯(lián)反應(yīng)并減少炎癥所引起的肝細(xì)胞壞死。
1.6 TRAF6/JNK信號(hào)通路 腫瘤壞死因子受體相關(guān)因子6(TRAF6)是一種細(xì)胞質(zhì)銜接蛋白,通過(guò)抑制TRAF6的表達(dá)可以阻斷Toll樣受體4所誘導(dǎo)的JNK磷酸化,從而減輕肝損傷[24]。Yu等[25]通過(guò)對(duì)左旋四氫巴馬汀的研究發(fā)現(xiàn),左旋四氫巴馬汀的肝保護(hù)功能依賴于下調(diào)TRAF6/JNK信號(hào),抑制肝細(xì)胞凋亡和自噬,抑制炎癥因子(如TNFα和IL-6)的表達(dá),進(jìn)而減輕AIH引起的急性肝損傷。以上信號(hào)通路對(duì)AIH的干預(yù)作用機(jī)制見(jiàn)圖1。
2 中藥有效成分對(duì)AIH相關(guān)信號(hào)通路的干預(yù)作用
2.1 苷類
2.1.1 金線蓮苷 金線蓮苷為金線蓮水提物中分離出的單體糖苷,具有抗氧化、抗炎、保肝等作用[26]。劉婷婷[27]研究發(fā)現(xiàn),金線蓮苷發(fā)揮免疫抑制作用的分子學(xué)機(jī)制主要包括兩方面。首先,金線蓮苷能靶向作用于免疫細(xì)胞的血管內(nèi)皮細(xì)胞生長(zhǎng)因子受體2,抑制其受體后代謝相關(guān)PI3K/AKT信號(hào)通路的啟動(dòng),進(jìn)而協(xié)同抑制炎癥相關(guān)JAK/STAT通路的活化;另外,還可以通過(guò)抑制PI3K/AKT信號(hào)通路,下調(diào)該通路下游關(guān)鍵信號(hào)分子叉頭轉(zhuǎn)錄因子O1對(duì)樹(shù)突狀細(xì)胞(DC)內(nèi)趨化因子受體7轉(zhuǎn)錄因子的啟動(dòng),促進(jìn)叉頭轉(zhuǎn)錄因子O1對(duì)程序性死亡因子配體1基因的啟動(dòng),影響DC的遷移和抗原遞呈功能。Deng等[28]通過(guò)動(dòng)物模型研究發(fā)現(xiàn),金線蓮苷能通過(guò)抑制NF-κB/NLRP3信號(hào)通路改善血清轉(zhuǎn)移酶和促炎因子水平,減輕小鼠肝臟炎癥。談婉月[29]發(fā)現(xiàn)金線蓮苷能抑制JAK/STAT通路的啟動(dòng),進(jìn)而抑制機(jī)體的氧化應(yīng)激反應(yīng),減少炎癥相關(guān)因子的產(chǎn)生,減少DC的成熟,降低其抗原遞呈能力,下調(diào)CD8+T淋巴細(xì)胞的分化和殺傷能力,上調(diào)調(diào)節(jié)性T淋巴細(xì)胞的分化,增強(qiáng)免疫耐受,保護(hù)肝組織免受過(guò)強(qiáng)的免疫反應(yīng)的損傷,起到抗AIH的效果。
2.1.2 人參皂苷 人參皂苷根據(jù)化學(xué)結(jié)構(gòu)的不同可分為原人參二醇型人參皂苷、原人參三醇型人參皂苷和齊墩果酸型皂苷三類,具有抗炎、抗氧化、抗細(xì)胞凋亡、免疫調(diào)節(jié)、保肝護(hù)肝等作用[30]。有研究[31]表明,人參皂苷不僅可以通過(guò)調(diào)節(jié)先天免疫和適應(yīng)性T淋巴細(xì)胞免疫來(lái)減輕AIH引起的肝損傷,還可以啟動(dòng)糖皮質(zhì)激素受體,并進(jìn)一步上調(diào)YAP/TAZ-TEAD 復(fù)合物的表達(dá),從而調(diào)節(jié)MDSC以及T淋巴細(xì)胞的增殖和分化,例如擴(kuò)大功能性MDSC,增加抗炎細(xì)胞因子IL-10、轉(zhuǎn)化生長(zhǎng)因子與調(diào)節(jié)性T淋巴細(xì)胞比例,降低IL-17和干擾素的表達(dá),以及抑制活性氧和IL-6的產(chǎn)生,從而產(chǎn)生免疫抑制作用[30]。另有實(shí)驗(yàn)[32]證實(shí),人參皂苷可以調(diào)控Hippo-YAP通路,上調(diào)YAP表達(dá),高表達(dá)的YAP可促進(jìn)MDSC浸潤(rùn),通過(guò)糖皮質(zhì)激素受體-Hippo-YAP-MDSC軸重塑肝臟免疫微環(huán)境發(fā)揮免疫抑制作用,從而降低AIH模型鼠的肝酶水平及炎癥反應(yīng)。人參皂苷Rh1可以抑制脂多糖和NF-κB介導(dǎo)的絲裂原活化蛋白激酶磷酸化,并增加環(huán)磷酸腺苷反應(yīng)元件結(jié)合蛋白啟動(dòng)以達(dá)到抗炎作用,而人參皂苷Rk1可以通過(guò)阻斷脂多糖介導(dǎo)的JAK/STAT和NF-κB途徑來(lái)抑制炎癥介質(zhì)的表達(dá),并進(jìn)一步抑制炎癥[33]。
2.2 萜類
2.2.1 葫蘆素E 葫蘆素E是從一種葫蘆科西瓜屬植物藥西瓜的果實(shí)中分離出來(lái)的四環(huán)三萜類化合物,具有廣泛的藥理作用,如抗增殖、抗氧化活性、免疫調(diào)節(jié)、抗炎和抗纖維化等作用[34]。Mohamed等[35]在實(shí)驗(yàn)中證明了葫蘆素E對(duì)抗肝臟炎性病變的能力是通過(guò)抑制氧化應(yīng)激、增強(qiáng)SIRT1/Nrf2/HO-1信號(hào)通路和抑制NF-κB /NLRP3 通路介導(dǎo)的;該研究還發(fā)現(xiàn)葫蘆素E的保肝作用與其抗氧化及抗炎活性有關(guān),葫蘆素E能夠抑制肝組織中CD4+ T淋巴細(xì)胞的增加,其抗氧化活性也通過(guò)降低氧化應(yīng)激標(biāo)志物的水平以及增強(qiáng)肝組織中的抗氧化劑的能力而得到證實(shí)。
2.2.2 雷公藤紅素 雷公藤紅素是雷公藤的主要活性成分之一,屬五環(huán)三萜類化合物,具有良好的抗炎、抗氧化、免疫抑制等藥理活性[36],另有研究[37]表明,雷公藤紅素可通過(guò)調(diào)節(jié)NF-κB、PI3K/Akt、NLRP3等多種信號(hào)通路和誘導(dǎo)不同反應(yīng)發(fā)揮對(duì)多種炎癥和自身免疫性疾病的治療作用。國(guó)外學(xué)者[38]發(fā)現(xiàn),雷公藤紅素不僅能通過(guò)調(diào)節(jié)NF-κB通路抗炎,還能通過(guò)抑制NLRP3炎癥小體、控制IL-1β釋放達(dá)到抗炎目的。對(duì)于免疫學(xué)方面,雷公藤紅素能抑制Th17中葡萄糖轉(zhuǎn)運(yùn)蛋白1、雷帕霉素靶蛋白、缺氧誘導(dǎo)因子-1的表達(dá),產(chǎn)生免疫抑制活性;還能抑制NF-κB信號(hào)通路啟動(dòng),產(chǎn)生免疫抑制作用[39]。說(shuō)明雷公藤紅素主要通過(guò)調(diào)節(jié)NF-κB/NLRP3和PI3K/Akt信號(hào)通路實(shí)現(xiàn)干預(yù)AIH的疾病進(jìn)展。
2.3 黃酮類 柚皮素是二氫黃酮類化合物,已有研究[40]證明,柚皮素具有顯著的抗炎和抗氧化活性,對(duì)
肝損傷具有保護(hù)作用,并通過(guò)抑制NF-κB信號(hào)通路,發(fā)揮抗肝細(xì)胞凋亡作用。張露露等[41]的研究提示柚皮素可能通過(guò)抑制TRAF6的表達(dá),從而抑制JNK的磷酸化,減輕Con A誘導(dǎo)的AIH小鼠模型的肝臟炎癥,抑制肝細(xì)胞凋亡,發(fā)揮肝臟保護(hù)作用。
2.4 醌類 丹參酮為丹參根部的乙醚或乙醇提取物,根據(jù)其不同的化學(xué)結(jié)構(gòu)可分為丹參酮 Ⅰ、丹參酮 Ⅱ A、丹參酮 Ⅱ B等15種化學(xué)成分,其中丹參酮 Ⅱ A活性最為突出[42]。研究[43]發(fā)現(xiàn),丹參酮 Ⅱ A可以通過(guò)抑制NF-κB信號(hào)傳導(dǎo),降低IL-1、IL-6、TNFα等促炎細(xì)胞因子的釋放,從而減輕肝臟炎癥的發(fā)生。另外,郝健亨等[19]通過(guò)動(dòng)物實(shí)驗(yàn)驗(yàn)證丹參酮ⅡA可能通過(guò)調(diào)節(jié)PI3K/AKT信號(hào)通路改善AIH小鼠肝臟炎癥反應(yīng)。
2.5 酚類 姜黃素是從姜黃屬藥用植物根莖中提取的一種酚類物質(zhì),具有良好的體內(nèi)外抗炎活性,可在多種炎癥疾病中發(fā)揮治療效果,這與它能夠調(diào)節(jié)多種免疫細(xì)胞和炎癥介質(zhì)有關(guān)。Zhong等[44]發(fā)現(xiàn)姜黃素治療可抑制 PI3K/AKT信號(hào)的傳導(dǎo)和細(xì)胞凋亡,減輕肝損傷。董玲等[45]在AIH小鼠模型實(shí)驗(yàn)中發(fā)現(xiàn),二至丸+姜黃素組小鼠能明顯阻礙NF-κB和Nrf2信號(hào)通路的啟動(dòng),抑制NF-κB的磷酸化和Nrf2蛋白水平的下調(diào),從而抑制血清和肝臟中炎性細(xì)胞因子的釋放;同時(shí)減少Caspase-3的活化以降低肝細(xì)胞凋亡率,減少肝細(xì)胞壞死;另外還能通過(guò)抑制肝臟自由基的氧化損傷增強(qiáng)抗氧化能力,緩解Con A誘導(dǎo)的肝臟炎癥和損傷。以上中藥有效成分對(duì)AIH相關(guān)信號(hào)通路的干預(yù)作用總結(jié)見(jiàn)表1。
3 總結(jié)與展望
隨著新型科學(xué)技術(shù)的不斷涌現(xiàn),中藥有效成分抗AIH的機(jī)制成為國(guó)內(nèi)外學(xué)者研究的熱點(diǎn)。本文分析歸納可知:(1)金線蓮苷、雷公藤紅素和丹參酮ⅡA可通過(guò)抑制NF-κB/NLRP3或JAK/STAT通路及調(diào)控PI3K/AKT通路的活化,改善血清轉(zhuǎn)移酶和促炎因子水平,抑制氧化應(yīng)激反應(yīng),減輕肝臟炎癥;(2)葫蘆素E和姜黃素通過(guò)啟動(dòng)SIRT1/Nrf2/HO-1通路并抑制NF-κB /NLRP3通路成員,能擁有較強(qiáng)的抗氧化及抗炎活性,降低肝內(nèi)炎性介質(zhì)的分泌和肝細(xì)胞凋亡率;(3)人參皂苷可以調(diào)控糖皮質(zhì)激素受體-Hippo-YAP-MDSC軸,上調(diào)YAP/TAZ-TEAD 復(fù)合物的表達(dá),同時(shí)阻斷JAK/STAT和NF-κB途徑,達(dá)到重塑肝臟免疫微環(huán)境和抗炎的作用;(4)柚皮素能通過(guò)抑制NF-κB和TRAF6的表達(dá)及JNK的磷酸化,發(fā)揮抗肝細(xì)胞凋亡和抗免疫性肝炎的作用??偟膩?lái)說(shuō),中藥通過(guò)多種信號(hào)通路治療AIH安全有效,但目前研究也存在以下問(wèn)題:(1)中藥有效成分復(fù)雜,作用靶點(diǎn)不一,較難闡明是單一成分還是多成分的協(xié)同作用,按照中醫(yī)傳統(tǒng)的君臣佐使配伍規(guī)范,其相互促進(jìn)、相互監(jiān)制作用或增效,或解毒,抑或使毒性增加,故針對(duì)中藥信號(hào)通路的研究任重而道遠(yuǎn);(2)某些中藥有效成分雖然已經(jīng)被證實(shí)能夠延緩AIH的發(fā)生發(fā)展進(jìn)程,例如白藜蘆醇、雷公藤甲素、白芍多糖等,但是具體信號(hào)轉(zhuǎn)導(dǎo)機(jī)制不明,有待進(jìn)一步研究歸納;(3)臨床實(shí)踐應(yīng)用與動(dòng)物實(shí)驗(yàn)、細(xì)胞學(xué)研究有較大的差異,故不能僅停留在體內(nèi)外實(shí)驗(yàn)水平,而是要以此研究思路為基石,嘗試開(kāi)展臨床試驗(yàn),將其運(yùn)用于臨床診治中。因此,今后需要更深入挖掘中藥有效成分中的特異性作用靶點(diǎn)并進(jìn)行梳理歸類,尋找不同種類中藥有效成分全方位、多靶點(diǎn)共同作用抗免疫性肝炎的可能,為應(yīng)用中藥有效成分研發(fā)出更科學(xué)有效的抗AIH藥物提供理論依據(jù)。
利益沖突聲明:所有作者均聲明不存在利益沖突。
作者貢獻(xiàn)聲明:郝君玉負(fù)責(zé)文獻(xiàn)檢索,撰寫論文;謝露、范文艷、陳虹秀負(fù)責(zé)資料分析;劉光偉負(fù)責(zé)指導(dǎo)撰寫文章并最終定稿。
參考文獻(xiàn):
[1]Chinese Society of Hepatology, Chinese Medical Association.? Guidelines on the diagnosis and management of autoimmune hepatitis(2021)[J]. J Clin Hepatol, 2022, 38(1): 42-49. DOI: 10.3969/j.issn.1001-5256.2022.01.008.
中華醫(yī)學(xué)會(huì)肝病學(xué)分會(huì). 自身免疫性肝炎診斷和治療指南(2021)[J]. 臨床肝膽病雜志, 2022, 38(1): 42-49. DOI: 10.3969/j.issn.1001-5256.2022.01.008.
[2]HU ML, WANG QX, MA X. Advances in the pathogenesis of autoimmune hepatitis and new targets for clinical intervention[J]. J Clin Hepatol, 2022, 38(4): 743-747. DOI: 10.3969/j.issn.1001-5256.2022.04.002.
胡明禮, 王綺夏, 馬雄. 自身免疫性肝炎發(fā)病機(jī)制進(jìn)展與臨床干預(yù)新靶點(diǎn)[J]. 臨床肝膽病雜志, 2022, 38(4): 743-747. DOI: 10.3969/j.issn.1001-5256.2022.04.002.
[3]ROBINSON SM, MANN DA. Role of nuclear factor kappaB in liver health and disease[J]. Clin Sci (Lond), 2010, 118(12): 691-705. DOI: 10.1042/CS20090549.
[4]TAN P, DONG X, MAI K, et al. Vegetable oil induced inflammatory response by altering TLR-NF-κB signalling, macrophages infiltration and polarization in adipose tissue of large yellow croaker (Larimichthys crocea)[J]. Fish Shellfish Immunol, 2016, 59: 398-405. DOI: 10.1016/j.fsi.2016.11.009.
[5]ZAHID A, LI B, KOMBE A, et al. Pharmacological inhibitors of the NLRP3 inflammasome[J]. Front Immunol, 2019, 10: 2538. DOI: 10.3389/fimmu.2019.02538.
[6]HE M, TAN B, VASAN K, et al. SIRT1 and AMPK pathways are essential for the proliferation and survival of primary effusion lymphoma cells[J]. J Pathol, 2017, 242(3): 309-321. DOI: 10.1002/path.4905.
[7]VILLALBA JM, ALCAN FJ. Sirtuin activators and inhibitors[J]. Biofactors, 2012, 38(5): 349-359. DOI: 10.1002/biof.1032.
[8]
TANG HH, LI HL, LI YX, et al. Protective effects of a traditional Chinese herbal formula Jiang-Xian HuGan on Concanavalin A-induced mouse hepatitis via NF-κB and Nrf2 signaling pathways[J]. J Ethnopharmacol, 2018, 217: 118-125. DOI: 10.1016/j.jep.2018.02.003.
[9]LIU HM. Study on MSCs treatment of AIH by change the polarization state of macrophages in mice[D]. Tianjing: Tianjin Medical University, 2019.
劉會(huì)敏. MSCs通過(guò)改變巨噬細(xì)胞極化狀態(tài)治療AIH小鼠的實(shí)驗(yàn)研究[D]. 天津: 天津醫(yī)科大學(xué), 2019.
[10]KIM W, KHAN SK, GVOZDENOVIC-JEREMIC J, et al. Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis[J]. J Clin Invest, 2017, 127(1): 137-152. DOI: 10.1172/JCI88486.
[11]GUO P, WANG Z, ZHOU Z, et al. Immuno-hippo: Research progress of the hippo pathway in autoimmune disease[J]. Immunol Lett, 2021, 230: 11-20. DOI: 10.1016/j.imlet.2020.12.006.
[12]MURAKAMI S, SHAHBAZIAN D, SURANA R, et al. Yes-associated protein mediates immune reprogramming in pancreatic ductal adenocarcinoma[J]. Oncogene, 2017, 36(9): 1232-1244. DOI: 10.1038/onc.2016.288.
[13]ZHANG K, LI J, SHI Z, et al. Ginsenosides regulates innate immunity to affect immune microenvironment of AIH through Hippo-YAP/TAZ signaling pathway[J]. Front Immunol, 2022, 13: 851560. DOI: 10.3389/fimmu.2022.851560.
[14]LI S, MA LJ. Role of JAK/STAT signal pathway in Con A-induced autoimmune hepatitis[J]. Progress in Biochemistry and Biophysics, 2016, 43(12): 1139-1145. DOI: 10.16476/j.pibb.2016.0204.
李莎, 馬麗杰. JAK/STAT信號(hào)通路在刀豆蛋白A誘導(dǎo)的自身免疫性肝炎中的作用[J]. 生物化學(xué)與生物物理進(jìn)展, 2016, 43(12): 1139-1145. DOI: 10.16476/j.pibb.2016.0204.
[15]HONG F, JARUGA B, KIM WH, et al. Opposing roles of STAT1 and STAT3 in T cell-mediated hepatitis: regulation by SOCS[J]. J Clin Invest, 2002, 110(10): 1503-1513. DOI: 10.1172/JCI15841.
[16]JARUGA B, HONG F, SUN R, et al. Crucial role of IL-4/STAT6 in T cell-mediated hepatitis: up-regulating eotaxins and IL-5 and recruiting leukocytes[J]. J Immunol, 2003, 171(6): 3233-3244. DOI: 10.4049/jimmunol.171.6.3233.
[17]
ERTA M, QUINTANA A, HIDALGO J. Interleukin-6, a major cytokine in the central nervous system[J]. Int J Biol Sci, 2012, 8(9): 1254-1266. DOI: 10.7150/ijbs.4679.
[18]HANADA M, FENG J, HEMMINGS BA. Structure, regulation and function of PKB/AKT—a major therapeutic target[J]. Biochim Biophys Acta, 2004, 1697(1-2): 3-16. DOI: 10.1016/j.bbapap.2003.11.009.
[19]HAO JH, LI ZC, SUN WL. Network analysis and experimental verification of tanshinone ⅡA in treatment of autoimmune hepatitis[J]. J Army Med Univ, 2022, 44(10): 1033-1040. DOI: 10.16016/j.2097-0927.202111049.
郝健亨, 李振城, 孫薇麗. 丹參酮ⅡA治療自身免疫性肝炎的網(wǎng)絡(luò)分析及實(shí)驗(yàn)驗(yàn)證[J]. 陸軍軍醫(yī)大學(xué)學(xué)報(bào), 2022, 44(10): 1033-1040. DOI: 10.16016/j.2097-0927.202111049.
[20]LIU P, CHENG H, ROBERTS TM, et al. Targeting the phosphoinositide 3-kinase pathway in cancer[J]. Nat Rev Drug Discov, 2009, 8(8): 627-644. DOI: 10.1038/nrd2926.
[21]
WANG M, ZHANG J, ZHANG J, et al. Methyl eugenol attenuates liver ischemia reperfusion injury via activating PI3K/Akt signaling[J]. Int Immunopharmacol, 2021, 99: 108023. DOI: 10.1016/j.intimp.2021.108023.
[22]SHEN Y, SHEN X, CHENG Y, et al. Myricitrin pretreatment ameliorates mouse liver ischemia reperfusion injury[J]. Int Immunopharmacol, 2020, 89(Pt A): 107005. DOI: 10.1016/j.intimp.2020.107005.
[23]ZHENG L, LI Z, LING W, et al. Exosomes derived from dendritic cells attenuate liver injury by modulating the balance of treg and Th17 cells after ischemia reperfusion[J]. Cell Physiol Biochem, 2018, 46(2): 740-756. DOI: 10.1159/000488733.
[24]WANG C, KONG X, ZHU C, et al. Wu-tou decoction attenuates neuropathic pain via suppressing spinal astrocytic IL-1R1/TRAF6/JNK signaling[J]. Oncotarget, 2017, 8(54): 92864-92879. DOI: 10.18632/oncotarget.21638.
[25]YU Q, LIU T, LI S, et al. The protective effects of levo-tetrahydropalmatine on ConA-induced liver injury are via TRAF6/JNK signaling[J]. Mediators Inflamm, 2018, 2018: 4032484. DOI: 10.1155/2018/4032484.
[26]WANG JD, WANG HZ, ZHANG AL, et al. Recent advances in kinsenoside studies[J]. Chin Hosp Pharm J, 2015, 35(19): 1795-1798, 1802. DOI: 10.13286/j.cnki.chinhosppharmacyj.2015.19.22.
王建棟, 王紅珍, 張愛(ài)蓮, 等. 金線蓮苷研究進(jìn)展[J]. 中國(guó)醫(yī)院藥學(xué)雜志, 2015, 35(19): 1795-1798, 1802. DOI: 10.13286/j.cnki.chinhosppharmacyj.2015.19.22.
[27]LIU TT. Immunosuppressive drug for autoimmune hepatitis, on dendritic cells/CD8+T cells communication[D]. Wuhan: Huazhong University of Science and Technology, 2017.
劉婷婷. 金線蓮苷靶向樹(shù)突狀細(xì)胞與CD8+T細(xì)胞的相互作用抗自身免疫性肝炎作用機(jī)制研究[D]. 武漢: 華中科技大學(xué), 2017.
[28]DENG YF, XU QQ, CHEN TQ, et al. Kinsenoside alleviates inflammation and fibrosis in experimental NASH mice by suppressing the NF-κB/NLRP3 signaling pathway[J]. Phytomedicine, 2022, 104: 154241. DOI: 10.1016/j.phymed.2022.154241.
[29]TAN WY. Effect and molecular mechanisms of kinsenoside against autoimmune hepatitis[D]. Wuhan: Huazhong University of Science and Technology, 2016.
談婉月. 金線蓮苷治療自身免疫性肝炎的作用和分子機(jī)制研究[D]. 武漢: 華中科技大學(xué), 2016.
[30]LI GM, LI Y. Research status of pharmacological effects of ginsenosides[J]. Chin J Clin Pharmacol, 2020, 36(8): 1024-1027. DOI: 10.13699/j.cnki.1001-6821.2020.08.024.
李貴明, 李燕. 人參皂苷藥理作用研究現(xiàn)狀[J]. 中國(guó)臨床藥理學(xué)雜志, 2020, 36(8): 1024-1027. DOI: 10.13699/j.cnki.1001-6821.2020.08.024.
[31]LING C, LI Y, ZHU X, et al. Ginsenosides may reverse the dexamethasone-induced down-regulation of glucocorticoid receptor[J]. Gen Comp Endocrinol, 2005, 140(3): 203-209. DOI: 10.1016/j.ygcen.2004.11.003.
[32]ZHANG KH, ZHOU ME, LI Y. Prospecting the therapeutic value of ginsenosides based on the relevant knowledge of autoimmune hepatitis[J]. J Med Res, 2021, 50(4): 137-139. DOI: 10.11969/j.issn.1673-548X.2021.04.032.
張克慧, 周蒙恩, 李勇. 基于自身免疫性肝炎的相關(guān)認(rèn)識(shí)展望人參皂苷的治療價(jià)值[J]. 醫(yī)學(xué)研究雜志, 2021, 50(4): 137-139. DOI: 10.11969/j.issn.1673-548X.2021.04.032.
[33]YU Q, ZENG KW, MA XL, et al. Ginsenoside Rk1 suppresses pro-inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells by inhibiting the Jak2/Stat3 pathway[J]. Chin J Nat Med, 2017, 15(10): 751-757. DOI: 10.1016/S1875-5364(17)30106-1.
[34]SHANG J, LIU W, YIN C, et al. Cucurbitacin E ameliorates lipopolysaccharide-evoked injury, inflammation and MUC5AC expression in bronchial epithelial cells by restraining the HMGB1-TLR4-NF-κB signaling[J]. Mol Immunol, 2019, 114: 571-577. DOI: 10.1016/j.molimm.2019.09.008.
[35]MOHAMED GA, IBRAHIM S, EL-AGAMY DS, et al. Cucurbitacin E glucoside alleviates concanavalin A-induced hepatitis through enhancing SIRT1/Nrf2/HO-1 and inhibiting NF-κB/NLRP3 signaling pathways[J]. J Ethnopharmacol, 2022, 292: 115223. DOI: 10.1016/j.jep.2022.115223.
[36]JIANG HX, WU QS, LIU L, et al. Research progress on triterpenoids and their pharmacological activities of Tripterygium wilfordii[J]. Chin Tradit Patent Med, 2022, 44(4): 1223-1231. DOI: 10.3969/j.issn.1001-1528.2022.04.033.
蔣紅霞, 伍秋珊, 劉莉, 等. 雷公藤三萜類成分及其藥理活性研究進(jìn)展[J]. 中成藥, 2022, 44(4): 1223-1231. DOI: 10.3969/j.issn.1001-1528.2022.04.033.
[37]ZHANG X, ZHAO W, LIU X, et al. Celastrol ameliorates inflammatory pain and modulates HMGB1/NF-κB signaling pathway in dorsal root ganglion[J]. Neurosci Lett, 2019, 692: 83-89. DOI: 10.1016/j.neulet.2018.11.002.
[38]ZHANG M, CHEN Y, YANG MJ, et al. Celastrol attenuates renal injury in diabetic rats via MAPK/NF-κB pathway[J]. Phytother Res, 2019, 33(4): 1191-1198. DOI: 10.1002/ptr.6314.
[39]WANG S, HUANG Z, LEI Y, et al. Celastrol alleviates autoimmune hepatitis through the PI3K/AKT signaling pathway based on network pharmacology and experiments[J]. Front Pharmacol, 2022, 13: 816350. DOI: 10.3389/fphar.2022.816350.
[40]PAN HH, CAO Y, HU SY, et al. Protective effect of inclusion complex of naringenin and β-cyclodextrin in acute liver injury lnduced by acetaminophen in mice[J]. J Hubei Univ Sci Technol (Med Sci), 2018, 32(1): 1-4, 6. DOI: 10.16751/j.cnki.2095-4646.2018.01.0001.
潘海華, 曹宇, 胡少洋, 等. 柚皮素-β-環(huán)糊精包合物對(duì)乙酰氨基酚致小鼠急性肝損傷的保護(hù)作用[J]. 湖北科技學(xué)院學(xué)報(bào)(醫(yī)學(xué)版), 2018, 32(1): 1-4, 6. DOI: 10.16751/j.cnki.2095-4646.2018.01.0001.
[41]ZHANG LL, YU ZJ, HE BZ. Protective effect of naringenin on a mouse model of autoimmune hepatitis by the regulation of TRAF6/JNK signaling[J]. Zhejiang J Integr Tradit Chin West Med, 2021, 31(9): 792-797, 809. DOI: 10.3969/j.issn.1005-4561.2021.09.002.
張露露, 余真君, 何寶澤. 柚皮素對(duì)自身免疫性肝炎模型小鼠保護(hù)作用及TRAF6/JNK信號(hào)通路的影響[J]. 浙江中西醫(yī)結(jié)合雜志, 2021, 31(9): 792-797, 809. DOI: 10.3969/j.issn.1005-4561.2021.09.002.
[42]LIU HY, JIANG CT, FENG J, et al. Research progress of Tanshinones[J]. Chin Pharmacol Bull, 2016, 32(12): 1643-1647. DOI: 10.3969/j.issn.1001-1978.2016.12.004.
劉慧穎, 姜長(zhǎng)濤, 馮娟, 等. 丹參酮類化合物研究進(jìn)展[J]. 中國(guó)藥理學(xué)通報(bào), 2016, 32(12): 1643-1647. DOI: 10.3969/j.issn.1001-1978.2016.12.004.
[43]YUE S, HU B, WANG Z, et al. Salvia miltiorrhiza compounds protect the liver from acute injury by regulation of p38 and NF-κB signaling in Kupffer cells[J]. Pharm Biol, 2014, 52(10): 1278-1285. DOI: 10.3109/13880209.2014.889720.
[44]
ZHONG W, QIAN K, XIONG J, et al. Curcumin alleviates lipopolysaccharide induced sepsis and liver failure by suppression of oxidative stress-related inflammation via PI3K/AKT and NF-κB related signaling[J]. Biomed Pharmacother, 2016, 83: 302-313. DOI: 10.1016/j.biopha.2016.06.036.
[45]DONG L, TANG HH, SHEN XY, et al. Study on the mechanism of curcumin combined with Erzhi pill inhibiting concanavalin A inducing immune hepatitis in mice[J]. Lishizhen Med Mater Med Res, 2020, 31(3): 532-536. DOI: 10.3969/j.issn.1008-0805.2020.03.007.
董玲, 唐煥煥, 沈曉燕, 等. 姜黃素聯(lián)合二至丸抑制刀豆蛋白A誘導(dǎo)小鼠免疫性肝炎機(jī)制的研究[J]. 時(shí)珍國(guó)醫(yī)國(guó)藥, 2020, 31(3): 532-536. DOI: 10.3969/j.issn.1008-0805.2020.03.007.
收稿日期:
2022-07-15;錄用日期:2022-08-26
本文編輯:林姣