李應(yīng)雯 師麗 劉敏 袁浩 鄭亞 王玉平 郭慶紅
摘要:迄今為止,肝癌仍是我國(guó)高發(fā)、惡性程度極高的腫瘤,嚴(yán)重影響我國(guó)人民的生命和健康。以往研究發(fā)現(xiàn),肝癌的發(fā)生與病毒、吸煙、飲酒及非酒精性脂肪性肝病等諸多因素相關(guān)。隨著不斷探索,越來越多的研究指出,營(yíng)養(yǎng)因素及生活環(huán)境與肝癌的發(fā)生發(fā)展相關(guān)。葉酸作為機(jī)體細(xì)胞生長(zhǎng)和繁殖所必需的營(yíng)養(yǎng)物質(zhì),其在人體內(nèi)的水平高低均對(duì)腫瘤細(xì)胞的生長(zhǎng)產(chǎn)生影響,與肝癌的關(guān)系密不可分。本文對(duì)近年來葉酸與肝癌之間關(guān)系的研究進(jìn)展予以綜述,以期為肝癌的預(yù)防和治療提供新的參考和依據(jù)。
關(guān)鍵詞:肝腫瘤; 葉酸; DNA甲基化; 治療學(xué)
基金項(xiàng)目:甘肅省自然科學(xué)基金(21JR1RA117, 20JR5RA347); 蘭州大學(xué)第一醫(yī)院院內(nèi)基金(ldyyyn2019-28,ldyyyn2018-54)
Association of folic acid with the development and progression of liver cancer
LI Yingwen1,2a,2b, SHI Li1,2a,2b, LIU Min2a,2b, YUAN Hao2a,2b, ZHENG Ya2a,2b, WANG Yuping2a,2b, GUO Qinghong2a,2b. (1. The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; 2. a. Department of Gastroenterology, b. Gansu Key Laboratory of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China)
Corresponding author:GUO Qinghong, gqh@lzu.edu.cn (ORCID:0000-0002-0438-3948)
Abstract:
So far, liver cancer is still a highly malignant tumor with a high incidence rate in China, and it seriously affects the life and health of Chinese people. Previous studies have shown that the development of liver cancer is associated with various factors such as virus, smoking, drinking, and nonalcoholic fatty liver disease. With continuous exploration, more and more studies have pointed out that nutritional factors and living environment are associated with the development and progression of liver cancer. Folic acid is a necessary nutrient for cell growth and reproduction, and its level in human body has an impact on the growth of tumor cells and is closely associated with liver cancer. This article reviews the research advances in the association between folic acid and liver cancer in recent years, so as to provide new reference and basis for the prevention and treatment of liver cancer.
Key words:
Liver Neoplasms; Folic Acid; DNA Methylation; Therapeutics
Research funding:
Natural Science Foundation of Gansu Province (21JR1RA117, 20JR5RA347); In Hospital Fund of the First Hospital of Lanzhou University (ldyyyn2019-28, ldyyyn2018-54)
在全球范圍內(nèi),癌癥依然是影響人類壽命、導(dǎo)致死亡的主要原因[1]。原發(fā)性肝癌是2020年全球第六大最常見癌癥,也是第三大癌癥死亡原因,新增病例約90.6萬(wàn)例,死亡83萬(wàn)例[2]。原發(fā)性肝癌包括肝細(xì)胞癌(HCC)(75%~85%)和肝內(nèi)膽管癌(10%~15%),以及其他罕見類型。肝癌的危險(xiǎn)因素主要包括慢性HBV或慢性HCV感染、黃曲霉毒素污染食物、長(zhǎng)期過量飲酒、吸煙、肥胖等[3]。隨著不斷研究和探索發(fā)現(xiàn),飲食也影響著肝癌的發(fā)生與發(fā)展。在北美和北歐,酗酒是肝癌最重要的危險(xiǎn)因素,攝入更多的乳制品、高糖飲料也與肝癌的發(fā)展有一定的關(guān)聯(lián)[4]。經(jīng)常食用新鮮蔬菜、魚類、咖啡等食物可能降低肝癌的發(fā)生風(fēng)險(xiǎn)[5-6]。人體需要微量有機(jī)物質(zhì)來維持正常的生理功能,葉酸就是必不可少的一種重要的維生素。通過動(dòng)物模型、流行病學(xué)、臨床干預(yù)等多方面的研究,葉酸與癌癥之間的聯(lián)系越來越受到學(xué)者們的關(guān)注。許多研究[7-9]已經(jīng)證實(shí),葉酸缺乏在貧血、神經(jīng)管缺陷、動(dòng)脈粥樣硬化、神經(jīng)精神障礙以及某些癌癥疾?。ɡ缥赴?、結(jié)直腸癌癥等)中起致病作用。本文將近年來葉酸與肝癌之間關(guān)系的研究成果進(jìn)行綜述,以期為肝癌的早期預(yù)防、靶向治療等方面提供參考。
1 葉酸缺乏促進(jìn)腫瘤發(fā)生
人體不能從頭合成葉酸,需從食物中獲取。長(zhǎng)期以來,膳食葉酸都被認(rèn)為具有抗癌作用,葉酸缺乏將會(huì)誘導(dǎo)癌癥的發(fā)生[10]。多項(xiàng)動(dòng)物實(shí)驗(yàn)[11-12]均表明低葉酸狀態(tài)導(dǎo)致小鼠發(fā)生肝癌的風(fēng)險(xiǎn)增加。越來越多的臨床試驗(yàn)也得出了相似的結(jié)論。一項(xiàng)病例對(duì)照研究[13]指出,血漿葉酸水平與腫瘤分期、腫瘤大小呈負(fù)相關(guān),隨著葉酸水平增加,肝癌風(fēng)險(xiǎn)逐漸降低。并且指出血漿葉酸水平可作為HCC患者臨床特征的預(yù)測(cè)因子。這一研究成果驗(yàn)證了此前一項(xiàng)研究結(jié)論,即大約60%的肝癌患者缺乏葉酸,隨著肝癌的進(jìn)展,葉酸水平急劇下降,由此可以推斷低葉酸狀態(tài)可能是腫瘤進(jìn)展的危險(xiǎn)因素[14]。一項(xiàng)廣東省的肝癌隊(duì)列研究[15]顯示診斷時(shí)較低的血清葉酸水平與較差的肝癌生存率獨(dú)立相關(guān)。還有研究[16]指出較高的葉酸攝入量將會(huì)改善飲酒對(duì)肝癌發(fā)生發(fā)展的影響?;谝陨涎芯?,可以認(rèn)為葉酸缺乏與肝癌的發(fā)生密切相關(guān),是肝癌發(fā)生發(fā)展的危險(xiǎn)因素之一。然而,也有研究[8,17]指出,在已經(jīng)發(fā)生腫瘤的情況下,補(bǔ)充葉酸會(huì)進(jìn)一步增加乳腺、結(jié)腸和前列腺等腫瘤進(jìn)展。以上相互矛盾的研究結(jié)論表明,葉酸干預(yù)劑量及其時(shí)間對(duì)安全有效的化學(xué)預(yù)防至關(guān)重要[18]。因此,葉酸在惡性腫瘤中起著雙重調(diào)節(jié)作用,它可以抑制腫瘤的發(fā)生,然而一旦腫瘤形成,就會(huì)促進(jìn)腫瘤前期和亞臨床腫瘤的生長(zhǎng)。關(guān)于葉酸缺乏和過量補(bǔ)充對(duì)HCC進(jìn)展影響的數(shù)據(jù)很少,故還需大量基礎(chǔ)及臨床研究進(jìn)一步探究葉酸水平對(duì)肝癌的影響。
2 葉酸缺乏促進(jìn)腫瘤發(fā)生的機(jī)制
葉酸作為天然的抗癌維生素,能夠誘導(dǎo)癌細(xì)胞凋亡,影響癌細(xì)胞的基因表達(dá)[19]。葉酸缺乏可通過以下幾種機(jī)制誘導(dǎo)肝癌的發(fā)生。
2.1 葉酸缺乏影響基因甲基化 肝臟是所有維生素合成和代謝的主要場(chǎng)所,作為甲硫氨酸合成的甲基供體,葉酸已被證明能夠在生物體內(nèi)參與DNA甲基化、DNA合成及修復(fù)等生物過程[13]。葉酸也因其在生物甲基化和表觀遺傳學(xué)機(jī)制中的重要作用而備受關(guān)注[20]。葉酸缺乏將會(huì)導(dǎo)致甲基化不完全,進(jìn)而有助于將尿嘧啶并入DNA,從而導(dǎo)致DNA斷裂和染色體不穩(wěn)定。這種斷裂、受損的DNA會(huì)增加患癌癥的風(fēng)險(xiǎn)。除此之外,鑒于葉酸在DNA甲基化和合成中的重要性,慢性葉酸缺乏可能導(dǎo)致全基因組DNA低甲基化?;騿?dòng)子的整體DNA低甲基化和異常高甲基化將會(huì)干擾基因表達(dá)和DNA修復(fù),最終導(dǎo)致腫瘤發(fā)生[21-22]。已有動(dòng)物實(shí)驗(yàn)[23]驗(yàn)證了這一機(jī)制,該研究表明缺乏葉酸的飲食可顯著降低整體DNA甲基化,從而促進(jìn)癌癥的發(fā)生。
2.2 葉酸缺乏相關(guān)的氧化還原機(jī)制 有研究[24-25]指出,當(dāng)葉酸等營(yíng)養(yǎng)物質(zhì)缺乏時(shí),可通過誘導(dǎo)氧化-亞硝化應(yīng)激(ONS)反應(yīng),引起內(nèi)質(zhì)網(wǎng)應(yīng)激,導(dǎo)致細(xì)胞谷胱甘肽耗竭,從而致細(xì)胞死亡。機(jī)體內(nèi)的細(xì)胞氧化還原穩(wěn)態(tài)是通過活性氧(ROS)生成和清除之間的平衡來維持的。增加ROS生成或降低抗氧化能力的外源性藥物會(huì)打破氧化還原穩(wěn)態(tài),提高總體ROS水平,最終導(dǎo)致細(xì)胞死亡[26]。有研究[27]在肝癌Hep G2細(xì)胞中觀察到以上現(xiàn)象,Hep G2細(xì)胞是一種分化良好、氧化應(yīng)激最少的亞克隆變體,當(dāng)暴露于葉酸缺乏誘導(dǎo)的ONS時(shí),其發(fā)生凋亡。除此之外,葉酸還可作為HCC的新型氧化還原調(diào)節(jié)劑發(fā)揮作用。研究[28]發(fā)現(xiàn)葉酸缺乏可顯著下調(diào)Survivin和葡萄糖調(diào)節(jié)蛋白-78這兩種顯著的抗凋亡效應(yīng)物。
2.3 葉酸缺乏抑制新生血管生成的作用減弱 已有研究[29]證明用葉酸或三丁酸甘油酯治療肝癌大鼠模型,能顯著抑制致癌過程,這種抑癌活性與增強(qiáng)細(xì)胞凋亡和抑制細(xì)胞持續(xù)增殖有關(guān)。后來進(jìn)一步的研究[30]表明葉酸和三丁酸甘油酯的抑癌作用是通過抑制肝臟血管生成,尤其是抑制新生血管生成來實(shí)現(xiàn)的。血管生成是腫瘤的重要特征之一,當(dāng)機(jī)體缺乏葉酸時(shí),抑制血管生成的作用減弱,抑制細(xì)胞增殖能力降低,由此會(huì)促進(jìn)腫瘤的發(fā)生。
2.4 葉酸缺乏影響癌癥相關(guān)分子途徑 Wnt途徑控制胚胎的組織發(fā)育和成年生物體的組織維持,是一個(gè)基本的發(fā)育途徑[31]。Wnt通路的異常激活在包括HCC在內(nèi)的多種癌癥的發(fā)病機(jī)制中起著關(guān)鍵作用,是肝癌發(fā)生的早期事件,并與侵襲性HCC表型的形成有關(guān)[32]。葉酸治療肝癌大鼠的實(shí)驗(yàn)[32]中基因分析顯示W(wǎng)nt途徑基因高度富集。因此可以推斷,Wnt通路受葉酸代謝影響,當(dāng)體內(nèi)葉酸缺乏時(shí),將會(huì)擾亂正常的分子途徑,從而誘導(dǎo)肝癌的發(fā)生。
2.5 葉酸缺乏影響肝臟脂質(zhì)代謝 非酒精性脂肪性肝病(NAFLD)是HCC的重要危險(xiǎn)因素之一。研究[33]證實(shí),肝臟中的生物甲基化功能對(duì)維持肝臟脂質(zhì)代謝至關(guān)重要。動(dòng)物研究[34-35]表明,葉酸缺乏會(huì)影響肝臟脂質(zhì)儲(chǔ)存和代謝,導(dǎo)致NAFLD的發(fā)生,而膳食中補(bǔ)充葉酸會(huì)增加小鼠模型中的DNA甲基化狀態(tài)并降低肝臟脂肪含量[36]。另有研究[37]發(fā)現(xiàn),在中國(guó)人群中,低血清葉酸水平被確定為NAFLD的獨(dú)立危險(xiǎn)因素。將血清葉酸水平添加到現(xiàn)有的NAFLD預(yù)測(cè)分?jǐn)?shù)中,將會(huì)顯著改善NAFLD的預(yù)測(cè)。因此可以得出結(jié)論,葉酸缺乏將會(huì)影響肝臟正常脂質(zhì)代謝過程,導(dǎo)致NAFLD的發(fā)生,從而增加了肝癌的發(fā)生風(fēng)險(xiǎn)。
綜上所述,葉酸缺乏能夠通過影響基因甲基化、破壞機(jī)體內(nèi)氧化還原平衡、影響肝臟脂質(zhì)代謝、影響基因通路等機(jī)制誘導(dǎo)肝癌的發(fā)生(圖1)。因?yàn)槿~酸代謝通路在提供核苷酸合成前體以及甲基化前體中發(fā)揮著重要作用,故葉酸承擔(dān)著DNA合成和甲基化的雙重功能,對(duì)機(jī)體全基因組影響重大,與腫瘤發(fā)生發(fā)展緊密關(guān)聯(lián),這是誘導(dǎo)癌癥發(fā)生的關(guān)鍵機(jī)制。然而還需要更多的基礎(chǔ)實(shí)驗(yàn)及前瞻性臨床研究來進(jìn)一步探究葉酸與肝癌發(fā)生之間的精確分子機(jī)制及細(xì)胞通路,為肝癌的早期預(yù)防、靶向治療提供依據(jù)。3 葉酸在肝癌治療中的作用
目前對(duì)于原發(fā)性肝癌的治療方法主要有肝切除術(shù)、肝移植、局部消融治療、經(jīng)肝動(dòng)脈治療以及放射治療[38]。隨著檢驗(yàn)及影像學(xué)技術(shù)、精準(zhǔn)外科、人工智能、免疫治療以及分子靶向治療的發(fā)展和進(jìn)步,肝癌的治療逐漸有了新的機(jī)遇。目前葉酸對(duì)于肝癌的治療主要應(yīng)用于癌癥晚期化療和靶向治療的患者當(dāng)中。
3.1 在晚期化療中的作用 葉酸受體(α亞單位)在包括肝癌在內(nèi)的多種腫瘤中過度表達(dá)。有研究[39]評(píng)估了含葉酸的藥物載體在HCC模型中的特異性和毒性,結(jié)果顯示經(jīng)動(dòng)脈途徑葉酸靶向治療是一種有效的肝癌治療策略。一項(xiàng)應(yīng)用奧沙利鉑、氟尿嘧啶和亞葉酸(FOLFOX)的肝動(dòng)脈灌注化療(HAIC)與經(jīng)肝動(dòng)脈化療栓塞術(shù)(TACE)治療大肝癌的隨機(jī)Ⅲ期臨床試驗(yàn)[40]指出,與TACE相比,F(xiàn)OLFOX-HAIC顯著提高了不能切除的大肝癌患者的總生存率。另有一項(xiàng)關(guān)于FOLFOX-HAIC與索拉非尼治療晚期HCC的比較研究[41]結(jié)果顯示,F(xiàn)OLFOX-HAIC療法可以提高晚期肝癌患者的無(wú)進(jìn)展生存率和總生存率。
3.2 聯(lián)合納米制劑增強(qiáng)靶向給藥作用 納米醫(yī)學(xué)技術(shù)能夠在臨床上為包括癌癥在內(nèi)的多種疾病的診斷和治療提供新的策略,近年來發(fā)展迅速[42]。納米醫(yī)學(xué)技術(shù)的主要目的之一是研究合成和制造適合人體的靶向抗癌藥物輸送載體。該技術(shù)能夠使得靶向藥物可以有效地跨越生理屏障,在理想的部位聚集,持續(xù)地釋放藥物,減少總體藥物劑量,提高治療效率,并且能夠減少副作用[43]。利用這一技術(shù),研究者們發(fā)現(xiàn),將葉酸的靶向治療作用與納米醫(yī)學(xué)技術(shù)結(jié)合起來,更能增加癌癥靶向作用和抗氧化作用[44]。
3.3 化學(xué)預(yù)防作用 葉酸可以作為肝癌發(fā)生的化學(xué)預(yù)防劑,但其具體作用及機(jī)制目前尚不清楚。有研究[30]發(fā)現(xiàn),在大鼠肝癌發(fā)生的早期階段,葉酸的抑瘤活性以及對(duì)細(xì)胞增殖和凋亡的抑制與抑制新生血管生成有關(guān)?;谶@一機(jī)制可以得出結(jié)論,葉酸能夠在大鼠肝癌發(fā)生中的化學(xué)預(yù)防方面發(fā)揮作用。Zhang等[44]研究揭示了葉酸通過誘導(dǎo)組蛋白H3賴氨酸-9-二甲基化(H3K9Me2)依賴的脂質(zhì)運(yùn)載蛋白2轉(zhuǎn)錄抑制,在HCC的發(fā)生中作為化學(xué)預(yù)防因子發(fā)揮作用。
3.4 增強(qiáng)靶向藥物敏感性 有研究[10]表明,亞甲基四氫葉酸脫氫酶-1-樣是葉酸循環(huán)中的一種酶,有助于NADPH的產(chǎn)生和積累,達(dá)到足以對(duì)抗癌細(xì)胞氧化應(yīng)激的水平。通過亞甲基四氫葉酸脫氫酶-1-樣基因敲除或使用抗葉酸藥物甲氨蝶呤來提高氧化應(yīng)激,能夠增加癌細(xì)胞對(duì)索拉非尼的敏感性。
補(bǔ)充葉酸能夠治療貧血、小兒腹瀉、阿爾茲海默癥等多種疾病,在多種癌癥治療當(dāng)中葉酸也起到了不可或缺的作用。綜合目前的研究成果,葉酸在肝癌中主要起靶向治療作用。為提高抗癌效率、減少化療相關(guān)副作用,還需進(jìn)一步的研究來探索葉酸的治療作用。希望未來能夠以最小的副作用、最低的醫(yī)療成本來提高肝癌患者的生存率、改善癌癥患者的生命質(zhì)量。
4 小結(jié)與展望
本文敘述了機(jī)體必需微量元素葉酸與肝癌發(fā)生發(fā)展之間的聯(lián)系,并綜合了目前研究成果中葉酸在肝癌治療方面的作用,有望在肝癌患者治療中探索療效更強(qiáng)、副作用更少的治療策略。然而,鑒于葉酸等微量元素在人體中代謝具有個(gè)體差異性,并且肝癌本身存在明顯的分子異質(zhì)性,因此其治療效果也會(huì)不同,更新型、有效、可行的治療方案必將是今后探索的重點(diǎn)。未來需要不斷研究和深入探索,使得包括葉酸在內(nèi)的更多維生素成為一條嶄新的治療途徑,也希望將來能夠通過更多臨床試驗(yàn)確定正規(guī)的治療劑量、適合的受益人群和配伍藥物,旨在獲得又一個(gè)新的治療肝癌的方式。
利益沖突聲明:所有作者均聲明不存在利益沖突。
作者貢獻(xiàn)聲明:李應(yīng)雯負(fù)責(zé)課題設(shè)計(jì),資料分析,撰寫論文;師麗、劉敏、袁浩參與收集數(shù)據(jù),修改論文;鄭亞、王玉平、郭慶紅負(fù)責(zé)擬定寫作思路,指導(dǎo)撰寫文章并最后定稿。
參考文獻(xiàn):
[1]BRAY F, LAVERSANNE M, WEIDERPASS E, et al. The ever-increasing importance of cancer as a leading cause of premature death worldwide[J]. Cancer, 2021, 127(16): 3029-3030. DOI: 10.1002/cncr.33587.
[2]SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[3]ANWANWAN D, SINGH SK, SINGH S, et al. Challenges in liver cancer and possible treatment approaches[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873(1): 188314. DOI: 10.1016/j.bbcan.2019.188314.
[4]HEATH AK, CLASEN JL, JAYANTH NP, et al. Soft drink and juice consumption and renal cell carcinoma incidence and mortality in the European prospective investigation into cancer and nutrition[J]. Cancer Epidemiol Biomarkers Prev, 2021, 30(6): 1270-1274. DOI: 10.1158/1055-9965.EPI-20-1726.
[5]KENNEDY OJ, RODERICK P, BUCHANAN R, et al. Coffee, including caffeinated and decaffeinated coffee, and the risk of hepatocellular carcinoma: a systematic review and dose-response meta-analysis[J]. BMJ Open, 2017, 7(5): e013739. DOI: 10.1136/bmjopen-2016-013739.
[6]FARVID MS, SIDAHMED E, SPENCE ND, et al. Consumption of red meat and processed meat and cancer incidence: a systematic review and meta-analysis of prospective studies[J]. Eur J Epidemiol, 2021, 36(9): 937-951. DOI: 10.1007/s10654-021-00741-9.
[7]PARK SH, HOANG T, KIM J. Dietary factors and breast cancer prognosis among breast cancer survivors: A systematic review and meta-analysis of cohort studies[J]. Cancers (Basel), 2021, 13(21): 5329. DOI: 10.3390/cancers13215329.
[8]PIEROTH R, PAVER S, DAY S, et al. Folate and its impact on cancer risk[J]. Curr Nutr Rep, 2018, 7(3): 70-84. DOI: 10.1007/s13668-018-0237-y.
[9]LIU Y, SUN CJ, ZHANG YH, et al. Effect of combined treatment with folic acid and teprenone on the prognosis of precancerous lesion of chronic atrophic antral gastritis after Helicobacter pylori eradication[J]. Clin J Med Offic, 2021, 49(11): 1267-1269, 1272. DOI: 10.16680/j.1671-3826.2021.11.29.
劉燕, 孫陳靜, 張?jiān)氯A, 等. 葉酸與替普瑞酮聯(lián)合治療對(duì)幽門螺桿菌根除后慢性萎縮性胃竇炎癌前病變轉(zhuǎn)歸影響[J]. 臨床軍醫(yī)雜志, 2021, 49(11): 1267-1269, 1272. DOI: 10.16680/j.1671-3826.2021.11.29.
[10]LEE D, XU IM, CHIU DK, et al. Folate cycle enzyme MTHFD1L confers metabolic advantages in hepatocellular carcinoma[J]. J Clin Invest, 2017, 127(5): 1856-1872. DOI: 10.1172/JCI90253.
[11]SHARMA R, ALI T, NEGI I, et al. Dietary modulations of folic acid affect the development of diethylnitrosamine induced hepatocellular carcinoma in a rat model[J]. J Mol Histol, 2021, 52(2): 335-350. DOI: 10.1007/s10735-020-09955-9.
[12]SHARMA R, ALI T, KAUR J. Tumor suppressor genes are differentially regulated with dietary folate modulations in a rat model of hepatocellular carcinoma[J]. Mol Cell Biochem, 2021, 476(1): 385-399. DOI: 10.1007/s11010-020-03915-3.
[13]CUI LH, QUAN ZY, PIAO JM, et al. Plasma folate and vitamin B12 levels in patients with hepatocellular carcinoma[J]. Int J Mol Sci, 2016, 17(7): 1032. DOI: 10.3390/ijms17071032.
[14]KUO CS, LIN CY, WU MY, et al. Relationship between folate status and tumour progression in patients with hepatocellular carcinoma[J]. Br J Nutr, 2008, 100(3): 596-602. DOI: 10.1017/S0007114508911557.
[15]FANG AP, LIU ZY, LIAO GC, et al. Serum folate concentrations at diagnosis are associated with hepatocellular carcinoma survival in the Guangdong Liver Cancer Cohort study[J]. Br J Nutr, 2019, 121(12): 1376-1388. DOI: 10.1017/S0007114519000734.
[16]PERSSON EC, SCHWARTZ LM, PARK Y, et al. Alcohol consumption, folate intake, hepatocellular carcinoma, and liver disease mortality[J]. Cancer Epidemiol Biomarkers Prev, 2013, 22(3): 415-421. DOI: 10.1158/1055-9965.EPI-12-1169.
[17]DEGHAN MANSHADI S, ISHIGURO L, SOHN KJ, et al. Folic acid supplementation promotes mammary tumor progression in a rat model[J]. PLoS One, 2014, 9(1): e84635. DOI: 10.1371/journal.pone.0084635.
[18]REN X, XU P, ZHANG D, et al. Association of folate intake and plasma folate level with the risk of breast cancer: a dose-response meta-analysis of observational studies[J]. Aging (Albany NY), 2020, 12(21): 21355-21375. DOI: 10.18632/aging.103881.
[19]DULMAN RS, WANDLING GM, PANDEY SC. Epigenetic mechanisms underlying pathobiology of alcohol use disorder[J]. Curr Pathobiol Rep, 2020, 8(3): 61-73. DOI: 10.1007/s40139-020-00210-0.
[20]ABBASI I, ABBASI F, WANG L, et al. Folate promotes S-adenosyl methionine reactions and the microbial methylation cycle and boosts ruminants production and reproduction[J]. AMB Express, 2018, 8(1): 65. DOI: 10.1186/s13568-018-0592-5.
[21]LEE TY, CHIANG EP, SHIH YT, et al. Lower serum folate is associated with development and invasiveness of gastric cancer[J]. World J Gastroenterol, 2014, 20(32): 11313-11320. DOI: 10.3748/wjg.v20.i32.11313.
[22]ALKAN A, M1ZRAK D, UTKAN G. Lower folate levels in gastric cancer: is it a cause or a result?[J]. World J Gastroenterol, 2015, 21(13): 4101-4102. DOI: 10.3748/wjg.v21.i13.4101.
[23]LINHART HG, TROEN A, BELL GW, et al. Folate deficiency induces genomic uracil misincorporation and hypomethylation but does not increase DNA point mutations[J]. Gastroenterology, 2009, 136(1): 227-235. DOI: 10.1053/j.gastro.2008.10.016.
[24]TU M, FAN X, SHI J, et al. 2-Fluorofucose attenuates hydrogen peroxide-induced oxidative stress in HepG2 cells via Nrf2/keap1 and NF-κB signaling pathways[J]. Life (Basel), 2022, 12(3): 406. DOI: 10.3390/life12030406.
[25]CUCARULL B, TUTUSAUS A, HERNEZ-ALSINA T, et al. Antioxidants threaten multikinase inhibitor efficacy against liver cancer by blocking mitochondrial reactive oxygen species[J]. Antioxidants (Basel), 2021, 10(9): 1336. DOI: 10.3390/antiox10091336.
[26]BARRERA G, CUCCI MA, GRATTAROLA M, et al. Control of oxidative stress in cancer chemoresistance: spotlight on Nrf2 role[J]. Antioxidants (Basel), 2021, 10(4): 510. DOI:?? 10.3390/antiox10040510.
[27]CHERN CL, HUANG RF, CHEN YH, et al. Folate deficiency-induced oxidative stress and apoptosis are mediated via homocysteine-dependent overproduction of hydrogen peroxide and enhanced activation of NF-kappaB in human Hep G2 cells[J]. Biomed Pharmacother, 2001, 55(8): 434-442. DOI: 10.1016/s0753-3322(01)00095-6.
[28]LAI KG, CHEN CF, HO CT, et al. Novel roles of folic acid as redox regulator: Modulation of reactive oxygen species sinker protein expression and maintenance of mitochondrial redox homeostasis on hepatocellular carcinoma[J]. Tumour Biol, 2017, 39(6): 1010428317702649. DOI: 10.1177/1010428317702649.
[29]CHAGAS CE, BASSOLI BK, de SOUZA CA, et al. Folic acid supplementation during early hepatocarcinogenesis: cellular and molecular effects[J]. Int J Cancer, 2011, 129(9): 2073-2082. DOI: 10.1002/ijc.25886.
[30]GUARIENTO AH, FURTADO KS, DE CONTI A, et al. Transcriptomic responses provide a new mechanistic basis for the chemopreventive effects of folic acid and tributyrin in rat liver carcinogenesis[J]. Int J Cancer, 2014, 135(1): 7-18. DOI: 10.1002/ijc.28642.
[31]MENCK K, HEINRICHS S, BADEN C, et al. The WNT/ROR pathway in cancer: From signaling to therapeutic intervention[J]. Cells, 2021, 10(1): 142. DOI: 10.3390/cells10010142.
[32]CHEN B, GU Y, SHEN H, et al. Borealin promotes tumor growth and metastasis by activating the Wnt/β-Catenin signaling pathway in hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2022, 9: 171-188. DOI: 10.2147/JHC.S336452.
[33]BRICAMBERT J, ALVES-GUERRA MC, ESTEVES P, et al. The histone demethylase Phf2 acts as a molecular checkpoint to prevent NAFLD progression during obesity[J]. Nat Commun, 2018, 9(1): 2092. DOI: 10.1038/s41467-018-04361-y.
[34]LOMBARDI R, IUCULANO F, PALLINI G, et al. Nutrients, genetic factors, and their interaction in non-alcoholic fatty liver disease and cardiovascular disease[J]. Int J Mol Sci, 2020, 21(22): 8761. DOI: 10.3390/ijms21228761.
[35]CHEW TW, JIANG X, YAN J, et al. Folate intake, MTHFR genotype, and sex modulate choline metabolism in mice[J]. J Nutr, 2011, 141(8): 1475-1481. DOI: 10.3945/jn.111.138859.
[36]GRZDA E, MATUSZEWSKA J, ZIARNIAK K, et al. Animal foetal models of obesity and diabetes - from laboratory to clinical settings[J]. Front Endocrinol (Lausanne), 2022, 13: 785674. DOI: 10.3389/fendo.2022.785674.
[37]XIA MF, BIAN H, ZHU XP, et al. Serum folic acid levels are associated with the presence and severity of liver steatosis in Chinese adults[J]. Clin Nutr, 2018, 37(5): 1752-1758. DOI: 10.1016/j.clnu.2017.06.021.
[38]YUAN SX, ZHOU WP. Progress and hot spots of comprehensive treatment for primary liver cancer[J]. Chin J Dig Surg, 2021, 20(2): 163-170. DOI: 10.3760/cma.j.cn115610-20201211-00776.
袁聲賢, 周偉平. 原發(fā)性肝癌綜合治療的進(jìn)展和熱點(diǎn)[J]. 中華消化外科雜志, 2021, 20(2): 163-170. DOI: 10.3760/cma.j.cn115610-20201211-00776.
[39]KOIRALA N, DAS D, FAYAZZADEH E, et al. Folic acid conjugated polymeric drug delivery vehicle for targeted cancer detection in hepatocellular carcinoma[J]. J Biomed Mater Res A, 2019, 107(11):? 2522-2535. DOI:10.1002/jbm.a.36758.
[40]LI QJ, HE MK, CHEN HW, et al. Hepatic arterial infusion of oxaliplatin, fluorouracil, and leucovorin versus transarterial chemoembolization for large hepatocellular carcinoma: A randomized phase III trial[J]. J Clin Oncol, 2022, 40(2): 150-160. DOI: 10.1200/JCO.21.00608.
[41]LYU N, KONG Y, MU L, et al. Hepatic arterial infusion of oxaliplatin plus fluorouracil/leucovorin vs. sorafenib for advanced hepatocellular carcinoma[J]. J Hepatol, 2018, 69(1): 60-69. DOI: 10.1016/j.jhep.2018.02.008.
[42]TRACEY SR, SMYTH P, BARELLE CJ, et al. Development of next generation nanomedicine-based approaches for the treatment of cancer: weve barely scratched the surface[J]. Biochem Soc Trans, 2021, 49(5): 2253-2269. DOI: 10.1042/BST20210343.
[43]JAIN P, HASSAN N, IQBAL Z, et al. Mesoporous silica nanoparticles: A versatile platform for biomedical applications[J]. Recent Pat Drug Deliv Formul, 2018, 12(4): 228-237. DOI: 10.2174/1872211313666181203152859.
[44]ZHANG YL, XUE G, MIAO H, et al. Folic acid supplementation acts as a chemopreventive factor in tumorigenesis of hepatocellular carcinoma by inducing H3K9Me2-dependent transcriptional repression of LCN2[J]. Oncotarget, 2021, 12(4): 366-378. DOI: 10.18632/oncotarget.27136.
收稿日期:
2022-09-01;錄用日期:2022-10-20
本文編輯:葛俊