丁超月 徐艷 孫麗 王興宇 王宗朝 袁欣怡 瞿瑋 潘源虎
摘要:截短側(cè)耳素 (Pleuromutilins)是從擔子菌綱側(cè)耳屬Pleurotus mutilus和Pleurotus passeckerianus中分離得到的二萜類抗生素,對革蘭陽性菌和支原體具有良好的抗菌活性。截短側(cè)耳素類藥物用途廣泛,泰妙菌素 (Tiamulin)和沃尼妙林 (Valnemulin)作為獸用藥用于防治由病原微生物引起的豬痢疾、支原體肺炎等疾病;人用批準的瑞他莫林(Retapamulin)和來法莫林 (Lefamulin)主要用于治療球菌感染和獲得性細菌性肺炎。近年來,截短側(cè)耳素類藥物耐藥監(jiān)測表明,在病原微生物的rplC、rplD、23sRNA、Cfr和vga基因中報道了多種新的突變位點,導致側(cè)耳素類藥物敏感性降低。本文對已上市的截短側(cè)耳素類藥物進行回顧,并對近十年該類藥物的耐藥機制研究進行綜述,以期為新型截短側(cè)耳素類藥物的創(chuàng)制提供參考。
關鍵詞:截短側(cè)耳素;抗菌活性;作用機制;耐藥機制;PLSA型耐藥;ABC-結(jié)合蛋白
中圖分類號:R978.1? ? ? ?文獻標志碼:A? ? ? ? ?文章編號:1001-8751(2023)03-0166-07
Advances in the Research on the Resistance Mechanism of? Pleuromutilins
Ding Chao-yue,? ?Xu Yan,? ?Sun Li,? ?Wang Xing-yu,? ?Wang Zong-chao,? ?Yuan Xin-yi,? ?Qu Wei,? ? Pan Yuan-hu
(National Reference Laboratory of Veterinary Drug Residue,? ?Wuhan? ?430070)
Abstract: Pleuromutilin is a diterpene antibiotic isolated from Pleurotus mutilus and Pleurotus passeckerianu, which has good antibacterial activity against Gram-positive bacteria and mycoplasma. The pleuromutilin drugs are widely used. Tiamulin and Valnemulin are used as veterinary drugs to prevent and treat diseases such as swine dysentery and mycoplasma pneumonia caused by pathogenic microorganisms. Retapamulin and Lefamulin approved by human medicine are mainly used to treat coccus infection and acquired bacterial pneumonia. In recent years, the monitoring of pleuromutilin resistance has shown that a variety of new mutation sites have been reported in the rplC, rplD, 23sRNA, Cfr and vga genes of pathogenic microorganisms, resulting in reduced sensitivity to pleuromutilin drugs. In this paper, the listed pleuromutilin drugs were reviewed, and the drug resistance mechanism of pleuromutilin drugs in recent ten years was reviewed, in order to provide reference for the creation of new pleuromutilin drugs.
Key words: pleuromutilin; antibacterial activity; mechanism of action; resistance mechanism; PLSA resistance;? ABC- conjugated protein
截短側(cè)耳素 (Pleuromutilins,圖1)是20世紀50年代由哥倫比亞大學科學家從擔子菌綱側(cè)耳屬 [Pleurotus mutilus (Fr.) Sacc. Drosophila subatrata 和 P. Passeckerianus Pilat]中分離的具有抗菌活性的雙萜類化合物。截短側(cè)耳素可與細菌的核糖體50S亞單位上的獨特位點相結(jié)合,阻斷核糖體P區(qū)域、干擾肽酰轉(zhuǎn)移酶活性,從而選擇性地抑制細菌蛋白的合成[1]。截短側(cè)耳素本身抗菌活性弱、水溶性差,難于直接用于臨床用藥 [2]。對截短側(cè)耳素進行結(jié)構改造,已成功研發(fā)上市4個截短側(cè)耳素類藥物。本文將對已上市的截短側(cè)耳素類藥物進行回顧,并對該類藥物的耐藥機制研究進行綜述,以期為新型截短側(cè)耳素類藥物的研制及合理用藥提供參考。
1 截短側(cè)耳素類藥物
1.1 泰妙菌素
泰妙菌素 (Tiamulin,圖2)是1951年澳大利亞Kavangh首次提出,該藥物為截短側(cè)耳素經(jīng)化學合成得到的氫化延胡索酸鹽,是第一個截短側(cè)耳素類動物專用抗生素[3]。泰妙菌素對金黃色葡萄球菌 (Staphylococcus aureus)、支原體 (Mycoplasma)、放線桿菌 (Actinobacillus)、豬痢疾密螺旋體(Brachyspira hyodysenteriae)等有較強的抑制作用,對支原體的作用優(yōu)于大環(huán)內(nèi)酯類,對革蘭陰性菌尤其是腸道菌作用較弱[4]。Hampson等[5]研究顯示泰妙菌素對腸道螺旋體 (Brachyspira pilosicoli)和短螺旋體 (Brachyspira intermedia)的MIC范圍分別為<0.1~1.0和<0.1~4.0 ?g/mL。泰妙菌素也被證明對鼻氣管鳥疫桿菌 (Ornithobacterium Rhinotracheale)具有高活性,其MIC范圍在≤0.012 ~ 0.25 ?g/mL[6]。泰妙菌素藥物活性受環(huán)境影響較大,低濃度抑菌,高濃度殺菌,且在弱堿環(huán)境下殺菌作用最強[7-8]。泰妙菌素與土霉素、磺胺增效劑及其他磺胺類藥物合用,可明顯增強泰妙菌素的抗菌效果[9-10]。目前,泰妙菌素主要用于防治雞慢性呼吸道病,豬支原體肺炎(氣喘?。?、放線菌性胸膜肺炎、密螺旋體性痢疾和豬的增生性腸炎[11]。
1.2 沃尼妙林
沃尼妙林 (Valnemulin,圖3)是一種新型截短側(cè)耳素類動物專用抗生素,對大多數(shù)革蘭陽性菌、支原體和密螺旋體的體內(nèi)外活性要優(yōu)于泰妙菌素[12]。Hannan等[13]研究顯示沃尼妙林對豬肺炎支原體的抑菌效果(MIC90 0.0005 μg/mL)是泰妙菌素 (MIC90 0.05 μg/mL)的100倍,是恩諾沙星 (MIC90 0.01 μg/mL)的20倍。在Jordan等[14]研究中沃尼妙林對不同來源的雞毒支原體最低抑菌濃度(MIC)低于0.008 μg/mL,優(yōu)于同條件下測定的泰妙菌素 (MIC值為0.015 μg/mL)。在Chen等[15]研究中,沃尼妙林對大腸埃希菌 (ATCC 25922)、雞毒支原體 (S6)、葡萄球菌 (CICC 10373)、MRSA(11)的MIC值分別為16μg/mL、0.004μg/mL、0.063μg/mL和0.5μg/mL。沃尼妙林以鹽酸鹽形式于1999年被EMEA批準用于用于治療或預防由豬痢疾短螺旋體 (Brachyspira hyodysenteriae) 引起的豬痢疾和肺炎支原體 (M.Pneumonia)引起的豬地方性肺炎[13-16]。2004年EMEA頒布了沃尼妙林可用于預防結(jié)腸菌毛樣短螺旋體 (Brachyspira pilosicoli)感染引起的豬結(jié)腸炎和細胞內(nèi)勞森菌(Lawsonia intracellularis)感染引起的豬增生性腸炎相關文件[17],2006年被EMEA批準用于由兔產(chǎn)氣莢膜梭菌引起的家兔流行性腸病 (Epizootic rabbit enteropathy) 的早期治療[18]。
1.3 瑞他莫林
瑞他莫林(Retapamulin,圖4)作為第一個人用截短側(cè)耳素類藥物,是該類藥物應用上的一次重要突破。瑞他莫林在體外對耐甲氧西林葡萄球菌 (MRSA)和甲氧西林敏感葡萄球菌 (MSSA)均有較強的抑制作用,但是對含Cfr基因的MRSA無抑制作用。Candel 等[19]研究表明瑞他莫林濃度在0.125 mg/L時對MSSA和MRSA均有抑制作用,但是對18株利奈唑胺耐藥的MRSA表現(xiàn)為耐藥,MIC均大于32 mg/L。劉黨生[20]發(fā)現(xiàn)瑞他莫林對葡萄球菌和β-溶血性鏈球菌有抗菌活性,對金葡菌和釀膿鏈球菌的MIC90分別為0.12和 ≤0.03 ?g/mL。Patel等[21]通過臨床分離的53株金黃色葡萄球菌研究瑞他莫林的藥物活性,結(jié)果顯示49/53 (92%)菌株的MIC 值為0.25?g/mL,2/53 (4%)菌株的MIC為0.125 ?g/mL,2/53 (4%)菌株的MIC 值為0.5?g/m。此外,Patel對瑞他莫林的活性研究數(shù)據(jù)與 Candel等[19]、Woodford等[22]和Traczewski等[23]研究的數(shù)據(jù)基本一致。目前,瑞他莫林是體外抗凝固酶陰性葡萄球菌最有效的化合物,其抗菌活性是利奈唑胺的32倍[24-26]。主要用于治療人體外局部皮膚感染所引起的短期膿皰疹或由葡萄球菌和鏈狀球菌引起的傷口感染[27] 。
1.4 來法莫林
來法莫林 (Lefamulin,圖5)是第一個在人體內(nèi)全身使用的截短側(cè)耳素類抗生素,2019年8月被美國食品和藥物管理局(FDA)批準用于治療社區(qū)獲得性細菌性肺炎專用藥[28]。來法莫林對革蘭陽性和革蘭陰性菌(如淋病奈瑟菌、流感嗜血桿菌和卡他莫拉菌)以及非典型細菌具有較強的體外活性,包括耐萬古霉素糞腸球菌、耐氧氟沙星的肺炎鏈球菌、耐甲氧西林金黃色葡萄球菌、耐多藥(MDR)肺炎鏈球菌和耐大環(huán)內(nèi)酯類肺炎支原體等耐藥菌株[29]。2015年的全球耐藥監(jiān)測數(shù)據(jù)(SENTRY)表明,在19個不同地區(qū)分離得到的金黃色葡萄球菌,使用來法莫林藥物濃度為0.25和0.12 mg/L時均可產(chǎn)生100%的抑制作用。來法莫林的藥物活性驗證實驗中顯示,在不同國家分離得到的1273株金黃色葡萄球菌中,含99.3%的菌株在藥物濃度≤0.25 mg/L時被抑制,并且對不同源性、不同耐藥性的金葡菌有相似的MIC值[30]。Waites等[31]研究了來法莫林對大環(huán)內(nèi)酯類藥物敏感和耐藥的肺炎支原體菌株的抗菌效果,結(jié)果發(fā)現(xiàn)來法莫林對所有測試菌株MIC<0.008 μg/mL。在Ⅲ期臨床的結(jié)果中表明,來法莫林對受試的1300位社區(qū)獲得性細菌性肺炎(CABP)患者的治療效果與莫西沙星相比具有非劣效性,CABP患者的四種癥狀 (咳嗽、咳痰、胸痛、呼吸困難)中至少有兩種得到改善,無一例癥狀惡化的現(xiàn)象[32]。此外,F(xiàn)ile等[33]對比了莫西沙星和來法莫林的臨床療效,對CABP患者的治療效果分別為89.3%和90.5%,相差不大。兩種藥物的臨床療效評價在治愈試驗中的成功率均在85%以上。另一項研究結(jié)果顯示接受來法莫林治療的641位CABP患者中有5.6%出現(xiàn)了嚴重的不良反應,1.2%的患者在28 d內(nèi)死亡。接受莫西沙星治療的641位CABP患者有4.8%出現(xiàn)嚴重不良,1.1%的患者在28 d內(nèi)死亡[34]。以上數(shù)據(jù)表明來法莫林在治療CABP患者具有不劣于莫西沙星臨床療效。
2 截短側(cè)耳素類藥物抗菌作用機制
截短側(cè)耳素類藥物通過選擇性地抑制蛋白質(zhì)合成來達到抗菌目的,是一種獨特的與原核生物核糖體相結(jié)合的一種機制。H?genauer[35]研究發(fā)現(xiàn)側(cè)耳素類藥物活性主要源于它通過與原核生物核糖體的肽基轉(zhuǎn)移酶中心(PTC)中的50S核糖體亞單位結(jié)合來抑制原核生物蛋白質(zhì)合成的能力,但對真核生物無影響。Novak等[36]進一步解釋了這種抗菌機制。藥物分子通過與核糖體之間的相互作用,影響了轉(zhuǎn)運RNA (tRNA)在核糖體大亞基A位點和小亞基P位點的正確定位,導致肽鍵的形成受阻,進而影響蛋白質(zhì)的合成。其次他們證實了截短側(cè)耳素類藥物的三環(huán)核心可與核糖體大亞基23S rRNA (A2503, U2504, G2505, U2506)結(jié)構域V基因的核苷酸以氫鍵的方式牢牢結(jié)合,其側(cè)鏈部分則延伸與核糖體小亞基的P位點相結(jié)合,這種現(xiàn)象對側(cè)耳素類藥物是否抗菌活性有著重要影響。Eyal等[37]發(fā)現(xiàn)來法莫林與核糖體以一種誘導重排的復雜結(jié)合方式,通過核糖體23S rRNA 中U2585和U2506之間的U:U相互作用加強藥物與核糖體之間的結(jié)合力 (見圖6),區(qū)別于泰妙菌素與核糖體的簡單氫鍵結(jié)合,并指出這種不同是引起兩種抗菌藥物活性差異的重要因素。此外,Paukner等[30]在來法莫林的抗菌機制研究中確定了C-11與原核生物核苷酸G2505或A2503之間可產(chǎn)生氫鍵作用,C-21羰基和C-14側(cè)鏈與藥物周圍的核苷酸之間也可形成氫鍵,并表明該類藥物產(chǎn)生氫鍵數(shù)量與其抗菌活性的強弱有一定的關系。側(cè)鏈的結(jié)構特點是影響該類藥物活性的重要因素,F(xiàn)alcó等[38]研究指出C14側(cè)鏈深入核糖體亞基的P結(jié)合位點,通過三重過程來干擾細菌蛋白質(zhì)的合成:首先與50S大亞基的23SrRNA相結(jié)合,抑制肽酰基轉(zhuǎn)移酶來發(fā)揮抗菌作用,其次阻止轉(zhuǎn)運RNA與P位點之間的相互作用,抑制蛋白質(zhì)肽鍵的合成,使50S大亞基的形成受到抑制,進而起到殺菌作用。
3 截短側(cè)耳素類抗生素的耐藥機制
由于截短側(cè)耳素類藥物具有獨特的抗菌作用機制(即特定的核糖體結(jié)合機制),因此與其他抗菌藥物 (如β-內(nèi)酰胺類、大環(huán)內(nèi)酯類、氟喹諾酮類、四環(huán)素類或糖肽類)產(chǎn)生交叉耐藥性的可能性較低[39]。而且自發(fā)性突變頻率較低 (≤10?9),且進展緩慢,只有多次突變才能達到高水平的耐藥。此外,敏感菌在4~8倍MIC條件下沒有穩(wěn)定的抗突變體,其中編碼核糖體的23S rRNA、rplC和rplD基因突變是主要的體外耐藥突變位點。在臨床分離得到的耐藥菌株耐藥機制還包括Atp結(jié)合盒編碼基因突變和甲基轉(zhuǎn)移酶Cfr介導的基因突變[39]。
3.1 rplC和rplD基因突變
2003年Bosling等[40]首次展開了對截短側(cè)耳素類藥物耐藥機制的研究。他們通過誘導篩選大腸埃希菌對側(cè)耳素類藥物的耐藥情況,采用化學足跡法 (Chemical footprinting)發(fā)現(xiàn)了編碼L3和L4蛋白的rplC和rplD基因突變和缺失可導致側(cè)耳素類藥物與核糖體的親和力下降,從而引起大腸埃希菌耐藥。Pringle等[41]和Gentry等[42]得到了相似的研究結(jié)論,他們發(fā)現(xiàn)豬腸道螺旋體和金黃色葡萄球菌的核蛋白L3產(chǎn)生的氨基酸突變可降低側(cè)耳素類藥物對自身的敏感性。2007年Davidovich等[43]對該耐藥現(xiàn)象進行了補充,他通過對不同細菌核蛋白L3的氨基酸序列進行比對發(fā)現(xiàn),致使藥物敏感性降低的突變位點大多數(shù)位于L3的高可變區(qū)域,這一區(qū)域可影響藥物與核糖體的結(jié)合位點,進而降低側(cè)耳素類藥物的抗菌活性。Kosowska等[44]研究結(jié)果表明低于2個單位以下的核蛋白L3氨基酸突變不足以使細菌產(chǎn)生很高的耐藥水平,這也說明了側(cè)耳素類藥物不易產(chǎn)生耐藥性 (見表1)。
3.2 23sRNA堿基突變
位于肽酰轉(zhuǎn)移酶中心的 23S rRNA 堿基突變也可介導截短側(cè)耳類藥物的耐藥。在Pringle等[41]研究結(jié)果中發(fā)現(xiàn)肽酰轉(zhuǎn)移酶中心23SrRNA的2032、2055、2447、2499、2504和2572位堿基突變可引起豬螺旋體對泰妙菌素耐藥。同時在后續(xù)研究中觀察了堿基單一突變對耐藥水平的影響。在23S rRNA 2055、2447、2504 和 2572 位點的單點突變模型中顯示均可降低側(cè)耳素類藥物對豬螺旋體的敏感性,其中2447和2504位點突變可引起利奈唑胺的交叉耐藥。Li等[45]研究中揭示了雞毒支原體對泰妙菌素和沃尼妙林耐藥機制主要與23S rRNA 2058、2059、2061、2447和2503 位點的突變有關,其中A2503突變出現(xiàn)在了所有的雞毒支原體的截短側(cè)耳類耐藥株中。另外,23S rRNA 2058和2059是最常見的大環(huán)內(nèi)酯類耐藥突變位點,在Pfister等[46]結(jié)果中顯示2058和2059的突變菌株對側(cè)耳素類藥物和大環(huán)內(nèi)酯類存在交叉耐藥的情況。
3.3 甲基轉(zhuǎn)移酶Cfr
通過甲基轉(zhuǎn)移酶Cfr介導的基因突變可對氯霉素 (Phenicols)、林可胺類(Lincosamides)、惡唑烷酮類 (Oxazolidone)、截短側(cè)耳素類(Pleuromutilins)和鏈陽霉素類(Streptogramins)等多種抗生素產(chǎn)生耐藥性,即PhLOPSA 耐藥表型[47]。2000年,Schwarz等[48]在呼吸道感染的小牛鼻腔拭子中分離的葡萄球菌中發(fā)現(xiàn)了Cfr基因。這種基因通過編碼rRNA 甲基轉(zhuǎn)移酶促進23S rRNA A2503位甲基化,同時抑制23S rRNA C2498位甲基化。氯霉素類、林可胺類、截短側(cè)耳類、惡唑烷酮類、鏈陽菌素 A 類藥物與細菌核糖體肽酰轉(zhuǎn)移酶中心的結(jié)合位點均在核苷酸A2503附近。而甲基轉(zhuǎn)移酶Cfr 介導的 A2503 位的甲基化可使上述藥物的結(jié)合部位構象發(fā)生改變,是導致這些藥物與細菌核糖體結(jié)合力下降產(chǎn)生耐藥的主要原因[47]。Giessing等在對 A2503 位甲基化介導耐藥機制的研究中發(fā)現(xiàn),Cfr甲基化酶在催化該腺苷第8位產(chǎn)生甲基化后才導致細菌對PhLOPSA的耐藥[49]。在2010年,SENTRY監(jiān)測項目監(jiān)測了新型側(cè)耳素類藥物來法莫林的耐藥性,發(fā)現(xiàn)金黃色葡萄球菌和大腸埃希菌的總耐藥率分別為0.18%和3.4%[30]。金黃色葡萄球菌分離株中Cfr基因突變率為0.018%,vga(A)基因突變率為0.11%,rplC基因突變率為0.05%。在大腸埃希菌菌株中,0.11%的菌株具有cfr基因,2.5%的菌株具有vga(A)基因,0.34%的菌株具有rplD突變[30]。Cfr耐藥機制不僅流行于葡萄球菌,而且在動物源芽孢桿菌、腸球菌等革蘭陽性菌以及大腸埃希菌中的染色體上和多重耐藥質(zhì)粒(PSCFS1)上都發(fā)現(xiàn)了cfr耐藥基因,表明該基因可能具有傳播能力并且已經(jīng)逐漸流行開來[50]。
3.4 ATP結(jié)合盒轉(zhuǎn)運子
vga和lsa基因編碼的ATP結(jié)合盒轉(zhuǎn)運子 (ATP-binding cassette transporters,ABC transporters)是最新的側(cè)耳素類藥物耐藥機制,且陸續(xù)發(fā)現(xiàn)新的轉(zhuǎn)運蛋白耐藥基因。Li等[51]對全國范圍內(nèi)分離獲取的582株截短側(cè)耳類耐藥葡萄球菌研究該類藥物的新型耐藥機制,結(jié)果顯示:lsa(E) (412/582,70.8%)、vga(E)(78/582,13.4%)、vga(E)(45/582,7.7%)、vga(A) (21/582,3.6%),此外尚有部分菌株不含已有耐藥機制 (26/582, 4.5%)。Gentry等[42]在瑞他莫林的耐藥菌株中發(fā)現(xiàn)了vga(A)v和vga(A)基因,分別位于轉(zhuǎn)座子Tn5406和質(zhì)粒pVGA上,通過藥物外排作用對林可胺類、鏈陽菌素A類和側(cè)耳素類藥物產(chǎn)生耐藥。Malbruny等在無乳鏈球菌中發(fā)現(xiàn)了一種新型ABC轉(zhuǎn)運子基因lsa(C),可介導對截短側(cè)耳素類藥物和林可胺類藥物產(chǎn)生耐藥,并可進行水平轉(zhuǎn)移和傳播[52]。在對瑞士分離的耐甲氧西林金黃色葡萄球菌的研究中結(jié)果中發(fā)現(xiàn),有90%以上的菌株對泰妙菌素產(chǎn)生耐藥。通過對耐藥表型分析發(fā)現(xiàn),有30%的耐藥菌株含有vga(A)基因,在未知的耐藥表型中發(fā)現(xiàn)了一種新的vga基因—vga(E)。vga(E)基因位于轉(zhuǎn)座子Tn6133,在瑞士的MRSA菌株中有較高的檢出率[53]。Kadlec等[54]在一株動物源MRSA中獲得一個365bp的多重耐藥質(zhì)粒pKKS825,該質(zhì)粒攜帶一種不同于以往的vga基因—vga(C), 該基因可使菌株對泰妙菌素和沃尼妙林產(chǎn)生較高水平的耐藥,同時還可引起林可胺類藥物克林霉素和林可霉素以及鏈陽菌素A類的耐藥。
盡管對側(cè)耳素類藥物耐藥的分離株進行了表征,并對其耐藥機制進行了描述,但該類藥物的耐藥率仍然很低。在2010年的來法莫林SENTRY監(jiān)測項目中,金黃色葡萄球菌側(cè)耳素藥物耐藥的總發(fā)生率為0.18%,凝血酶陰性葡萄球菌為3.4%。在金黃色葡萄球菌分離株中,0.018%攜帶cfr基因,0.11%攜帶vga(A)基因,0.05%攜帶rplC突變。在凝固酶陰性葡萄球菌中,cfr、vga(A)和rplD改變的發(fā)生率分別為0.11%、2.5%和0.34%[55]。
4 總結(jié)
截短側(cè)耳素類藥物毒性低、抗菌譜廣、耐藥率低且不易產(chǎn)生交叉耐藥的優(yōu)點是該類藥物成為新藥研發(fā)熱點的主要原因。雖然目前細菌對截短側(cè)耳素類藥物的耐藥率較低,但是該類藥物中泰妙林菌素和沃尼妙林在獸醫(yī)臨床的大量使用對人用截短側(cè)耳素類藥物使用的安全性和有效性存在著嚴重威脅,因此必須重視該類藥物的耐藥監(jiān)測,防止產(chǎn)生大規(guī)模的耐藥現(xiàn)象。其次截短側(cè)耳素類藥物半衰期短、水溶性差和生物利用度低等特性一直限制該類藥物的發(fā)展,對該類藥物及其衍生物C14側(cè)鏈進行合理的結(jié)構改造和修飾,區(qū)分不同基團對核糖體蛋白質(zhì)的結(jié)合作用和藥物活性的變化,研發(fā)出水溶性強、高效且安全的新型截短側(cè)耳素類藥物是今后該類藥物研發(fā)的主要方向。
參 考 文 獻
Leowattana W, Leowattana P, Leowattana T. Pleuromutilin and its derivatives: Promising novel anti-infective agents[J]. Anti-Infect Agents, 2022, 20(2):28-37.
Egger H, Reinshagen H. New pleuromutilin derivatives with enhanced antimicrobial activity. I. synthesis[J]. J Antibiot (Tokyo), 1976, 29 (9):915-922.
Anchel M. Chemical studies with pleuromutilin[J]. Biol Chem, 1952, 199 (1):133-139.
Pridmore A, Burch D, Lees P. Determination of minimum inhibitory and minimum bactericidal concentrations of tiamulin against field isolates of actinobacillus pleuropneumoniae[J]. Vet Microbiol, 2011, 151 (3-4):409-412.
Hampson D J, Stephens CP, Oxberry S L. Antimicrobial susceptibility testing of brachyspira intermedia and brachyspira pilosicoli isolates from Australian chickens[J]. Avian Pathol, 2006, 35 (1):12-16.
Islam K M, Klein U, Burch D G. The activity and compatibility of the antibiotic tiamulin with other drugs in poultry medicine-A review[J]. Poult Sci, 2009, 88(11): 2353-2359.
Schlünzen F, Pyetan E, Fucini P, et al. Inhibition of peptide bond formation by pleuromutilins: The structure of the 50S ribosomal subunit from deinococcus radiodurans in complex with tiamulin[J]. Mol Microbiol, 2004, 54 (5):1287-1294.
Deng Y, Wang X Z, Huang S H, et al. Antibacterial activity evaluation of synthetic novel pleuromutilin derivatives in vitro and in experimental infection mice[J]. Eur J Med Chem, 2019, 162:194-202.
Garmyn A, Vereecken M, Degussem K, et al. Efficacy of tiamulin alone or in combination with chlortetracycline against experimental mycoplasma gallisepticum infection in chickens[J]. Poult Sci, 2017, 96 (9):3367-3374.
Yu Y, Fang JT, Zheng M, et al. Combination therapy strategies against multiple-resistant Streptococcus suis[J]. Front Pharmacol, 2018, 9:489.
Laber G, Schütze E. Blood level studies in chickens, turkey poults and swine with tiamulin, a new antibiotic[J]. J Antibiot (Tokyo), 1977, 30 (12):1119-1122.
Huang Z, Mao C, Wei Y, et al. Analysis of the mutant selection window and killing of mycoplasma hyopneumoniae for doxycycline, tylosin, danofloxacin, tiamulin, and valnemulin[J]. PLoS One, 2020, 15 (6):e0220350.
Hannan P C, Windsor H M, Ripley P H. In vitro susceptibilities of recent field isolates of mycoplasma hyopneumoniae and mycoplasma hyosynoviae to valnemulin (Econor), tiamulin and enrofloxacin and the in vitro development of resistance to certain antimicrobial agents in mycoplasma hyopneumoniae[J]. Res Vet Sci, 1997, 63 (2):157-160.
Jordan F T, Forrester C A, Ripley P H, et al. In vitro and in vivo comparisons of valnemulin, tiamulin, tylosin, enrofloxacin, and lincomycin/spectinomycin against mycoplasma gallisepticum[J]. Avian Dis, 1998, 42 (4):738-745.
Chen L, Yang D, Pan Z, et al. Synthesis and antimicrobial activity of the hybrid molecules between sulfonamides and active antimicrobial pleuromutilin derivative[J]. Chem Biol Drug Des, 2015, 86 (2):239-245.
O'Connor J J, Baughn C O, Pilote R R, et al. Tiamulin in the feed for the prevention of swine dysentery and growth promotion of growing pigs[J]. Anim Sci,1979, 49(4):933-938.
EMA. Valnemulin: Summary report–committee for veterinary medicinal products [R]. European Medicines Agency, 1998, 5:MRL/339/98-FINAL.
EMA. Valnemulin (rabbits) European public MRL assessment report (EPMAR) committee for medicinal products for veterinary use[R].? European Medicines Agency, 2010, 9: CVMP/137196/2009.
Candel F J, Morales G, Picazo J J. In vitro activity of retapamulin against linezolid and methicillin-resistant Staphylococcus aureus isolates[J]. Rev Esp Quimioter, 2011, 24 (3): 127-130.
劉黨生.治療人革蘭陽性球菌皮膚感染的截短側(cè)耳素類抗生素Retapamulin[J].國外醫(yī)藥抗生素分冊, 2008, 1:28-31.
Patel A B, Lighter J, Fulmer Y, et al. Retapamulin activity against pediatric strains of mupirocin-resistant methicillin-resistant Staphylococcus aureus[J]. Pediatr Infect Dis J, 2021, 40 (7):637-638.
Woodford N, Afzal-Shah M, Warner M, et al. In vitro activity of retapamulin against Staphylococcus aureus isolates resistant to fusidic acid and mupirocin[J]. Antimicrob Chemother, 2008, 62 (4):766-768.
Traczewski M M, Brown S D. Proposed MIC and disk diffusion microbiological cutoffs and spectrum of activity of retapamulin, a novel topical antimicrobial agent[J]. Antimicrob Agents Chemother, 2008, 52 (11):3863-3867.
Parish L C, Parish J L. Retapamulin: a new topical antibiotic for the treatment of uncomplicated skin infections[J]. Drugs Today (Barc), 2008, 44(2):91-102.
Jacobs M R. Retapamulin: A semisynthetic pleuromutilin compound for topical treatment of skin infections in adults and children[J]. Future Microbiol, 2007, 2 (6):591-600.
Scangarella-Oman N E, Shawar R M, Bouchillon S, et al. Microbiological profile of a new topical antibacterial: retapamulin ointment 1%[J]. Expert Rev Anti Infect Ther, 2009, 7 (3):269-279.
Odou M F, Muller C, Calvet L, et al. In vitro activity against anaerobes of retapamulin, a new topical antibiotic for treatment of skin infections[J]. Antimicrob Chemother, 2007, 59 (4):646-651.
Felix T M, Karpa K. Lefamulin (Xenleta) for the treatment of community-acquired bacterial pneumonia[J].Am Fam Physician, 2020, 102(6):373-374.
Veve M P, Wagner J L. Lefamulin: Review of a promising novel pleuromutilin antibiotic[J]. Pharmacotherapy, 2018, 38 (9):935-946.
Paukner S, Riedl R. Pleuromutilins: Potent drugs for resistant bugs-mode of action and resistance[J]. Cold Spring Harb Perspect Med, 2017, 7 (1): a027110.
Waites K B, Crabb D M, Duffy L B, et al. In vitro activities of lefamulin and other antimicrobial agents against macrolide-susceptible and macrolide-resistant mycoplasma pneumoniae from the United States, Europe, and China[J]. Antimicrob Agents Chemother, 2017, 61 (2): e02008-16.
File T M, Goldberg L, Das A, et al. Efficacy and safety of intravenous-to-oral lefamulin, a pleuromutilin antibiotic, for the treatment of community-acquired bacterial pneumonia: The phase III lefamulin evaluation against pneumonia (LEAP 1) trial[J]. Clin Infect Dis, 2019, 69(11):1856-1867.
File T M Jr, Alexander E, Goldberg L, et al. Lefamulin efficacy and safety in a pooled phase 3 clinical trial population with community-acquired bacterial pneumonia and common clinical comorbidities[J]. BMC Pulm Med, 2021, 21(1):154.
Alexander E, Goldberg L, Das A F, et al. Oral lefamulin vs moxifloxacin for early clinical response among adults with community-acquired bacterial pneumonia: The LEAP 2 randomized clinical trial[J]. JAMA, 2019, 322(17):1661-1671.
H?genauer G. The mode of action of pleuromutilin derivatives. location and properties of the pleuromutilin binding site on Escherichia coli ribosomes[J]. Eur J Biochem, 1975, 52 (1):93-98.
Novak R, Shlaes D M. The pleuromutilin antibiotics: a new class for human use[J]. Curr Opin Investig Drugs, 2010, 11(2):182-191.
Eyal Z, Matzov D, Krupkin M, et al. A novel pleuromutilin antibacterial compound, its binding mode and selectivity mechanism[J]. Sci Rep, 2016, 6:39004.
Falcó V, Burgos J, Almirante B. An overview of lefamulin for the treatment of community acquired bacterial pneumonia[J]. Expert Opin Pharmacother, 2020, 21(6):629-36.
Medical Association A. Lefamulin (Xenleta) for commu-nity-acquired bacterial pneumonia[J]. Med Lett Drugs Ther, 2019, 61(1581):145-148.
B?sling J, Poulsen S M, Vester B, et al. Resistance to the peptidyl transferase inhibitor tiamulin caused by mutation of ribosomal protein L3[J]. Antimicrob Agents Chemother, 2003, 47 (9):2892-2896.
Pringle M, Poehlsgaard J, Vester B et al. Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in brachyspira Spp. isolates[J]. Mol Microbiol, 2004, 54 (5):1295-1306.
Gentry D R, Rittenhouse S F, McCloskey L, et al. Stepwise exposure of Staphylococcus aureus to pleuromutilins is associated with stepwise acquisition of mutations in RplC and minimally affects susceptibility to retapamulin[J]. Antimicrob Agents Chemother, 2007, 51 (6):2048-2052.
Davidovich C, Bashan A, Auerbach-Nevo T, et al. Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity[J]. Proc Natl Acad Sci U S A, 2007, 104 (11):4291-4296.
Kosowska-Shick K, Clark C, Credito K, et al. Single-and multistep resistance selection studies on the activity of retapamulin compared to other agents against Staphylococcus aureus and Streptococcus pyogenes[J]. Antimicrob Agents Chemother, 2006, 50 (2):765-769.
Li BB, Shen JZ, Cao XY, et al. Mutations in 23S RRNA gene associated with decreased susceptibility to tiamulin and valnemulin in mycoplasma gallisepticum[J]. FEMS Microbiol Lett, 2010, 308 (2):144-149.
Pfister P, Jenni S, Poehlsgaard J, et al. The structural basis of macrolide-ribosome binding assessed using mutagenesis of 23S RRNA positions 2058 and 2059[J]. J Mol Biol, 2004, 342 (5):1569-1581.
Long K S, Poehlsgaard J, Kehrenberg C, et al. The Cfr RRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics[J]. Antimicrob Agents Chemother, 2006, 50 (7):2500-2505.
Schwarz S, Werckenthin C, Kehrenberg C. Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in Staphylococcus Sciuri[J]. Antimicrob Agents Chemother, 2000, 44 (9):2530-2533.
Senior K. FDA approves first drug in new class of antibiotics[J]. Lancet, 2000, 355(9214):1523.
Perry W, Golan Y. Therapeutic potential of lefamulin in the treatment of community-acquired pneumonia[J]. Future Microbiol, 2019, 14:927-939.
Li J, Li B, Wendlandt S, Schwarz S, et al. Identification of a novel Vga(E) gene variant that confers resistance to pleuromutilins, lincosamides and streptogramin A antibiotics in staphylococci of porcine origin[J]. J Antimicrob Chemother, 2014, 69 (4):919-923.
Wendlandt S, Lozano C, Kadlec K, et al. The enterococcal ABC transporter gene lsa(E) confers combined resistance to lincosamides, pleuromutilins and streptogramin A antibiotics in methicillin-susceptible and methicillin-resistant Staphylococcus aureus[J]. J Antimicrob Che, 2013, 68(2):473-475.
Schwendener S, Perreten V. New transposon Tn6133 in methicillin-resistant Staphylococcus aureus ST398 contains vga(E), a novel streptogramin A, pleuromutilin, and lincosamide resistance gene[J].Antimicrobial Agents and Chemotherapy, 55 (2011): 4900-4904.
Kadlec K, Schwarz S. Novel ABC transporter gene, vga(C), located on a multiresistance plasmid from a porcine methicillin-resistant Staphylococcus aureus ST398 strain[J]. Antimicrobial Agents and Chemotherapy, 2009, 53: 3589-3591.
Paukner S, Sader H S, Ivezic-Schoenfeld Z, et al. Antimicrobial activity of the pleuromutilin antibiotic BC-3781 against bacterial pathogens isolated in the SENTRY antimicrobial surveillance program in 2010[J]. Antimicrob Agents Chemother, 2013, 57 (9):4489-4495.
收稿日期:2022-10-29
基金項目:國家重點研發(fā)計劃 (2021YDF1800401)。
作者簡介:丁超月,碩士,主要從事抗生素在機體內(nèi)的代謝、排泄、殘留與消除研究。
*通訊作者:潘源虎,副教授,主要從事新獸藥研發(fā)和獸藥的食品安全評價相關工作,在新藥設計、合成與活性篩選、藥物代謝與殘留消除等領域進行大量的研究工作。