夏振堯,閆茹冰,張 倫,張千恒,4,朱志恩,董欣慧,向 瑞,代 運,肖 海,2
狗牙根根系抗拉性能對水淹時長的響應
夏振堯1,2,3,閆茹冰1,張 倫1,張千恒1,4,朱志恩1,董欣慧1,向 瑞1,代 運1,肖 海1,2※
(1. 三峽庫區(qū)地質災害教育部重點實驗室,宜昌,443002;2. 三峽大學土木與建筑學院,宜昌,443002;3. 三峽庫區(qū)生態(tài)環(huán)境教育部工程研究中心,宜昌 443002;4. 葛洲壩集團交通投資有限公司,武漢,430000)
為明確水淹脅迫下植物根系對水淹時長的響應特征,該研究以三峽庫區(qū)消落帶優(yōu)勢植物狗牙根根系為研究對象,以未水淹為對照,分析不同水淹時長下(0,15,30,60,90,120,150和180 d)狗牙根根重密度、根系活力及抗拉性能的變化規(guī)律,明確根系抗拉性能對水淹時長的響應規(guī)律。結果表明:隨著時間的增加,對照組根重密度和根系活力基本無明顯變化,而淹沒組根重密度與根系活力均隨水淹時長增加呈先急劇減小后緩慢減小的變化規(guī)律,水淹初期(15 d)減小量分別占根重密度和根系活力總減小量的65.15%和75.86%。水淹環(huán)境會明顯降低狗牙根根系抗拉性能,根系最大抗拉力和抗拉強度均隨水淹時長的增加而下降,180 d水淹分別造成根系抗拉系數(shù)和抗拉強度系數(shù)減小了59.46%和59.48%。不同直徑根系對水淹的響應程度有所不同,根系最大抗拉力下降程度隨其直徑的增加而增加,0.6~0.7 mm直徑狗牙根根系最大抗拉力下降幅度最大,達7.56 N,抗拉強度下降程度則隨根系直徑的減小而增加,0.1~0.2 mm直徑狗牙根根系抗拉強度下降幅度最大,達36.42 MPa。因此,水淹顯著降低狗牙根根重密度、根系活力和抗拉性能(<0.05),根系活力能夠較好的解釋其抗拉性能的變化。研究結果對進一步探究水淹脅迫下根系固土機理具有重要科學意義。
根系;抗拉性能;單根抗拉;水淹環(huán)境;根系活力;狗牙根;消落帶
植物是防治水土流失的重要積極因素,其根系具有加筋護坡固土作用[1],可將土體所受剪應力轉變?yōu)樽陨硭芾瓚亩鰪娡馏w抗剪強度。根系抗拉力是反映根系固土抗蝕能力的重要參數(shù)[2],其抗拉強度也可作為評判根系固土能力的有效指標[3]。
植物根系抗拉性能受到自身性質(直徑、含水率、成分等)和外界環(huán)境因素(火燒、除草劑、損傷等)的影響[4]。大量研究表明根系抗拉力和抗拉強度隨根系直徑增加分別呈現(xiàn)冪函數(shù)的增加和減少[5]。根系含水率增加會降低細胞壁有機聚合物之間的鍵強度,從而減小根系抗拉強度[6-7]。SU等[8]研究表明根系抗拉性能與其成分密切相關,纖維素和木質素與根系抗拉強度呈正相關關系。此外,KAMCHOOM等[9]研究發(fā)現(xiàn)火燒與噴灑除草劑處理會改變根系成分組成,使得纖維素和木質素快速下降,進而造成根系抗拉強度降低。蘇日娜[10]研究表明損傷力越大,沙棘和楊柴根系愈傷后抗拉強度越小。王博[11]發(fā)現(xiàn)持續(xù)拉拔破壞對灌木根系組織、細胞產(chǎn)生極大破壞,形成的機械損傷對灌木根系活性的抑制作用顯著大于瞬時拉拔破壞,且受損自修復后根系生長速率和力學性能均明顯變小。
消落帶是連接水陸生態(tài)系統(tǒng)的交錯、過渡區(qū)域,兼具水域和陸地兩重屬性,也是生態(tài)環(huán)境比較脆弱的敏感地帶和易污染地帶,其原生植物會因持續(xù)水淹或交替水淹環(huán)境而影響其生理特征,甚至導致其死亡[12]。水淹環(huán)境明顯改變植物生境,而植物也通過自身改變以適應水淹環(huán)境,研究表明植物對水淹環(huán)境的響應策略主要分為“靜止型”和“逃避型”2類[13]。其中,“逃避型”植物通過莖節(jié)間、葉片和葉柄等器官組織的劇烈伸長以逃避水淹環(huán)境,增大與氣體和光照環(huán)境的接觸,從而減輕水淹對植物的脅迫,而“靜止型”植物則通過降低自身能量消耗使自身在水淹脅迫中能夠更長期的存活。消落帶植物為適應水淹環(huán)境而做出的生理生態(tài)響應,也勢必會影響其根系力學性能,但目前關于植物根系抗拉性能對水淹的響應尚不清楚。因此,本研究以三峽庫區(qū)消落帶原生優(yōu)勢植物狗牙根根系為研究對象,以未水淹為對照,通過模擬水淹試驗系統(tǒng)分析水淹時長對狗牙根根系抗拉性能的影響,為進一步探究水淹環(huán)境下根系固土機理,以期為三峽庫區(qū)消落帶植被恢復、水土治理以及生態(tài)環(huán)境的保護提供理論依據(jù)。
試驗所用紫色土取自位于三峽庫區(qū)的湖北省宜昌市秭歸縣水田壩鄉(xiāng)(110°38′~110°44′E,30°21′~30°10′N),為三峽庫區(qū)消落帶代表性土壤類型。將所采集的土壤運至三峽大學地質災害與防治中心風干后過5 mm篩并清除根系等雜質后備用。烘干法測得土壤含水率為15.0%,環(huán)刀法測得土壤容重為1.35 g/cm3,電位法測得土壤pH值為6.80(水土比為5∶1),液塑限聯(lián)合測定法測得液限和塑限分別為33.70%和19.70%,篩分法測得土壤顆粒級配中>2.00、>0.50~2.00、>0.25~0.50、0.075~0.25和<0.075 mm顆粒分別占24.35%、40.34%、14.46%、12.45%和8.40%。
狗牙根()為禾本科多年生低矮草本植物,根系發(fā)達,在水淹環(huán)境中具有快速恢復生長和迅速繁殖的能力[14],被認為是三峽消落帶分布最廣泛的植物種類,也是目前消落帶各高程的優(yōu)勢種群[15]。
將風干過篩后的土壤與2019年8月按照野外自然容重鋪填于面積約為60 m2的試驗場地,隨后將狗牙根種子按照15 g/m2均勻撒播于土壤表面并開始養(yǎng)護。種子萌發(fā)期早晚進行澆水養(yǎng)護,萌芽后每3~5 d澆水養(yǎng)護一次,2個月后自然養(yǎng)護,期間及時清除樣地內(nèi)雜草以避免雜草過多擠壓狗牙根生存情況。水淹試驗開始前,狗牙根已經(jīng)生長2 a以上。
三峽水庫采用“蓄清排渾”運行方式,一般1月至5月為水位消退期,水位從175 m緩慢下降至145 m,5月至9月份為低水位期,除降雨影響外水位基本維持在145 m,9月至10月為水位回升期,水位從145 m逐漸回升至175 m,11月至次年1月底為滿庫運行期,水位175 m[16]。庫區(qū)消落帶區(qū)域大部分水淹持續(xù)時間為6個月以下,因此本研究設置0,15,30,60,90,120,150和180 d共8個水淹時長以研究水淹時長對狗牙根根系性能的影響。于2021年9月開始將狗牙根試樣(長×寬×高為30 cm×30 cm×10 cm)淹沒于深度為60 cm水箱中(實際淹沒深度50 cm),進行水淹處理(submersion group,SG)。水淹期間使用黑布覆蓋遮擋水箱上部和四周以模擬消落帶植物水淹后無光的狀態(tài),待達到設計水淹時長時,隨機取出試樣用于后續(xù)分析。同時,另一組試樣正常置于室外,不進行水淹處理作為對照(control,CK),并在相應水淹時長時隨機取出試樣用于分析。
本研究通過分析根重密度和根系活力變化以分別描述水淹對根系整體和根系狀態(tài)的影響。使用自制取樣盒(長、寬、高均為10 cm)在所選取的試樣中取樣,然后采用水洗法將取樣盒中的根系獲取并置于60 ℃烘箱中烘干并稱量,用于計算根重密度和根系含水率。經(jīng)測,CK組根系含水率為94.55%±3.33%,SG組根系含水率為95.34%±2.89%,SG組根系含水率略大于CK組,但兩者無顯著性差異(>0.05)。同時,將試樣中剩余根系全部洗出用于測定根系活力和抗拉性能。根系活力采用氯化三苯基四氮唑法(TTC—脫氫酶還原法)[17]測定,根系抗拉性能采用量程100 N、精度為0.50%的艾德堡數(shù)顯推拉計HP-100測定。在CK組和SG組中隨機剪取大小不一、順直且直徑均勻、完整無損的根段各30根(長度為(100±5) mm)用于單根抗拉試驗。使用游標卡尺測量根系兩端及中間部分直徑,以此計算出平均直徑作為單根直徑。隨后將測量直徑的單根放入自封袋并編號,放入冰箱內(nèi)保鮮儲存,所有拉拔試驗于24 h內(nèi)完成以避免根系脫水對試驗結果造成影響。試驗過程中抗拉試驗速率為10.0 mm/min,所有靠近鉗口部分因夾斷或者根皮脫落等原因造成根系斷裂的試驗均視為失敗,被拉斷部位在中間1/3段部位時視為成功。
根重密度是指單位體積土壤中根系的質量,可按式(1)計算。
式中為根重密度,g/m3;為根系干質量,g;為試樣體積,m3。
根系活力是指根系吸收和合成營養(yǎng)成分以及氧化還原的能力,其直接影響植物的生長發(fā)育,是植物生長發(fā)育的重要生理指標之一,按式(2)計算。
式中為根系活力,μg/(g·h);TTF為氯化三苯基四氮唑還原量,μg;W為根鮮質量,g,為時間,h。
根系抗拉強度是指根系抵抗外部軸向拉伸作用時的最大能力,即根系最大負載力與其面積之比,是評估植物力學固坡效果的重要指標,按式(3)計算。
式中T為根系抗拉強度,MPa;F為最大抗拉力,N;為根系直徑,mm;
采用Excel進行相關數(shù)據(jù)處理,通過SPSS.22.0分析顯著性,采用Origin2019進行圖形繪制與處理。
CK組狗牙根根重密度隨時間增加整體無明顯變化,其根系活力則呈現(xiàn)小幅度波動;而SG組根重密度和根系活力均隨水淹時長的增加呈現(xiàn)先減小后緩慢波動的變化規(guī)律(圖1)。CK組在不同時間下狗牙根根重密度基本無顯著性差異(>0.05),根系活力則表現(xiàn)為前60 d顯著高于90~180 d;而各水淹時長下淹沒組根重密度和根系活力均顯著小于剛開始水淹。與剛開始水淹相比,水淹180 d根重密度與根系活力分別減少了28.42%和55.80%,根系活力減少幅度遠大于根重密度的減少幅度,表明水淹對根系活力的影響更大。進一步分析發(fā)現(xiàn)水淹初期(15 d)根重密度和根系活力減少量分別占總減小量的65.15%和75.86%,表明水淹初期對根系的影響最大,隨后根系逐漸適應水淹環(huán)境,水淹對根系的影響減小。與CK組相比,除第0天外各水淹時長下SG組根重密度和根系活力均出現(xiàn)顯著(0.05)減小,說明水淹明顯影響狗牙根根系性質。
CK組在第0,15,30,60,90,120,150和180天時長下根系最大抗拉力范圍分別為1.36~12.62,1.69~12.98,1.33~10.17,1.24~12.40,0.98~10.79,0.50~11.81,0.87~10.96和0.53~10.35 N,表明試驗周期內(nèi)CK組根系最大抗拉力整體變化不大(表1)。SG組狗牙根根系最大抗拉力隨水淹時長的增加下降明顯,在第0,15,30,60,90,120,150和180天水淹時長下根系最大抗拉力范圍分別為1.36~12.62,0.80~6.94,0.46~9.33,0.72~5.82,0.20~4.79,0.50~5.31,0.37~4.46和0.33~4.85 N,表明水淹顯著影響根系最大抗拉力。此外,同一時長下,水淹條件下根系最大抗拉力整體小于未水淹的對照組,同樣說明水淹環(huán)境會減小根系最大抗拉力。
相同條件下狗牙根根系最大抗拉力隨根系直徑呈冪函數(shù)增加(式(4))(<0.01)[18],擬合結果見表1。
注:不同大寫字母表示同一時間不同處理差異顯著(<0.05);不同小寫字母表示同一處理不同時間差異顯著(<0.05),CK為對照組,SG為淹沒組。
Note: Different capital letters indicate the significance differences of different processing methods at the same time (<0.05); Different lower case letters indicate the significance differences of different test time with the same processing methods (<0.05); CK is the control group and SG is the submerged group.
圖1 水淹時長對狗牙根根重密度與根系活力的影響
Fig.1 Effects of submersion duration on root density and root activity of
表1 根系直徑與狗牙根最大抗拉力擬合結果
CK組抗拉力系數(shù)隨著水淹時長的增加呈現(xiàn)先緩慢增大后緩慢減小至波動穩(wěn)定的趨勢,而SG組抗拉力系數(shù)則隨水淹時長的增大則呈現(xiàn)先急劇減小后緩慢減小的變化趨勢,均與其根系活力變化趨勢基本一致。對于淹沒組,相比第0 天,水淹時長為15、30、60、90、120、150和180 d時,根系的抗拉力系數(shù)分別減小了38.42%、42.86%、58.27%、52.48%、55.95%、57.03%和59.46%,水淹初期減小量占總減小量的64.61%,表明水淹前期對根系最大抗拉力影響最大,隨后影響減弱。CK組和SG組的抗拉力冪系數(shù)隨著時間變化而波動變化,分別集中在1.46~1.80和1.36~1.73,CK組略大于SG組,表明水淹脅迫略微減小根系抗拉力隨根系直徑增大的增加速率。
CK組在第0、15、30、60、90、120、150和180天,根系的抗拉強度分別為30.73~78.86,28.04~70.72,28.93~55.95,28.13~88.32,24.17~36.45,24.61~52.32,26.33~53.99和24.86~50.95 MPa,表明試驗周期內(nèi),CK組根系抗拉強度隨水淹時長增加略有減?。ū?2)。SG組狗牙根根系抗拉強度隨水淹時長的增加也出現(xiàn)明顯下降,在水淹第0、15、30、60、90、120、150和180天,根系的抗拉強度范圍分別為30.73~78.86,17.68~68.97,9.75~42.39,12.04~39.73,6.77~30.02,11.34~40.10,10.59~19.43和9.89~29.63 MPa,表明水淹明顯影響根系抗拉強度。各時長下SG組狗牙根根系抗拉強度均明顯小于CK組,由此可知,水淹環(huán)境會降低狗牙根根系抗拉強度。
狗牙根根系抗拉強度與直徑之間呈冪函數(shù)負相關關系[19](式(5)),擬合結果見表2。
表2 直徑與狗牙根抗拉強度擬合結果
式中T為抗拉強度,MPa;為抗拉強度系數(shù),表征根系直徑為1時的抗拉強度;為抗拉強度冪系數(shù),表征根系抗拉強度隨根系直徑增大的減小速率,其值越小,表示減小速率越快。
CK組抗拉強度系數(shù)隨著時間的增加呈現(xiàn)先緩慢增大后緩慢減小至波動穩(wěn)定的趨勢,而SG組抗拉強度系數(shù)則隨水淹時長的增大則呈現(xiàn)先急劇減小后緩慢減小的變化趨勢,均與其根系活力變化趨勢基本一致。相比第0天,水淹時長為15、30、60、90、120、150和180 d,根系的抗拉強度系數(shù)值分別減少了38.45%、42.87%、58.26%、52.50%、55.95%、55.95%和59.48%,水淹初期的減小量占值總減小量的64.64%,表明水淹初期對根系抗拉強度影響最大,之后影響減弱。CK組和SG組抗拉強度冪系數(shù)隨著水淹時長的增加均呈波動變化,分別集中在-0.10~-0.54和-0.27~-0.64,SG組略大于CK組,表明水淹脅迫略微增大根系抗拉強度隨直徑增大而減小的速率。
不同時長下CK組各徑級下狗牙根根系平均最大抗拉力變化不大,大致呈現(xiàn)先小幅度增加后波動至穩(wěn)定的變化趨勢,而SG組各徑級狗牙根根系平均最大抗拉力均呈現(xiàn)先在水淹初期快速減小,后期波動穩(wěn)定的變化規(guī)律(圖2)。水淹對不同徑級狗牙根根系最大抗力的影響程度存在差異,水淹180 d時SG組0.1~0.2,>0.2~0.3,>0.3~0.4,>0.4~0.5,>0.5~0.6和>0.6~0.7 mm徑級的狗牙根根系經(jīng)水淹后平均最大抗拉力較第0天分別減小了1.02,1.64,0.95,3.50,4.49和7.56 N,說明根系最大抗拉力下降程度隨其直徑的增加而增加。
圖2 水淹時長對各直徑級狗牙根最大抗拉力的影響
隨著時間的增加,CK組各徑級根系平均抗拉強度均呈現(xiàn)波動穩(wěn)定的變化規(guī)律,其中小直徑(<0.3)波動性更大,而SG組各徑級根系平均抗拉強度均呈現(xiàn)水淹初期快速減小,后期穩(wěn)定波動的變化規(guī)律(圖3)。水淹對不同徑級根系抗拉強度的影響程度不一樣,與第0天相比,第180天SG組0.1~0.2、>0.2~0.3、>0.3~0.4、>0.4~0.5、>0.5~0.6和>0.6~0.7 mm徑級狗牙根根系經(jīng)水淹后平均抗拉強度分別下降了36.42、34.07、10.44、20.96、20.39和20.95 MPa,表明根系抗拉強度下降程度隨著根系直徑的減小而增加。
圖3 水淹時長對各直徑級狗牙根抗拉強度的影響
CK組根重密度和根系活力在試驗期內(nèi)分別呈現(xiàn)穩(wěn)定和先增加后減小波動穩(wěn)定的變化規(guī)律,這可能與季節(jié)變化相關。CK組根系活力與根重密度前期因植物的生長發(fā)育而增加,進入秋冬季后又因氣溫驟降,因而緩慢降低,待進入春季氣溫回升后根系活力與根重密度略有提升。與CK組相比,水淹顯著減小根重密度和根系活力,且隨水淹時長增加,狗牙根根重密度和根系活力均呈現(xiàn)先快速減小后緩慢減小,與SAEKI等[20]研究的結果一致。水淹環(huán)境下,一方面供氧不足和缺氧會誘發(fā)狗牙根體內(nèi)酒精發(fā)酵產(chǎn)生乙醇,過量的乙醇積累會進一步誘發(fā)植物產(chǎn)生酸毒癥[21],繼而抑制狗牙根的氧化還原能力,從而導致狗牙根的根系活力降低以及初生根的死亡。試驗過程中觀察發(fā)現(xiàn)水淹15 d后靠近地面部分的根系逐漸變黑,至水淹180 d后根系出現(xiàn)大面積變黑情況。另一方面,植物厭氧代謝會消耗大量的碳水化合物[22],使根系碳水化合物含量顯著降低,進而導致根重密度的減小。與剛開始水淹相比,水淹初期根重密度和根系活力降低值分別占整個水淹期降低值的65.15%和75.86%,之后根系為適應水淹環(huán)境做出相應自我調(diào)整,如水淹30 d后開始生成不定根以增大根系與氧氣的接觸面積,水淹60 d時可以觀察到發(fā)育良好的不定根(圖4)。植物根系通過有氧呼吸增強根系氧化還原能力[23],提高對水淹的適應性,但根系內(nèi)淀粉及可溶性糖的減少會促使根系繼續(xù)降低自身活力以適應長期水淹環(huán)境[24]。
a. 水淹30 d根系形態(tài) a. Root morphology in 30 d of submersionb. 水淹60 d根系形態(tài) b. Root morphology in 60 d of submersion
狗牙根根系抗拉力與抗拉強度隨水淹時長的增加而持續(xù)減小,這可能是由于持續(xù)水淹環(huán)境會造成根系受損甚至變黑腐爛,受損根系中的組織與細胞遭受嚴重破壞,進而導致其抗拉性能的削弱[25]。狗牙根根系抗拉力和抗拉強度隨著直徑的增大分別呈冪函數(shù)增大和減小,這與國內(nèi)外學者研究基本一致[26]。試驗中SG組的擬合系數(shù)明顯小于CK組,表明水淹顯著影響狗牙根根系抗拉力及抗拉強度與直徑的關系。隨著水淹時長的增加,CK組和SG組的抗拉力系數(shù)和抗拉強度系數(shù)與根系活力變化趨勢基本一致,而相應的冪系數(shù)則無明顯變化規(guī)律。為量化根系活力對上述系數(shù)的影響,回歸分析表明狗牙根抗拉力系數(shù)和抗拉強度系數(shù)與根系活力呈現(xiàn)極顯著對數(shù)相關(<0.01),而相應冪系數(shù)則無顯著性相關關系(>0.05)(圖5),這可能是由于水淹環(huán)境下根系抗拉性能的下降與其根系活力的變化相關,并且根系活力主要通過顯著影響根系最大抗拉力和抗拉強度與根系直徑關系進一步影響根系抗拉性能。
在不同水淹時長下,各徑級根系對水淹環(huán)境的響應各不同,狗牙根根系直徑越大,根系最大抗拉力下降的越明顯,而直徑越小,根系抗拉強度下降的越明顯。根系直徑越大,其中儲存的能量物質越多,相應日常生活所需消耗越大[27],而水淹環(huán)境下未提供足夠能量,大根徑根系相較小根徑根系進行的無氧活動更多,產(chǎn)生更多的毒害物質造成大根徑根系氧化還原能力降低更快,因此根系直徑越大,根系最大抗拉力下降越快。此外,不同直徑級根系抗拉強度下降程度差異可能與根系中纖維含量有關[28],根系韌皮部纖維為吸收水分的活細胞,低級徑單根在含水量增加至30%左右的過程中,韌皮部纖維會吸收水分,細胞變得充盈使其韌性降低,更加容易被拉斷[29]。而根徑小的根系其韌皮部細胞較少,少量水份即可使細胞達到飽和,過多的水分使纖維變得脆弱,抗拉強度隨含水量增大而減小[30]。因而根系直徑越小,抗拉強度下降的越快。
圖5 根系活力與抗拉力、抗拉強度系數(shù)與冪系數(shù)的關系
值得注意的是,根系含水率對根系力學性能影響顯著[31]。ZHANG等[32]研究證明草本植物根系抗拉強度隨含水量的增加呈線性下降,HALES等[33]在木本植物試驗過程中同樣發(fā)現(xiàn)了類似規(guī)律。根系中水分的積累會破壞細胞壁中半纖維素、纖維素和木質素復合物之間的氫鍵,使根系內(nèi)部微纖絲、微晶和纖維之間的距離變大[34],導致有機聚合物間結合強度降低,進而造成根系抗拉性能的下降。然而,本研究中SG組根系含水率雖然略大于CK組根系含水率,但兩組之間無顯著性差異(>0.05),因此可認為根系含水率對本研究結果的影響有限。
此外,除水淹脅迫外,庫水周期性浸泡條件下的消落帶土壤,其物理、化學特性均會發(fā)生變化,勢必也會對植物及根系的生長產(chǎn)生影響,因周期性浸泡產(chǎn)生的土壤理化特性變化進而導致的植物根系力學特性變化貢獻有待進一步研究。
1)水淹環(huán)境下狗牙根根重密度與根系活力隨淹沒時間增加呈現(xiàn)先急劇降低后持續(xù)降低的變化規(guī)律,水淹初期減小量分別占根重密度總減小量的65.15%、根系活力總減小量的75.86%。
2)水淹環(huán)境會顯著降低狗牙根抗拉性能,根徑與根系最大抗拉力系數(shù)和抗拉強度系數(shù)均隨水淹時長的增加而下降,水淹初期抗拉力系數(shù)和抗拉強度系數(shù)的減少量分別占總減小量的64.61%和64.64%。
3)不同直徑根系面對水淹環(huán)境的響應程度不同,0.6~0.7 mm徑級的狗牙根根系最大抗拉力下降幅度最大,達7.56 N,0.1~0.2 mm徑級的狗牙根根系抗拉強度下降幅度最大,達36.42 MPa。
4)根系活力與抗拉力系數(shù)和抗拉強度系數(shù)具有良好的對數(shù)擬合關系,水淹環(huán)境造成的根系活力降低,進一步導致根系抗拉性能的下降。
[1] 宋維峰,陳麗華,劉秀萍. 林木根系固土的理論基礎[J]. 水土保持通報,2008,28(6):180-186. SONG Weifeng, CHEN Lihua, LIU Xiuping. Review of theories of soil reinforcement by root system in forest[J]. Bulletin of Soil and Water Conservation, 2008, 28(6): 180-186. (in Chinese with English abstract)
[2] 徐文秀,楊玲,鮑玉海,等. 大型水庫消落帶2種典型耐淹草本植物單根抗拉力學特性[J]. 水土保持研究,2020,27(5):259-264,272. XU Wenxiu, YANG Ling, BAO Yuhai, et al. Tensile mechanical properties single root of two typical flood-tolerant herbs in the reservoir riparian zone[J]. Research of Soil and Water Conservation, 2020, 27(5): 259-264, 272. (in Chinese with English abstract)
[3] YAN Z, SONG Y, JIANG P, et al. Mechanical analysis of interaction between plant roots and rock and soil mass in slope vegetation[J]. Applied Mathematics and Mechanics, 2010, 31(5): 617-622.
[4] 雷相科,張雪彪,楊啟紅,等. 植物根系抗拉力學性能研究進展[J]. 浙江農(nóng)林大學學報,2016,33(4):703-711. LEI Xiangke, ZHANG Xuebiao, YANG Qihong, et al. Research progress on the tensile mechanical properties of plant roots[J]. Journal of Zhejiang A & F University, 2016, 33(4): 703-711. (in Chinese with English abstract)
[5] 李可,朱海麗,宋路,等青藏高原兩種典型植物根系抗拉特性與其微觀結構的關系[J]. 水土保持研究,2018,25(2):240-249. LI Ke, ZHU Haili, SONG Lu, et al. Relationship between tensile properties and microstructure of two typical plant roots in the Qinghai-Tibet Plateau[J]. Research of Soil and Water Conservation, 2018, 25(2): 240-249. (in Chinese with English abstract)
[6] MAHANNOPKUL K, JOTISANKASA A. Influence of root suction on tensile strength ofroots and its implication on bioslope stabilization[J]. Journal of Mountain Science, 2019, 16(2): 275-284.
[7] HALES T C, MINIAT C F. Soil moisture causes dynamic adjustments to root reinforcement that reduce slope stability[J]. Earth Surface Processes and Land forms, 2017, 42(5): 803-813.
[8] SU X M, ZHOU Z C, LIU J E, et al. The role of roots traits of climax community species to shear strength in the Loess Hilly Region, China[J]. Soil & Tillage Research, 2022, 221: 105417.
[9] KAMCHOOM V, BOLDRIN D, LEUNG A K, et al. Biomechanical properties of the growing and decaying roots of[J]. Plant and Soil, 2022, 471(1): 193-210.
[10] 蘇日娜. 干旱區(qū)兩種水土保持植物根系力學特性的比較[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學,2020.
SU Rina. Comparison of Root Mechanical Properties of Two Soil and Water Conservation Plants in Arid Area[D]. Hohho: Inner Mongolia Agricultural University, 2020.
[11] 王博. 半干旱區(qū)水土保持灌木根系拉拔損傷后的自修復機制[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學,2019.
WANG Bo. Mechanisms of Self-Healing After Drawing Damaged of Soil and Water Conservation Shrub Roots in Semi-Arid Areas[D]. Hohho: Inner Mongolia Agricultural University, 2019.
[12] BAO Y, TANG Q, HE X, et al. Soil erosion in the riparian zone of the Three Gorges Reservoir[J]. Hydrology Research, 2015, 46(2): 212-221.
[13] 楊玲,劉玲,胡馨月,等. 水淹脅迫對小蓬草()的形態(tài)結構與生理生化特性的影響[J]. 生態(tài)科學,2020,39(5):134-141. YANG Ling, LIU Ling, HU Xinyue, et al. Effects of flooding stress on the morphological structure, physiological and biochemical characteristics of[J]. Ecological Science, 2020, 39(5): 134-141. (in Chinese with English abstract)
[14] 王強,袁興中,劉紅,等. 三峽水庫初期蓄水對消落帶植被及物種多樣性的影響[J]. 自然資源學報,2011,26(10):1680-1693. WANG Qiang, YUAN Xingzhong, LIU Hong, et al. Effect of initial impoundment on the vegetation and species diversity in water-level fluctuation zone of the Three Gorges Reservoir[J]. Journal of Natural Resources, 2011, 26(10): 1680-1693. (in Chinese with English abstract)
[15] 王曉鋒,劉婷婷,龔小杰,等. 三峽庫區(qū)消落帶典型植物根際土壤磷形態(tài)特征[J]. 生態(tài)學報,2020,40(4):1342-1356. WANG Xiaofeng, LIU Tingting, GONG Xiaojie, et al. Phosphorus forms in rhizosphere soils of four typical plants in the littoral zone of the Three Gorges Reservoir[J]. Acta Ecologica Sinica, 2020, 40(4): 1342-1356. (in Chinese with English abstract)
[16] 羅先啟,葛修潤. 滑坡模型試驗理論及其應用[M]. 北京:中國水利水電出版社,2008.
[17] LI J, Xu X, LIN G, et al. Micro-irrigation improves grain yield and resource use efficiency by co-locating the roots and N-fertilizer distribution of winter wheat in the North China Plain[J]. Science of the Total Environment, 2018, 643: 367-377.
[18] BISCHETTI G B, CHIARADIA E A, SIMONATO T, et al. Root strength and root area ratio of forest species in Lombardy(Northern Italy)[J]. Plant Soil, 2005, 278(1/2): 11-22.
[19] 洪苗苗,汪霞,趙云飛,等. 淺層滑坡多發(fā)區(qū)典型植被恢復樹種根系對土壤抗剪強度影響[J]. 山地學報,2018,36(1):107-115. HONG Miaomiao, WANG Xia, ZHAO Yunfei, et al. The effect of root system of typical vegetation restoration tree species on soil shear strength in shallow landslide prone areas[J]. Mountain Research, 2018, 36(1): 107-115 (in Chinese with English abstract)
[20] SAEKI A, IWASAKI N. The submergence of the graft union causes the death of grafted mango trees () under flooding[J]. Agronomy, 2020, 10(8): 1121.
[21] 丁林,王文娟,吳婕,等. 不同噴灌定額下壟作溝播油葵根系生長及分布特征[J]. 節(jié)水灌溉,2022(2):28-33. DING Lin, WANG Wenjuan, WU Jie, et al. Root growth and distribution characteristics of ridge and furrow planting oil sunflower under different sprinkler irrigation quota[J]. Water Saving Irrigation, 2022(2): 28-33. (in Chinese with English abstract)
[22] 李彥杰,劉仁華,楊俊年,等. 水淹脅迫下三峽庫區(qū)野生狗牙根根系酶活性變化[J]. 水土保持研究,2014(3):288-292. LI Yanjie, LIU Renhua, YANG Junnian, et al. Dynamics of enzyme activities ofroots from hydro-fluctuation belt in the Three Gorges Reservoir Area during flooding[J]. Research of Soil and Water Conservation, 2014(3): 288-292. (in Chinese with English abstract)
[23] 馬利民,唐燕萍,張明,等. 三峽庫區(qū)消落區(qū)幾種兩棲植物的適生性評價[J]. 生態(tài)學報,2009,29(4):1885-1892. MA Limin, TANG Yanping, ZHANG Ming, et al. Evaluation of adaptability of plants in water-fluctuation-zone of the Three Gorges Reservoir[J]. Acta Ecologica Sinica, 2009, 29(4): 1885-1892. (in Chinese with English abstract)
[24] 李秋華,劉送平,支崇遠,等. 三種水庫消落帶草本植物對完全水淹的適應機制研究[J]. 熱帶亞熱帶植物學報,2013,21(5):459-465. LI Qiuhua, LIU Songping, ZHI Chongyuan. et al. Adaptation mechanism of three herbs in the water-level-fluctuation-zone of reservoir to complete submergence[J]. Journal of Tropical and Subtropical Botany, 2013, 21(5): 459-465. (in Chinese with English abstract)
[25] 王博,劉靜,李有芳,等. 不同損傷條件下沙柳直根力學特性的自修復差異[J]. 生態(tài)學雜志,2018,37(12):3549-3555. WANG Bo, LIU Jing, LI Youfang, et al. Self-healing of mechanical properties ofstraight roots under different damage conditions[J]. Chinese Journal of Ecology, 2018, 37(12): 3549-3555. (in Chinese with English abstract)
[26] 肖海,張千恒,夏振堯,等. 拉拔作用下護坡植物香根草根系的力學性能[J]. 農(nóng)業(yè)工程學報,2022,38(11):91-97. XIAO Hai, ZHANG Qianheng, XIA Zhenyao, et al. Characteristic of mechanical properties and failure types ofroot under tensile and pullout conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(11): 91-97. (in Chinese with English abstract)
[27] 柳家榮,屠禮傳,徐如強,等. 芝麻的耐澇性與基因型及根系活力的關系[J]. 華北農(nóng)學報,1993,8(3):82-86. LIU Jiarong, TU Lichuan, XU Ruqiang, et al. The relationship between the waterlogging resistance and the genotypes and the vigor of root system in sesame[J]. Acta Agriculturae Boreali-Sinica, 1993, 8(3): 82-86. (in Chinese with English abstract)
[28] 蔣坤云. 植物根系抗拉特性的單根微觀結構作用機制[D]. 北京:北京林業(yè)大學,2013. JIANG Kunyun. Mechanism of the Microstructure of a Single Root to the Tensile Properties of Plant Root System[D]. Beijing: Beijing Forestry University, 2013.
[29] 朱海麗,胡夏嵩,毛小青,等. 護坡植物根系力學特性與其解剖結構關系[J]. 農(nóng)業(yè)工程學報,2009,25(5):40-46. ZHU Haili, HU Xiasong, MAO Xiaoqing, et al. Relationship between mechanical characteristics and anatomical structures of slope protection plant root[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(5): 40-46. (in Chinese with English abstract)
[30] 蔣坤云,陳麗華,蓋小剛,等. 華北護坡闊葉樹種根系抗拉性能與其微觀結構的關系[J]. 農(nóng)業(yè)工程學報,2013,29(3):115-123. JIANG Kunyun, CHEN Lihua, GE Xiaogang, et al. Relationship between tensile properties and microstructures of three different broadleaf tree roots in North China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 115-123. (in Chinese with English abstract)
[31] MAHANNOPKUL K, JOTISANKASA A. Influence of root suction on tensile strength ofroots and its implication on bioslope stabilization[J]. Journal of Mountain Science, 2019, 16(2): 275-284.
[32] ZHANG C, XIA Z, JING J, et al. Root moisture content influence on root tensile tests of herbaceous plants[J]. Catena, 2019, 172: 140-147.
[33] HALES T C, MINIAT C F. Soil moisture causes dynamic adjustments to root reinforcement that reduce slope stability[J]. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 2017, 42(5): 803-813.
[34] 劉鵬飛. 4種植物側根分支處抗折力學特性的研究[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學,2016.
LIU Pengfei. The Anti-Fracture Mechanical Characteristicsof Four Kinds of Lateral-Root Branches[D]. Hohho: Inner Mongolia Agricultural University, 2016.
[35] 周紫璇,陸穎,鐘榮華,等. 大壩運行對水庫消落帶土壤環(huán)境影響研究進展[J]. 水文,2019,39(1):15-19. ZHOU Zixuan, LU Ying, ZHONG Ronghua, et al. Research progress on soil environment of water-level fluctuation zone affected by dam operation[J]. Journal of China Hydrology, 2019, 39(1): 15-19. (in Chinese with English abstract)
Response of tensile properties inroot to submersion duration
XIA Zhenyao1,2,3, YAN Rubing1, ZHANG Lun1, ZHANG Qianheng1,4, ZHU Zhi’en1, DONG Xinhui1, XIANG Rui1, DAI Yun1, XIAO Hai1,2※
(1.,,443002,;2.,,443002,; 3.-,,443002,; 4..,.,430000)
Plants can significantly alter the physiological and ecological characteristics to adapt to the continuous submersion in the water-level fluctuation zone, thus leading to the performance of root on soil reinforcement. However, it is still unclear on the effects of submersion duration on the tensile properties of plant roots. In this study, the dominant plant in the water-level fluctuation zone of the Three Gorges reservoir area,, was selected as the research object. The seeds were sown at 15 g/m2on a purple soil field in August 2019, and the maintenance was then conducted more than two years before the beginning of the submersion test. Samples were taken in September 2021 and then submersed in the water tank with a submerged depth of 50 cm. Among them, the water tank was covered with the black cloth to simulate the dark condition during submersion. The unsubmerged condition was used as the control. The root weight density, root activity, and tensile properties were analyzed under eight submersion durations (0, 15, 30, 60, 90, 120, 150, and 180 d), in order to evaluate the response of tensile properties ofroot to submersion duration. The results indicated that there was a rapid decrease in the root weight density and root activity, followed by a slow but continuous decline with the increasing of submersion duration in the submersion group, compared with the control. The root weight density and root activity decreased by 28.42%, and 55.80%, respectively, for the submersion duration 180 d, compared with at the beginning of the submersion test. The root weight density and root activity decrease in the initial stage of submersion (15 d), accounting for 65.15% and 75.86% of the total decrement, respectively. Meanwhile, the maximum tensile strength of the root was closely related to the root diameter with the power function. The tensile force and tensile strength coefficientdecreased with the increase of submersion duration, while the tensile force and tensile strength power coefficientshowed no outstanding change. The tensile force and tensile strength coefficientfor the relation of root diameter with the maximum tensile strength and tensile strength decreased by 38.42%, 42.86%, 58.27%, 52.48%, 55.95%, 57.03%, 59.46%, and 38.45%, 42.87%, 58.26%, 52.50%, 55.95%, 55.95%, and 59.48%, respectively for the submersion duration15, 30, 60, 90, 120, 150, and 180 d, compared with at the beginning of the submersion test. The initial stage of submersion accounted for 64.61% and 64.64% of the total decrement of fitting tensile force and tensile strength coefficientand, respectively. The response degree of root tensile properties to the submersion also varied with the root diameter. Specifically, the decrement of the maximum tensile strength increased with the increase of root diameter, while the decrement of tensile strength increased with the decrease of root diameter. Moreover, the tensile force and tensile strength coefficientfor the relation of root diameter with the maximum tensile strength and tensile strength shared a significant logarithmic relationship with the root activity. Therefore, the submersion environment significantly reduced the root weight density, root activity, and tensile properties. The root activity can be expected to better explain the changes in the tensile properties. The finding can be of great significance to explore the plant root on soil reinforcement under a submersion environment in the water-level fluctuation zone.
root; tensile properties; single root tensile strength; submersion environment; root activity;root; water-level fluctuation zone
10.11975/j.issn.1002-6819.202212097
S157.9
A
1002-6819(2023)-06-0103-08
夏振堯,閆茹冰,張倫,等. 狗牙根根系抗拉性能對水淹時長的響應[J]. 農(nóng)業(yè)工程學報,2023,39(6):103-110.doi:10.11975/j.issn.1002-6819.202212097 http://www.tcsae.org
XIA Zhenyao, YAN Rubing, ZHANG Lun, et al. Response of tensile properties inroot to submersion duration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(6): 103-110. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202212097 http://www.tcsae.org
2022-12-13
2023-02-11
國家自然科學基金聯(lián)合基金重點支持項目(U21A2031;U2040207);“土木工程防災減災湖北省引智創(chuàng)新示范基地”項目(2021EJD026);中國三峽建設管理有限公司科研項目(BHT/0869)
夏振堯,博士,教授,博士生導師。研究方向為生物巖土水土治理。Email:xzy_yc@126.com
肖海,博士,副教授,博士生導師。研究方向為生物巖土水土治理。Email:oceanshawctgu@163.com