羅歡 陳付彬 周旋
摘 要:研究了一類分?jǐn)?shù)階隨機(jī)微分方程解的存在性與唯一性。 通過運(yùn)用微分方程的半離散化技術(shù),推導(dǎo)出分?jǐn)?shù)階隨機(jī)微分方程解的半離散化模型, 利用Minkowski不等式、Hlder不等式和Picard逐步逼近法, 證明了半離散隨機(jī)模型解的存在性與唯一性。
關(guān)鍵詞:分?jǐn)?shù)階;Picard迭代;Mittag-Leffler函數(shù)
中圖分類號(hào):O175.1
文獻(xiàn)標(biāo)志碼:A
近年來,分?jǐn)?shù)階微積分[1]在量子力學(xué)[2]、土木工程[3]和非牛頓流體[4]等理工領(lǐng)域得到了快速的發(fā)展,在信號(hào)處理[5]、生物醫(yī)學(xué)[6]和自動(dòng)控制[7]等其他領(lǐng)域也發(fā)揮了積極推動(dòng)的作用。20世紀(jì)60年代,意大利物理學(xué)家Caputo提出了一種具有弱奇異性質(zhì)的分?jǐn)?shù)階導(dǎo)數(shù), 使得Caputo分?jǐn)?shù)階導(dǎo)數(shù)解的存在性、唯一性和穩(wěn)定性得到了更為廣泛的研究[8-10]。關(guān)于確定性分?jǐn)?shù)階微分方程的文章較多,但是在某些隨機(jī)環(huán)境中,模型的不確定性對(duì)系統(tǒng)的影響很大。為了解決這些問題,學(xué)者提出了分?jǐn)?shù)階隨機(jī)微分方程。
涉及分?jǐn)?shù)階隨機(jī)微分方程解的離散模型的文章較少,大部分討論的是連續(xù)型解的存在性和唯一性,以及對(duì)穩(wěn)定性的分析。文獻(xiàn)[11]建立了隨機(jī)神經(jīng)網(wǎng)絡(luò)的指數(shù)穩(wěn)定性判據(jù)。PENG[12]建立了G-期望理論和G-布朗運(yùn)動(dòng)的概念,使G-布朗運(yùn)動(dòng)驅(qū)動(dòng)的隨機(jī)微分方程的研究工作得到了很好的發(fā)展。文獻(xiàn)[13]利用逐次逼近方法將解的局部存在唯一性推廣到全局存在唯一性,建立了分?jǐn)?shù)階隨機(jī)微分方程兩個(gè)不同解之間漸近距離的下界,推導(dǎo)出有界線性Caputo分?jǐn)?shù)階隨機(jī)微分方程任意非平凡解的均方Lyapunov指數(shù)總是非負(fù)的。文獻(xiàn)[14]研究了Caputo型分?jǐn)?shù)階隨機(jī)微分方程的穩(wěn)定性,證明了系統(tǒng)的隨機(jī)穩(wěn)定性和隨機(jī)漸近穩(wěn)定性,用新建立的It Caputo公式,推導(dǎo)出近似指數(shù)穩(wěn)定性和p階矩的指數(shù)穩(wěn)定性。 文獻(xiàn)[15]提出了關(guān)于整數(shù)階變量上限積分的分?jǐn)?shù)階導(dǎo)數(shù)的新不等式, 有利于Lyapunov函數(shù)的構(gòu)造,并基于拓?fù)涠壤碚撟C明了平衡點(diǎn)的存在唯一性,此外,利用Picard逐次逼近技術(shù),證明了初值解的存在性和唯一性。文獻(xiàn)[16]利用Weissinger不動(dòng)點(diǎn)理論證明了解對(duì)初始條件的連續(xù)依賴性。將Picard逐次逼近方法應(yīng)用于求解含有Ψ-Hilfer分?jǐn)?shù)階導(dǎo)數(shù)的非線性柯西問題,并對(duì)誤差進(jìn)行了估計(jì)。文獻(xiàn)[17]利用加權(quán)最大范數(shù)和It的等距法建立了非線性分?jǐn)?shù)階隨機(jī)中立型微分方程系統(tǒng)在有限維隨機(jī)環(huán)境下的Ulam-Hyers意義上的穩(wěn)定性結(jié)果。
上述文獻(xiàn)都得到了很好的結(jié)果,但實(shí)際動(dòng)力系統(tǒng)一般是不連續(xù)的,利用半離散的方法可以得到動(dòng)力系統(tǒng)的離散化模型,更能準(zhǔn)確地分析其動(dòng)力學(xué)行為。在此基礎(chǔ)上,本文利用文獻(xiàn)[18]的整數(shù)階微積分的歐拉法推廣到分?jǐn)?shù)階模型,推導(dǎo)出Caputo分?jǐn)?shù)階隨機(jī)微分方程解的半離散化模型,最后利用Picard逐次逼近法討論了解的存在性和唯一性。
綜上所述,在初始x(0)=φ(0)條件下,方程在區(qū)間[0,K]上有唯一解x(k)∈L2(Ω0,Rn)。證畢。
4 結(jié)語(yǔ)
本文通過微分方程的半離散化方法,推導(dǎo)出Caputo分?jǐn)?shù)階隨機(jī)微分方程解的半離散化模型,并利用Picard逐次逼近法討論了解的存在性和唯一性,也為進(jìn)一步的研究提供了方法上的一些啟迪,如:分?jǐn)?shù)階隨機(jī)微分方程的定性理論,穩(wěn)定性,可控性或中立型方程。
參考文獻(xiàn):
[1]KILBAS A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[J]. North-Holland Mathematics Studies, 2006, 204: 90-98.
[2] METZLER R. Fractional calculus: an introduction for physicists[J]. Physics Today, 2012, 65(2): 55-56.
[3] SHITIKOVA M V. Fractional operator viscoelastic models in dynamic problems of mechanics of solids: a review[J]. Mechanics of Solids, 2021, 57(1): 1-33.
[4] TONG D, WANG R, YANG H. Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2005, 48(4): 485-495.
[5] ORTIGUEIRA M D, MACHADO J. Fractional calculus applications in signals and systems[J]. Signal Processing, 2006, 86(10): 2503-2504.
[6] PETR I. An effective numerical method and its utilization to solution of fractional models used in bioengineering applications[J]. Advances in Difference Equations, 2011, 2011: 652789.1-652789.14.
[7] MACHADO J T, KIRYAKOVA V, MAINARDI F. Recent history of fractional calculus[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(3): 1140-1153.
[8] TUAN N H, MOHAMMADI H, REZAPOUR S. A mathematical model for COVID-19 transmission by using the Caputo fractional derivative[J]. Chaos, Solitons & Fractals, 2020, 140: 110107.1-110107.11.
[9] DOKUYUCU M A, CELIK E, BULUT H, et al. Cancer treatment model with the Caputo-Fabrizio fractional derivative[J]. The European Physical Journal Plus, 2018, 133(3): 1-6.
[10]BALEANU D, JAJARMI A, MOHAMMADI H, et al. A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative[J]. Chaos, Solitons & Fractals, 2020, 134: 109705.1-109705.7.
[11]GUO C, OREGAN D, DENG F, et al. Fixed points and exponential stability for a stochastic neutral cellular neural network[J]. Applied Mathematics Letters, 2013, 26(8): 849-853.
[12]PENG S. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation[J]. Stochastic Processes and their Applications, 2006, 118(12): 2223-2253.
[13]DOAN T S, HUONG P T, Kloeden P E. Asymptotic se-paration between solutions of Caputo fractional stochastic differential equations[J]. Stochastic Analysis and Applications, 2018, 36: 654-664.
[14]XIAO G, WANG J. Stability of solutions of Caputo fractional stochastic differential equations[J]. Nonlinear Analysis-Modelling and Control, 2021, 26: 581-596.
[15]WANG L F, WU H, LIU D Y, et al. Lure Postnikov Lyapunov functional technique to global Mittag-Leffler stability of fractional-order neural networks with piecewise constant argument[J]. Neurocomputing, 2018, 302: 23-32.
[16]KUCCHE K D, MALI A D. On the nonlinear (k, Ψ)-Hilfer fractional differential equations[J]. Chaos, Solitons & Fractals, 2021, 152: 111335.1-111335.18.
[17]AHMADOVA A, MAHMUDOV N I. Ulam-Hyers stability of Caputo type fractional stochastic neutral differential equations[J]. Statistics & Probability Letters, 2021, 168: 108949.1-108949.6.
[18]HAN S, LIU G, ZHANG T W. Mean almost periodicity and moment exponential stability of semi-discrete random cellular neural networks with fuzzy operations[J]. Plos one, 2019, 14(8): e0220861.1- e0220861.27.
[19]KUANG J C. Applied inequalities[M]. Jinan: Shangdong Science Technic Press, 2004.
(責(zé)任編輯:周曉南)
Existence and Uniqueness of Solutions for Fractional
Stochastic Differential Equations
LUO Huan*, CHEN Fubin, ZHOU Xuan
(Kunming University of Science and Technology Oxbridge College, Kunming 650106, China)
Abstract:
In this paper, the existence and uniqueness of solutions for a class of fractional stochastic differential equations are studied. By using the semi-discretization technique of differential equations, the semi-discretization model for solutions of fractional stochastic differential equations is derived and then the existence and uniqueness of solutions of semi-discretization stochastic differential equations are proved by using Minkowski inequality, Hlder inequality and Picard approximation method.
Key words:
fractional order; Picard iteration; Mittag-Leffler function
收稿日期:2022-04-18
基金項(xiàng)目:云南省教育廳科學(xué)研究基金資助項(xiàng)目(2020J1233, 2022J1098)
作者簡(jiǎn)介:羅 歡(1990—),女,講師,碩士,研究方向:分?jǐn)?shù)階微分方程,E-mail:oxbridge_luo@126.com.
通訊作者:羅 歡,E-mail:oxbridge_luo@126.com.
貴州大學(xué)學(xué)報(bào)(自然科學(xué)版)2023年2期