劉玲 徐帥 王匯鋒 董愛學(xué)
摘要:采用漆酶/TEMPO體系對黃麻纖維進(jìn)行催化氧化處理,通過Klason法測定處理前后黃麻纖維中的木質(zhì)素含量,分別利用凝膠滲透色譜法、有機(jī)元素分析法、核磁共振氫譜法測定以二氧六環(huán)法從黃麻纖維中提取木質(zhì)素的分子量及分布、元素含量與化學(xué)結(jié)構(gòu)。結(jié)果表明:經(jīng)漆酶/TEMPO處理后黃麻纖維中木質(zhì)素含量由10.83%降為8.59%,纖維上存留的木質(zhì)素亦發(fā)生了降解,重均分子量由439938 Da降至238704 Da。黃麻纖維經(jīng)過漆酶/TEMPO體系處理后,木質(zhì)素的碳元素含量升高,氧元素和—OCH3含量降低,醇羥基數(shù)目減少,酚羥基數(shù)目稍有下降,并且結(jié)構(gòu)單元的連接方式有所轉(zhuǎn)變,其中β-β、β-1和β-O-4結(jié)構(gòu)比例有所降低,β-5結(jié)構(gòu)增多,說明漆酶/TEMPO催化黃麻纖維木質(zhì)素發(fā)生氧化反應(yīng)并伴隨有一定脫甲基化作用,木質(zhì)素降解以β-β、β-O-4和β-1鍵斷裂為主,而后形成β-5連接。
關(guān)鍵詞:黃麻纖維;木質(zhì)素;漆酶;TEMPO;氧化
中圖分類號:TS192
文獻(xiàn)標(biāo)志碼:A
文章編號:1009-265X(2023)02-0185-06
黃麻纖維是世界上產(chǎn)量僅次棉花的第二大天然纖維素纖維,具有強(qiáng)度高、耐摩擦、吸濕散濕快、抑菌、防霉、可降解等性能。黃麻纖維中木質(zhì)素、半纖維素、果膠等雜質(zhì)含量較高,導(dǎo)致纖維粗硬、彈性差,限制了其在紡織服裝上的應(yīng)用,常用于加工麻袋、麻布等低檔產(chǎn)品。為提高黃麻纖維的可紡性,提高產(chǎn)品附加值,需對其進(jìn)行精煉處理,傳統(tǒng)主要為堿法蒸煮,但環(huán)境污染嚴(yán)重;生物法精細(xì)化因酶作用的高度專一性、反應(yīng)條件溫和以及加工過程環(huán)保而廣泛受到關(guān)注,但其脫膠率偏低[1-2];而化學(xué)-生物聯(lián)合法則是將兩者相結(jié)合,使其兼具化學(xué)法精煉徹底和生物法纖維損傷小的優(yōu)點(diǎn)[3-4]。
漆酶(EC1.10.3.2)是一種含銅的多酚氧化酶,木質(zhì)素分子結(jié)構(gòu)中含有的酚羥基可通過漆酶催化氧化而形成自由基,進(jìn)而引發(fā)木質(zhì)素的降解、聚合或接枝反應(yīng)[5-6],因此漆酶在木質(zhì)素改性領(lǐng)域具有較大應(yīng)用潛力。然而,由于漆酶的氧化還原電勢較低,氧化降解黃麻纖維中的酚型結(jié)構(gòu)木質(zhì)素的能力有限,其去除木質(zhì)素效果并不理想。但在一些小分子介體(例如合成介體2,2′-聯(lián)氮-二(3-乙基苯并噻唑-6-磺酸)二銨鹽(ABTS)與1-羥基苯并三唑(HBT)及天然介體丁香醛、乙酰丁香酮等)的協(xié)助下,與漆酶形成漆酶/介體體系(LMS)后,則可進(jìn)一步氧化降解木素結(jié)構(gòu)中占主要(90%以上)的非酚型單元[7-9]。
漆酶單獨(dú)處理黃麻纖維,其木質(zhì)素總體體現(xiàn)為聚合[10]。當(dāng)介體四甲基哌啶氮氧化物(TEMPO)存在時,木質(zhì)素轉(zhuǎn)而以降解為主,漆酶/TEMPO催化氧化體系已有研究應(yīng)用于紙漿的漂白[11-12]。本文采用漆酶/TEMPO催化氧化體系處理黃麻纖維,以酸解稱重法測定其木質(zhì)素的含量變化,以酸性有機(jī)溶劑抽提法提取出纖維中的木質(zhì)素,進(jìn)行凝膠滲透色譜、有機(jī)元素分析、核磁共振氫譜等表征,研究其分子量、化學(xué)結(jié)構(gòu)與官能團(tuán)變化,為以麻纖維為代表的木質(zhì)纖維素纖維的酶法改性提供參考。
1實(shí)驗(yàn)
1.1材料和儀器
材料:黃麻纖維,常熟市奧村龍?zhí)┛椩煊邢薰荆黄崦福óa(chǎn)自Trametes versicolor,酶活不小于0.5U/mg),Sigma(上海)有限公司;TEMPO(98%),阿拉丁科技(上海)有限公司;無水乙酸鈉、冰乙酸、硫酸、鹽酸、1,4-二氧六環(huán)、吡啶、無水乙醚、三氯甲烷、乙酸酐等均為分析純,國藥集團(tuán)化學(xué)試劑有限公司。
儀器:ICC basic RO15型循環(huán)浴槽配套磁力攪拌器(艾卡儀器設(shè)備有限公司);ML/G3型旋轉(zhuǎn)蒸發(fā)儀(德國海道夫公司);TDZ4-WS型低速自動平衡離心機(jī)(長沙湘智離心機(jī)儀器有限公司);Waters 1515 型凝膠滲透色譜儀(美國Waters公司);Vario EL III型元素分析儀(德國Elementar公司);Avance III型400 MHz核磁共振波譜儀(德國Bruker公司)。
1.2測試與方法
1.2.1黃麻纖維漆酶/TEMPO處理
將1 g黃麻纖維、1.4 mg/mL TEMPO、1.0 U/mL漆酶依次加入到50 mL醋酸-醋酸鈉緩沖液(0.2 mol/L, pH 4.5)中,混合搖勻,置于50 ℃循環(huán)浴槽中反應(yīng)12 h。結(jié)束后,以80 ℃蒸餾水清洗纖維兩次,每次20 min,取出烘干。
1.2.2黃麻纖維木質(zhì)素含量測定
利用濃硫酸水解法(Klason法)測定黃麻纖維中木質(zhì)素的含量,具體實(shí)驗(yàn)步驟參照文獻(xiàn)[13]。
1.2.3黃麻纖維木質(zhì)素的分離與提純
為研究黃麻纖維中木質(zhì)素經(jīng)漆酶/TEMPO催化氧化處理后的化學(xué)結(jié)構(gòu)變化,配制鹽酸的二氧六環(huán)/水(9∶1)溶液,在相對較低的溫度下,回流萃取黃麻纖維,從而制備得到一種分離木質(zhì)素(稱之為二氧六環(huán)木質(zhì)素),具體步驟參照文獻(xiàn)[13]。二氧六環(huán)木質(zhì)素的提純參考Lundqulst等[14]的方法。
1.2.4木質(zhì)素凝膠滲透色譜測試
將黃麻纖維二氧六環(huán)木質(zhì)素樣品溶于N,N-二甲基甲酰胺(DMF)中,質(zhì)量濃度為20 mg/mL。采用凝膠滲透色譜法測定其分子量及分布,流動相為DMF,流速為1.5 mL/min,進(jìn)樣量為20 μL,色譜柱型號為Shodex KD-802,柱溫為35 ℃,采用Waters 2414示差折光檢測器,以聚苯乙烯為標(biāo)準(zhǔn)樣。
1.2.5木質(zhì)素有機(jī)元素分析
采用有機(jī)元素分析儀測定黃麻纖維二氧六環(huán)木質(zhì)素中的C、H、O元素含量。甲氧基含量由核磁共振氫譜計算得到,木質(zhì)素C9經(jīng)驗(yàn)式C9HxOy(OCH3)z由文獻(xiàn)[13]中所列公式計算得到。
1.2.6木質(zhì)素核磁共振氫譜測試
按照文獻(xiàn)[13]所述方法對黃麻纖維二氧六環(huán)木質(zhì)素進(jìn)行乙?;幚怼6?,將20 mg乙?;哪举|(zhì)素樣品溶于450 μL氘代氯仿(CDCl3)中,進(jìn)行核磁共振氫譜(1H-NMR)測試,內(nèi)標(biāo)為四甲基硅烷(TMS)。
2結(jié)果與討論
2.1漆酶/TEMPO處理對黃麻纖維木質(zhì)素含量的影響
漆酶/TEMPO處理前后黃麻纖維中的木質(zhì)素含量如表1所示。對照黃麻纖維中含有10.83%的木質(zhì)素,經(jīng)漆酶/TEMPO處理后其木質(zhì)素含量降為8.59%。筆者以往研究表明,漆酶單獨(dú)處理黃麻纖維,其木質(zhì)素脫除作用并不顯著,這是因?yàn)槠崦傅难趸€原電勢較低,只能氧化木質(zhì)素中的酚型結(jié)構(gòu)單元,而無法對占主要的非酚型結(jié)構(gòu)單元發(fā)生作用。但在漆酶/TEMPO體系中,漆酶可快速氧化TEMPO形成自由基,該自由基的氧化還原電勢較高,可進(jìn)一步氧化降解非酚型的木質(zhì)素,另外TEMPO是一種小分子介體,可以進(jìn)入纖維深層發(fā)生反應(yīng),從而使得木質(zhì)素的去除效率在一定程度上有所提高。
2.2漆酶/TEMPO處理對黃麻纖維木質(zhì)素分子量及分布的影響
上節(jié)中證實(shí),黃麻纖維經(jīng)漆酶/TEMPO處理后,部分木質(zhì)素發(fā)生降解從纖維中解離下來,而另部分仍存留在纖維上的木質(zhì)素的聚合或降解情況尚不明晰。本文以二氧六環(huán)/水混合酸性溶劑對黃麻纖維進(jìn)行抽提處理,提取出纖維中存留的木質(zhì)素,通過GPC法測定其分子量大小及其分布變化。木質(zhì)素的重均分子量Mw、數(shù)均分子量Mn及其多分散系數(shù)如表2所示。
結(jié)果表明,黃麻纖維經(jīng)漆酶/TEMPO處理后仍保留在纖維上的木質(zhì)素也發(fā)生了一定程度的降解作用,重均分子量由439938 Da降至238704 Da,數(shù)均分子量由236090 Da降至39310 Da。同時,木質(zhì)素分子的多分散系數(shù)由1.86提高至6.07,說明黃麻纖維經(jīng)漆酶/TEMPO處理后其存留木質(zhì)素的分子量分布范圍變寬,這也從側(cè)面證實(shí)了木質(zhì)素的催化氧化降解。
2.3漆酶/TEMPO處理對黃麻纖維木質(zhì)素元素構(gòu)成的影響
黃麻纖維經(jīng)漆酶/TEMPO處理前后其提取出的二氧六環(huán)木質(zhì)素的碳、氫、氧元素含量、碳氧比、甲氧基含量及C9經(jīng)驗(yàn)式如表3所示。與對照黃麻纖維的木質(zhì)素相比,漆酶/TEMPO處理黃麻纖維的木質(zhì)素碳元素含量增加,氧元素含量降低,C/O值提升。另外,—OCH3含量降低,說明木質(zhì)素酶促氧化過程中還伴隨著脫甲基化作用。
2.4漆酶/TEMPO處理對黃麻纖維木質(zhì)素化學(xué)結(jié)構(gòu)的影響
漆酶/TEMPO處理前后黃麻纖維中提取的二氧六環(huán)木質(zhì)素經(jīng)乙酰化處理后的1H-NMR色譜圖如圖1所示,譜圖各區(qū)段對應(yīng)的質(zhì)子歸屬及其每C9單元的質(zhì)子數(shù),如表4所示。
結(jié)果表明,黃麻纖維經(jīng)漆酶/TEMPO處理后其木質(zhì)素的結(jié)構(gòu)單元間連接方式發(fā)生了轉(zhuǎn)變,β-β、β-O-4和β-1結(jié)構(gòu)的比例降低,β-5結(jié)構(gòu)增多。這說明漆酶/TEMPO催化木質(zhì)素氧化降解過程中以β-β、β-O-4和β-1鍵斷裂為主,而后形成β-5連接,如圖2所示。
黃麻纖維經(jīng)漆酶/TEMPO處理前后其木質(zhì)素的每C9結(jié)構(gòu)單元酚羥基、醇羥基及總羥基的數(shù)目,列于表5中。由表5可知,經(jīng)漆酶/TEMPO處理后黃麻纖維木質(zhì)素中的醇羥基數(shù)目減少,酚羥基數(shù)目稍有降低,這是因?yàn)槠崦副旧淼拇呋孜锒酁楦鞣N多酚類物質(zhì),首要作用對象為酚羥基,但在介體TEMPO的協(xié)助下,漆酶可將氧化底物范圍進(jìn)一步擴(kuò)大到醇羥基物質(zhì)。
3結(jié)論
本文采取漆酶/TEMPO氧化體系處理黃麻纖維,通過Klason法測定黃麻纖維處理前后的木質(zhì)素含量,通過凝膠滲透色譜法、元素分析法、核磁共振氫譜分別測定黃麻纖維上木質(zhì)素的分子量及分布、元素含量及化學(xué)結(jié)構(gòu)。結(jié)果表明,對照黃麻纖維中含有10.83%的木質(zhì)素,經(jīng)漆酶/TEMPO處理后其木質(zhì)素含量降為8.59%,部分木質(zhì)素發(fā)生降解作用從纖維上解離下來。仍存留在纖維上的木質(zhì)素亦存在一定程度的降解,其重均分子量由439938 Da降至238704 Da,數(shù)均分子量由236090 Da降至39310 Da,同時多分散系數(shù)由1.86增至6.07;木質(zhì)素的碳元素含量有所增加,氧元素含量降低,甲氧基含量降低,說明木質(zhì)素在漆酶/TEMPO催化氧化反應(yīng)過程中伴隨有脫甲基化作用;木質(zhì)素中醇羥基的數(shù)目減少,酚羥基數(shù)目稍有降低,說明漆酶/TEMPO體系的催化氧化基團(tuán)由酚羥基擴(kuò)展至醇羥基,同時木質(zhì)素結(jié)構(gòu)單元間的連接方式發(fā)生了轉(zhuǎn)變,β-β、β-O-4和β-1結(jié)構(gòu)比例降低,β-5結(jié)構(gòu)增多,說明漆酶/TEMPO催化木質(zhì)素降解過程中以β-β、β-O-4和β-1鍵斷裂為主,而后形成β-5連接。
參考文獻(xiàn):
[1]馬洪雨,王占奎,俞闐,等.黃麻生物脫膠研究進(jìn)展[J].湖南農(nóng)業(yè)科學(xué),2009(11):11-14.
MA Hongyu, WANG Zhankui, YU Tian, et al. Research progress on biological degumming of jute[J]. Hunan Agricultural Sciences, 2009 (11): 11-14.
[2]杜兆芳,曹建飛,方木勝.黃麻酶脫膠工藝研究[J].安徽農(nóng)業(yè)大學(xué)學(xué)報,2005,32(1):98-100.
DU Zhaofang, CAO Jianfei, FANG Musheng. Study on jutease degumming technology[J]. Journal of Anhui Agricultural University, 2005, 32(1): 98-100.
[3]付時雨,詹懷宇,余惠生.漆酶/介體系統(tǒng)漂白尾葉桉硫酸鹽漿的初步研究[J].中國造紙,2000,19(2):8-12.
FU Shiyu, ZHAN Huaiyu, YU Huisheng. A preliminary study on bleaching Eucalyptus urophylla Kraft pulp by laccase/mediator system[J]. China Pulp & Paper, 2000, 19(2): 8-12.
[4]林鹿,陳嘉翔,余家鸞,等.降解木質(zhì)素酶和降解木聚糖酶的生物漂白及機(jī)理[J].中國造紙學(xué)報,1997,12(1):48-53.
LIN Lu, CHEN Jiaxiang, YU Jialuan, et al. Biobleaching and mechanism of degrading ligninase and degrading xylanase [J]. Transactions of China Pulp and Paper, 1997, 12(1): 48-53.
[5]周海峰,楊東杰,伍曉蕾,等.漆酶改性木質(zhì)素磺酸鈉的結(jié)構(gòu)表征及吸附特征[J].高等學(xué)校化學(xué)學(xué)報,2013,34(1):218-224.
ZHOU Haifeng, YANG Dongjie, WU Xiaolei, et al. Structural characterization and adsorption characteristics of laccase-modified sodium lignosulfonate[J]. Chemical Journal of Chinese Universities, 2013, 34(1): 218-224.
[6]NYANHONGO G S, KUDANGA T, PRASETYO E N, et al. Mechanistic insights into laccase-mediated functionalisation of lignocellulose material[J]. Biotechnology and Genetic Engineering Reviews, 2010, 27(1): 305-330.
[7]SEALEY J, RAGAUSKAS A J. Investigation of laccase/N-hydroxybenzotriazole delignification of kraft pulp[J]. Journal of Wood Chemistry and Technology, 1998, 18(4): 403-416.
[8]譚麗萍,徐清華.漆酶/介體氧化降解木質(zhì)素的應(yīng)用及其機(jī)理研究進(jìn)展[J].華東紙業(yè),2011,42(4):30-33.
TAN Liping, XU Qinghua. Research progress on application and mechanism of laccase/mediator oxidative degradation of lignin[J]. East China Pulp & Paper Industry, 2011, 42(4): 30-33.
[9]FILLAT A, COLOM J F, VIDAL T. A new approach to the biobleaching of flax pulp with laccase using natural mediators[J]. Bioresource Technology, 2010, 101(11): 4104-4110.
[10]張勇兵.漆酶及漆酶/介體體系處理對黃麻纖維中木質(zhì)素結(jié)構(gòu)影響的研究[D].無錫:江南大學(xué),2013.
ZHANG Yongbing. Study on the Effect of Laccase and Laccase/Mediator System Treatment on Lignin Structure in Jute Fiber[D]. Wuxi: Jiangnan University, 2013.
[11]覃炳達(dá),施灝,宋海農(nóng),等.TEMPO及其衍生物在造紙中的應(yīng)用[J].造紙科學(xué)與技術(shù),2008,27(2):49-52.
QIN Bingda, SHI Hao, SONG Hainong, et al. Application of TEMPO and its derivatives in papermaking [J]. Paper Science &Technology, 2008, 27(2): 49-52.
[12]JAUOVEC D, VOGRINCˇICˇ R, KOKOL V. Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation[J]. Carbohy-drate polymers, 2015, 116: 74-85.
[13]董愛學(xué).提高與樹脂界面復(fù)合性能的黃麻纖維酶促接枝疏水化改性研究[D].無錫:江南大學(xué),2017.
DONG Aixue. Enzymatic Grafting and Hydrophobization Modification of Jute Fiber to Improve the Interfacial Properties with Resin[D]. Wuxi: Jiangnan University, 2017.
[14]LUNDQUIST K, OHLSSON B, SIMONSON R. Isolation of lignin by means of liquid-liquid extraction[J]. Svensk Paperstidning, 1977, 80(5): 143-144.
Effects of oxidative treatment catalyzed by the laccase/TEMPO system on lignins in jute fibers
L Liuling1, XU Shuai1,2, WANG Huifeng3, DONG Aixue4
(1.Yancheng Polytechnic College, Yancheng 224005, China;
2.Jiangsu Province Engineering Research Center of Biomass Functional Textile Fiber Development and Application, Yancheng 224005, China;
3.Biwei Shenyou Quality and Technical Service Jiangsu Co., Ltd., Wuxi 214430, China;
4.Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China)
Abstract:
In order to improve the spin ability and the added value of jute fibers, it is necessary to refine them. However, traditionally, lkali cooking and oxidation bleaching are mainly adopted to remove impurities such as lignin, but the environment pollution is serious. Biological refinement has attracted wide attention due to its high specificity of enzyme action, mild reaction conditions and environmental protection, but its impurity removal rate is low. The chemical–biological combination method is to combine the two, so that it has the advantages of thorough refinement of the chemical method and little fiber damage of the biological method.
In order to remove impurities such as lignin in jute fibers, the study was based on the fact that laccase, as a copper-containing polyphenol oxidase, can form free radicals by catalytic oxidation with the phenolic hydroxyl group contained in the molecular structure of lignin through laccase, thus triggering degradation, polymerization or grafting reactions of lignin. Based on the mechanism of chemical structure change of lignin in jute fibers after laccase/TEMPO catalytic oxidation treatment, the laccase/TEMPO system was first used for catalytic oxidation of jute fibers, and then the lignin content in jute fibers before and after treatment was determined by the Klason method. The molecular weight, distribution, element content and chemical structure of lignin extracted from jute fibers by the dioxane ring method were determined by gel permeation chromatography, organic element analysis and nuclear magnetic resonance spectrometry. In this paper, we innovated the laccase/TEMPO oxidation system to treat jute fibers, and studied the changes of lignin content, molecular weight, chemical structure and functional groups in jute fibers, revealing the treatment mechanism of jute fibers by the oxidation system.
The results showed that the lignin content in jute fibers decreased from 10.83% to 8.59% after the laccase/TEMPO treatment. The lignin remaining on jute fibers was also degraded, with the weight-average molecular weight decreasing from 439,938 Da to 238,704 Da. For the lignin of laccase/TEMPO-treated jute fibers, its carbon content increased, oxygen content and OCH3 content decreased, and the number of alcohol hydroxyl groups decreased, while the number of phenolic hydroxyl groups decreased slightly. Besides, the connection type between structural units of lignin also changed, with the proportion of β-β, β-O-4 and β-1 structure decreasing and the proportion of β-5 structure increasing. The results indicated that the laccase/TEMPO catalyzed oxidation reaction of jute fiber lignin was accompanied by a certain demethylation, and β-β, β-O-4 and β-1 bonds were mainly broken during lignin degradation and then β-5 links were formed, which was beneficial to the subsequent chemical degradation of lignin and the refinement of jute fibers.
Lignin, a kind of natural polymer with complex three-dimensional amorphous structure, is composed of three basic structural units of p-hydroxyphenyl, guaiacyl and lilac. Laccase (EC1.10.3.2) is a copper-containing polyphenol oxidase. The phenolic hydroxyl group contained in the molecular structure of lignin can be catalyzed by laccase to form free radicals, which can lead to the degradation, polymerization or grafting of lignin. Laccase has great application potential in the field of lignin modification. This paper provides reference for enzymatic modification of lignocellulosic fibers represented by hemp fiber.
Keywords:jute fiber; lignin; laccase; TEMPO; oxidation
收稿日期:20220715
網(wǎng)絡(luò)出版日期:20221101
基金項目:2022年江蘇省科技廳產(chǎn)學(xué)研合作項目(BY2022192,BY2022421);2021年鹽城工業(yè)職業(yè)技術(shù)學(xué)院橫向課題(2021HX-75);中國博士后科學(xué)基金面上資助項目(2021M701452)
作者簡介:劉玲(1971—),女,江蘇鹽城人,副教授,主要從事紡織新材料、新工藝以及紡織品設(shè)計與開發(fā)方面的研究。