王宇玲,徐春霞,畢亞琪,范 軍,郭瑞佳,王 晶,番興明
DSSAT-CSM模型在玉米種植研究中的應(yīng)用進展*
王宇玲1,徐春霞2,畢亞琪2,范 軍2,郭瑞佳2,王 晶2,番興明2**
(1.云南大學(xué)資源植物研究院,昆明 650504;2.云南省農(nóng)業(yè)科學(xué)院糧食作物研究所,昆明 650205)
作物模型在模擬、評估、預(yù)測玉米作物生產(chǎn)等方面發(fā)揮著關(guān)鍵作用。本文采用文獻綜述的方法,系統(tǒng)歸納了DSSAT-CSM模型在中國的發(fā)展和應(yīng)用,總結(jié)了DSSAT-CSM模型的組成、發(fā)展及不足,概述了利用作物模型模擬關(guān)鍵因素影響玉米生長的過程及結(jié)果,為作物模型實現(xiàn)作物品種參數(shù)調(diào)整、溫度變化、氮肥措施、灌溉制度及土壤關(guān)鍵因子對玉米生長及產(chǎn)量的優(yōu)化提供參考和技術(shù)支撐。目前作物模型的不確定性及不足是限制模擬精度和效率的關(guān)鍵因素,因此,規(guī)范數(shù)據(jù)收集、耦合多類型作物模型、優(yōu)化動態(tài)管理過程,以及修正和優(yōu)化模型是未來作物模型的發(fā)展趨勢。
作物模型;DSSAT-CSM;玉米;作物生長
隨著科學(xué)技術(shù)的發(fā)展,越來越多的作物模型相繼出現(xiàn),其中以美國農(nóng)業(yè)部組織開發(fā)的農(nóng)業(yè)技術(shù)轉(zhuǎn)讓決策支持系統(tǒng)模型(Decision Support System for Agrotechnology Transfer,DSSAT)應(yīng)用最廣泛[1]。該模型是農(nóng)學(xué)和計算機交叉領(lǐng)域的產(chǎn)物[2],因不受地區(qū)、時間、品種和栽培技術(shù)等的限制[3],能將一些數(shù)據(jù)進行標準化處理而具有通用性,有利于模型的普及和應(yīng)用,從而加快農(nóng)業(yè)技術(shù)推廣,為合理有效利用自然資源提供決策和對策[4]。
玉米作為重要的經(jīng)濟和糧食作物,在保障世界糧食安全、促進經(jīng)濟發(fā)展及緩解能源危機等方面作用巨大。但由于土地、水資源和其他自然資源壓力不斷增加,傳統(tǒng)的耕種方式和農(nóng)藝試驗局限性大,而利用DSSAT模型經(jīng)過一系列模擬實驗后,能夠提出符合特定環(huán)境的合理農(nóng)業(yè)決策,不僅能節(jié)省大量時間和資源,還能感知和預(yù)測整個農(nóng)業(yè)生態(tài)系統(tǒng)的表現(xiàn)[5]。
本文通過綜述近年來67篇關(guān)于DSSAT模型在中國玉米種植研究中的應(yīng)用文獻,梳理農(nóng)業(yè)生產(chǎn)中利用DSSAT模型模擬不同品種遺傳參數(shù)、溫度變化、氮肥措施、灌溉制度和土壤類型對玉米生產(chǎn)的影響情況,總結(jié)該模型優(yōu)缺點并討論在國內(nèi)應(yīng)用模型的注意事項及應(yīng)用前景。
DSSAT模型主要模擬作物整個生長發(fā)育過程及各項因素在作物生長過程中的相互作用及對產(chǎn)量的影響[5?6],作物種植系統(tǒng)模塊 (the Cropping System Model, CSM)是DSSAT模型的核心模塊,由一個驅(qū)動的主程序、一個土地單元模塊以及與土地單元構(gòu)成種植系統(tǒng)的主程序模塊(包括天氣、管理、土壤?植物?大氣連續(xù)體、土壤和作物組件)所組成[7],總的來說,主程序組件就是用來描述土壤和作物的生長發(fā)育在單一土地單元上隨著管理方式和天氣的變化而發(fā)生變化的過程[8]。1989年發(fā)行的DSSAT v2.1中,作物模型只包括CERES-Maize、CERES-Wheat、SOYGRO和PNUTGRO,但隨著模型的不斷發(fā)展,這些獨立的模型逐漸演變集成了一個農(nóng)業(yè)系統(tǒng)模型[5];在1998年發(fā)行的DSSAT v3.5中,對獨立作物模型進行編輯和修改比較復(fù)雜,因此,Hoogenboom等從FORTRAN代碼中提取適用于所有特定作物的參數(shù)和關(guān)系,并置于作物文件中來表示不同作物的參數(shù)信息[9]。2003年發(fā)行的DSSAT v4.0中的模塊不同于先前版本,該版本與MS windows系統(tǒng)兼容,界面使用友好,集成了17種作物模型和模塊,很大程度簡化了作物輪作時的模擬過程[5];2012年發(fā)行的DSSAT v4.5包含了超過25個作物品種,Kn?rzer等通過加入陰影算法,使模型可以模擬作物套作過程[10];2019年發(fā)行的DSSAT v4.7.5,包含了超過42種作物模型及一些輔助工具。2022年發(fā)行的DSSAT v4.8將天氣文件更新為四位數(shù)年份,這為利用1900年之前、2100年及之后的天氣條件模擬歷史天氣和未來氣候變化情景提供了更大的便利,并且在4.7.5版本的基礎(chǔ)上增加了3種新的作物模型。
DSSAT v4.8模型由不同的模塊組件構(gòu)成,包括輸入數(shù)據(jù)的數(shù)據(jù)庫模塊、分析模塊和作物種植系統(tǒng)模塊。其中數(shù)據(jù)庫模塊由氣象、土壤、蟲害、試驗、經(jīng)濟以及用來區(qū)分不同作物基因型的信息資料組成,用戶可以根據(jù)實際情況設(shè)置和調(diào)整模擬精度[5]。分析模塊主要包括可進行品種、土壤剖面、測試點、年份、天氣和其他信息變化帶來的結(jié)果變化驗證的敏感性分析工具[8]、季節(jié)性策略分析工具、作物輪作/連作分析工具和鏈接GIS(Geographic Information System)分析大田內(nèi)空間變異性的工具。自Jones等創(chuàng)建DSSAT-CSM模型以來[5],模型得到不斷更新和完善,DSSAT v4.0中,為了保持模型一致性,所有品種的特定投入均以絕對值表示,在玉米和高粱等模型中加入了土壤肥力因子(SLPF),以便解釋土壤養(yǎng)分對植物生長速率的影響,并且增加了玉米模型中冠層高度、氮臨界濃度、磷參數(shù)以及氮濃度變化隨生長階段變化的情況模塊。CERES-Maize模型用來模擬玉米在不同生長時期、不同管理方式和不同環(huán)境因素(如土壤、管理措施和天氣)作用下的日常物候生長發(fā)育和產(chǎn)量情況[11?13]。在模擬過程中,需要輸入氣象、土壤、田間管理和作物品種四種類型數(shù)據(jù),DSSAT-CSM模型構(gòu)成如圖1所示。
DSSAT-CSM模型中的每個模塊都有6個操作步驟,即運行初始化、季節(jié)初始化、速率計算、集成、每日輸出和匯總輸出。主程序用來控制模擬的開始和停止[5]。每個模塊的計算操作完全獨立于其他模塊,本研究主要分析DSSAT模型在以下幾方面的應(yīng)用,包括模擬不同品種玉米的遺傳參數(shù)、溫度、氮肥措施、灌溉制度、土壤類型變化對玉米生產(chǎn)的影響。
作物品種遺傳參數(shù)的確定是模型取得較好模擬結(jié)果的首要因素,在確定好合適作物品種遺傳參數(shù)的基礎(chǔ)上,DSSAT模型能較好地進行模擬。在CERES-Maize系統(tǒng)中有6個玉米品種遺傳參數(shù),品種遺傳參數(shù)的獲得或調(diào)整并沒有統(tǒng)一標準,可以使用一些參數(shù)估計方法進行估計,如用戶可直接使用DSSAT模型中的GLUE算法進行參數(shù)估計[14?15]。典型地區(qū)玉米品種參數(shù)如表1所示[16?19]。以上品種遺傳參數(shù)模擬結(jié)果較好,可為相近品種在相同區(qū)域、類似氣候、土壤條件和管理措施下的遺傳參數(shù)提供參考。
圖1 DSSAT-CSM的組件和模塊結(jié)構(gòu)
注:根據(jù)文獻[5]更新和修改。
Note: Updated and modified according to literature [5].
表1 DSSAT-CSM模型在不同地區(qū)的玉米品種遺傳參數(shù)
注:P1指出苗?幼苗末期的積溫(?C·d);P2為光周期敏感參數(shù)(d);P5指從吐絲?生理成熟期的積溫(?C·d);G2為單株潛在最大穗粒數(shù)(粒);G3為潛在最大灌漿速率(mg·粒?1·d?1);PHINT指連續(xù)葉尖出現(xiàn)之間的積溫(?C·d)。
Note:P1 is accumulated temperature from emergence to the end of juvenile phase(?C·d); P2 is photoperiod sensitivity coefficient(d); P5 is accumulated temperatrue from silking to physiological maturity(?C·d); G2 is the maximum potential grains number per spike(grain); G3 is the maximum potential grouting rate (mg·grain?1·d?1); PHINT is accumulated temperature required for a leaf tip to emerge (?C·d).
中國氣象局數(shù)據(jù)顯示,未來一百年中國區(qū)域范圍內(nèi)平均地表溫度將呈高于全球平均水平持續(xù)上升趨勢[5],全球溫度變化會影響玉米生長并可能威脅世界糧食安全。研究發(fā)現(xiàn),在西歐約50%的玉米產(chǎn)量變化可以歸因于氣候變化[20],而玉米作為世界主要農(nóng)作物之一,研究和預(yù)測溫度變化對玉米產(chǎn)量影響對世界糧食安全具有重要意義。
利用DSSAT-CSM模型設(shè)定相關(guān)參數(shù)量化溫度變化對玉米產(chǎn)量的影響[21],對后續(xù)調(diào)整農(nóng)業(yè)措施具有指導(dǎo)作用,溫度變化影響玉米整個生育期,而生育期的熱量情況決定玉米最終產(chǎn)量。李闊等利用DSSAT- CSM模擬升溫1.5℃和2.0℃氣候狀態(tài)下中國玉米減產(chǎn)和增產(chǎn)強度變化情況,發(fā)現(xiàn)在未來升溫1.5℃背景下,除了北方玉米產(chǎn)量整體呈現(xiàn)增長趨勢外,黃淮海地區(qū)、西南地區(qū)、南方地區(qū)和青藏高原種植區(qū)的玉米產(chǎn)量均呈下降趨勢。在升溫2.0℃背景下,北方地區(qū)和西南地區(qū)玉米產(chǎn)量呈增長趨勢,其他地區(qū)以減產(chǎn)為主[22]。Jiang等在利用模型研究氣候變化對中國東北玉米種植區(qū)的產(chǎn)量和氮素生產(chǎn)力影響時發(fā)現(xiàn),氣候?qū)τ谟衩桩a(chǎn)量的負面影響主要與生長區(qū)長期升溫和干旱發(fā)生頻率有關(guān),導(dǎo)致玉米生長無法與變化的溫度和降雨分布相匹配[16]。宋利兵等利用DSSAT-CSM模型分析氣候變化對陜西地區(qū)玉米產(chǎn)量影響時發(fā)現(xiàn),日照時數(shù)和日最高溫度下降對總產(chǎn)量有負面影響,主要是由于溫度變化限制了玉米生長前期根部的發(fā)育,導(dǎo)致后期水分和養(yǎng)分吸收較少,從而阻礙了地上生物量的積累,且溫度的持續(xù)升高使玉米生育期的生長積溫(GDD)和高溫危害積溫(KDD)不斷升高,從而導(dǎo)致全國玉米播種范圍整體呈現(xiàn)北移的現(xiàn)象[8]。晉程繡等的相關(guān)研究表明,中國西南地區(qū)增溫幅度明顯高于全國其他地區(qū)[23]。番興明等在西南地區(qū)利用該模型模擬玉米的葉片數(shù)和生物產(chǎn)量時發(fā)現(xiàn),模擬產(chǎn)量值均高于實測值,可能是由于模型高估了葉面積以及截留光能大小,且在實際種植過程中發(fā)生澇災(zāi),導(dǎo)致預(yù)測產(chǎn)量較高[24]。Olesen等通過模擬發(fā)現(xiàn),隨著溫度的上升,玉米播種日期、開花和成熟時間均提前1~3周,生長期明顯縮短[25]。Araya等同時發(fā)現(xiàn)高溫和低溫對玉米產(chǎn)量都有負面影響[26],不適溫度會嚴重影響小穗發(fā)育和籽粒灌漿,從而影響整個植株的發(fā)育[27?28],高溫雖然不會導(dǎo)致植株不育或死亡[29],但會導(dǎo)致花粉在開花關(guān)鍵時期失活,籽粒灌漿停止,顯著降低谷物的粒重[30?33],同時也會導(dǎo)致作物生長速度加快,最終產(chǎn)量下降[34]。Liu等研究發(fā)現(xiàn)熱脅迫對小麥籽粒產(chǎn)量影響最大,提出應(yīng)將熱脅迫因素納入作物模型并在其他作物上進行模擬驗證[35]。Tofa等利用耐旱品種研究在氣候變化下尼日利亞玉米生產(chǎn)適應(yīng)策略時發(fā)現(xiàn),非耐旱品種比耐旱品種的產(chǎn)量損失明顯更大,使用耐旱品種可以減少1%~6%的產(chǎn)量損失[21]。
由于玉米生長對溫度變化敏感,一方面,在溫度變化可能導(dǎo)致減產(chǎn)的區(qū)域內(nèi),可以通過調(diào)整田間管理措施、采取早(晚)種植方式、改變物候期的持續(xù)時間[25, 36?37]、推廣種植耐旱耐高溫品種來減少氣候變化導(dǎo)致的產(chǎn)量損失[38]。另一方面,在溫度變化可能導(dǎo)致增產(chǎn)的區(qū)域內(nèi),要采用相應(yīng)保護措施,適當調(diào)整種植結(jié)構(gòu),抵御可能災(zāi)損,從而提高玉米產(chǎn)量。
氮素在玉米生長發(fā)育過程中起著重要作用,對玉米植株的碳氮代謝、生物量積累、光合作用及物質(zhì)分配等有重要影響[39]。玉米對氮素的吸收量因品種系數(shù)、生長階段、環(huán)境條件以及栽培技術(shù)等因素差異而不同。
在氮素施加管理方面,DSSAT模型具有較多的應(yīng)用實例[3]。Jiang等通過對比DNDC(Denitrification- Decomposition)和DSSAT對東北地區(qū)玉米產(chǎn)量和氮素利用效率的模擬情況提出,氮素的投入量和施加方式取決于所處地區(qū)和作物品種,氮素投入量與產(chǎn)量并不呈正比,基于模型靈敏度分析發(fā)現(xiàn),東北地區(qū)玉米最佳施氮量為180~210kg·hm?2[40]。Liu等利用DSSAT-Maize模型模擬吉林省公主嶺地區(qū)不同施氮條件下玉米的生長和氮吸收情況,調(diào)整作物品種參數(shù)后發(fā)現(xiàn),該模型能較好地模擬地上生物量、作物產(chǎn)量和地上氮吸收量[18]。Liu等在中國西北地區(qū)進行2a多的N2O排放量田間試驗發(fā)現(xiàn),合理的氮素投入對實現(xiàn)玉米高產(chǎn)和低N2O排放至關(guān)重要,并在保證環(huán)境效益的同時,最佳覆膜施氮量為250kg·hm?2[41]。Zhang等提出,為了確認最佳施氮量,要從作物產(chǎn)量、環(huán)境效益和氮素利用率等指標綜合考慮,試驗結(jié)果表明當施氮量為240kg·hm?2時,華北地區(qū)夏玉米氮肥吸收效率最高;當施氮量為208kg·hm?2時,華北地區(qū)夏玉米的產(chǎn)量最高;在考慮環(huán)境成本情況下,當施氮量控制在179kg·hm?2時,可實現(xiàn)當?shù)赜衩鬃畲螽a(chǎn)量的99.5%,同時達到良好的氮素平衡[42]。Li等基于DSSAT-CSM模型探究華北平原小麥?玉米種植系統(tǒng)中增產(chǎn)與氮素投入的平衡案例研究中,提出夏玉米的最佳施氮量為206kg·hm?2,對應(yīng)的產(chǎn)量為10912kg·hm?2[43]。Ren等利用DSSAT模型模擬不同氮素投入量和不同種植密度對黃淮海平原地區(qū)夏玉米產(chǎn)量影響時提出,施氮量和凈施氮量呈冪函數(shù)關(guān)系,玉米的NPFP(N Partial Factor Productivity)逐漸降低,而在相同氮肥投入的情況下,隨著種植密度的增加,玉米的NPFP先增加后降低,兩者相互作用對氮肥施用效果有顯著影響,在種植密度為9株·m?2,施氮量為246kg·hm?2時產(chǎn)量較高[44]。
分析前人研究結(jié)果發(fā)現(xiàn),氮素的吸收利用情況隨當?shù)丨h(huán)境條件、施氮方式、施氮量、土壤情況和管理措施的不同而不同,一般情況下作物產(chǎn)量隨著施氮量的增加呈現(xiàn)先增加后降低的趨勢[43]。DSSAT模型可以解釋玉米品種和氮素投入對玉米生物量和籽粒產(chǎn)量的影響[45]。氮素的施加情況,應(yīng)當根據(jù)具體情況進行靈活調(diào)整,積極研究適合不同地區(qū)的最佳施氮量。如鼓勵農(nóng)民提高肥料管理和栽培技術(shù)水平;把握施加氮素的時機和位置可以減少硝態(tài)氮的損失[46];同時在一定施氮范圍內(nèi),噴施氮肥方式相比于地面撒施方式更能提高玉米產(chǎn)量;建議根據(jù)玉米不同生長時期對養(yǎng)分的不同需求進行兩次或三次分施氮肥,而不是以高氮量作為基礎(chǔ)肥;調(diào)整種植日期、種植密度和施肥次數(shù)可進一步提高玉米產(chǎn)量和氮素利用效率[47]。
傳統(tǒng)的灌溉制度不僅浪費水資源、污染環(huán)境,而且無法發(fā)揮玉米的生產(chǎn)潛力。借助作物模型,可以通過快速經(jīng)濟的模擬試驗,研究最佳灌溉制度,提出符合實際生產(chǎn)的最佳方案[48?49],這對于作物生產(chǎn)、環(huán)境保護和節(jié)約資源都有重要意義[50]。
2013年,Anothai等[51]發(fā)現(xiàn)在兩種不同蒸散方式下,DSSAT-CSM模型能夠準確模擬半干旱條件下不同灌溉制度對作物發(fā)育、產(chǎn)量、水分蒸散量和土壤含水量的影響。Jiang等[52]利用DSSAT模型進行模擬試驗時發(fā)現(xiàn),適合西北地區(qū)的最佳栽植期為4月中上旬,最佳灌水期為玉米拔節(jié)期和抽穗期,不同氣候的最佳灌溉量不同,豐水年、平水年和枯水年的最佳灌溉量分別為1000、4200和4800m3·hm?2,通過制定灌溉計劃,該地區(qū)的灌溉量可減少近一半。劉影等基于DSSAT模型對豫北地區(qū)夏玉米灌溉制度的優(yōu)化模擬過程中發(fā)現(xiàn),在不同降水年型,不同的灌溉量對夏玉米的產(chǎn)量和水分利用效率影響差異顯著,通過模擬提出,在豐水年不需要額外灌溉;平水年需在開花期進行一次灌溉(灌溉量為30mm);枯水年需在開花期和灌漿期進行兩次灌溉(灌溉量為50mm)[19]。楊曉娟等利用DSSAT-CSM模型,建立玉米水分關(guān)鍵期干旱指數(shù)損失模型,研究結(jié)果顯示陜西長武玉米水分關(guān)鍵期發(fā)生輕旱、中旱、重旱和特旱的概率分別為9.75%、5.90%、3.71%和3.50%,對調(diào)整該地區(qū)灌溉制度和降低旱災(zāi)風(fēng)險有借鑒意義[53]。張建平等利用DSSAT-CSM模型分析西南地區(qū)單一生育期干旱和兩個生育期(苗期和拔節(jié)期)同時發(fā)生干旱對玉米籽粒形成和產(chǎn)量的影響時發(fā)現(xiàn),拔節(jié)期發(fā)生干旱導(dǎo)致玉米減產(chǎn)幅度大于苗期干旱的減產(chǎn)幅度,且兩個生育期同時發(fā)生干旱導(dǎo)致的減產(chǎn)率遠大于兩個單一發(fā)育期發(fā)生干旱疊加時的減產(chǎn)率[54]。同時Chen等也將該模型與西北地區(qū)玉米季內(nèi)灌溉動態(tài)調(diào)度新算法結(jié)合,是否灌溉取決于動態(tài)預(yù)測的產(chǎn)量趨勢,該趨勢與實時天氣相呼應(yīng),而不是遵循某一個固定的灌溉計劃,這有助于改進干旱和半干旱地區(qū)的灌溉制度,進一步提高灌溉效率[55]。
水分對于農(nóng)業(yè)生產(chǎn)影響較大,影響植株整個生長發(fā)育階段,優(yōu)化灌溉制度不僅可以節(jié)約水資源,而且能夠促進植物生長發(fā)育,灌溉制度的優(yōu)化不是以充分供水條件下的最高產(chǎn)量為目標,而是要以產(chǎn)量和水分利用效率的有效統(tǒng)一為目標,通過設(shè)立不同灌溉模式、生長關(guān)鍵期灌溉組合和灌溉梯度,探究不同降水年的夏玉米生長季缺水情況,才能進一步確定夏玉米最佳灌溉時期和灌溉量[19]。另外可將水分脅迫因子納入CERES-CSM模型,有利于進一步提高區(qū)域玉米產(chǎn)量預(yù)測準確度[56]。
土壤含有作物生長所必需的營養(yǎng)元素及有機物,土壤播種前的墑情和無機氮含量決定著玉米保苗率的多少,但傳統(tǒng)方法無法及時確定土壤營養(yǎng)物質(zhì)含量與作物生長和產(chǎn)量的關(guān)系,而利用作物模型進行研究時,只要保證作物品種和土壤參數(shù)的準確性,模型就能準確模擬當?shù)刈魑锷L規(guī)律,有利于調(diào)整后續(xù)農(nóng)業(yè)管理措施。
目前,如何獲得連續(xù)可用的土壤數(shù)據(jù)依然面臨挑戰(zhàn)[57]。番興明等在利用DSSAT-CSM模型模擬優(yōu)質(zhì)蛋白玉米品種葉片增長動態(tài)時發(fā)現(xiàn),因無法準確獲取土壤與氣候數(shù)據(jù),導(dǎo)致葉面積指數(shù)、葉片數(shù)量和干物質(zhì)重模擬值均高于實際值[58]。Han等在前人研究的基礎(chǔ)上,使用SoilGrids數(shù)據(jù)集開發(fā)了一個與DSSAT兼容的10km分辨率的網(wǎng)格化全球土壤剖面數(shù)據(jù)集,將作物模型與土壤信息聯(lián)系起來,這對于全球或區(qū)域尺度上網(wǎng)格作物建模應(yīng)用和生物產(chǎn)量估計起到重要作用[59]。陳學(xué)文等采用控制變量法研究東北地區(qū)在施肥和不施肥兩種水平下DSSAT模擬效果時表示,在保證作物品種系數(shù)正確的前提下,DSSAT對不同處理下的最大葉面積指數(shù)模擬效果較好,能較好地反映土壤環(huán)境條件變化與作物生長的關(guān)系[2]。楊靖民等運用DSSAT-CSM模型探究吉林黑土作物?土壤氮循環(huán)?土壤有機碳平衡時,發(fā)現(xiàn)土壤殘留氮隨著施氮量的增加而增加,且當玉米秸稈還田量超過一定標準時,土壤活性有機碳、氮含量能夠維持當年的供需平衡,尤其在玉米播種前,土壤中的無機氮和含水量在干旱年對玉米生長至關(guān)重要[60]。楊玥等在西北地區(qū)對玉米種植?土壤?水分動態(tài)變化進行模擬時發(fā)現(xiàn),DSSAT-CSM模型對土壤中表層水分的模擬效果較好,但對于土壤底層水分的模擬還需進一步驗證,研究同時表明采用氮磷配施有機肥、壟上覆膜和溝內(nèi)覆秸稈措施可以顯著提高土壤微生物多樣性,有助于提高土壤質(zhì)量[61]。
作物模型中的土壤模塊,能將土壤條件與作物生長發(fā)育及產(chǎn)量聯(lián)系起來。但如何準確獲取連續(xù)可用的土壤信息目前還未得到解決,且土壤條件并非決定作物產(chǎn)量的唯一因素,農(nóng)藝管理技術(shù)的不合理也會導(dǎo)致玉米產(chǎn)量和效益降低[45],應(yīng)綜合考慮后及時調(diào)整。
雖然DSSAT模型是當前應(yīng)用最廣泛的作物模型,但利用模型模擬農(nóng)業(yè)生產(chǎn)仍然有不可避免的不確定性。針對存在的問題,研究前景展望主要有以下幾個方面。
(1)DSSAT-CSM模型是基于點的模型,需要輸入基于特定站點的信息,無法實現(xiàn)跨空間信息交互和及時了解作物生長和發(fā)育的空間變異情況。后續(xù)可以優(yōu)化該模型的輸入文件和可視化輸出文件等特定工具,與其他系統(tǒng)集成,實現(xiàn)跨時空信息交互。
(2)在農(nóng)業(yè)生產(chǎn)過程中,土壤特性和天氣情況隨時可能會發(fā)生變化,而模型在模擬過程中往往無法捕捉到這些動態(tài)變化,從而增加作物產(chǎn)量預(yù)測的不確定性。據(jù)此,可增加土壤碳氮等養(yǎng)分以及水分動態(tài)管理,提高模型預(yù)測的準確性[21]。
(3)在調(diào)整作物品種參數(shù)時采用的主流方式為試錯法,存在一定的人為誤差[62]。無法保證品種遺傳參數(shù)的精度,未來研究中應(yīng)進一步規(guī)范和完善田間試驗數(shù)據(jù)和數(shù)據(jù)質(zhì)量,并對模型內(nèi)部子模塊計算方法進行本土化處理和修正優(yōu)化。
(4)模型無法模擬病蟲害、極端天氣(如洪水、冰雹、颶風(fēng))和復(fù)雜養(yǎng)分轉(zhuǎn)移對玉米生長和產(chǎn)量影響情況。應(yīng)結(jié)合其他預(yù)測工具如全球氣候模型(Global Climate Models, GCMs)和區(qū)域氣候模型(Regional Climate Models,RCMs)共同預(yù)測氣候變化對作物生長的影響[63]。
(5)不同作物模型的結(jié)構(gòu)原理及適用條件存在明顯差異。Hijmans等開發(fā)的WOFOST(World Food Studies)模型側(cè)重于定量描述作物產(chǎn)量的形成過程[64];澳大利亞CSIRO開發(fā)的APSIM(Agricultural Production Systems Simulator)模型核心是土壤[65],突出強調(diào)不同耕作方式對作物生長的影響,聯(lián)合國糧農(nóng)組織開發(fā)的AquaCrop模型則強調(diào)作物對水分脅迫的反應(yīng)[66],可將上述作物模型與DSSAT模型進行耦合以實現(xiàn)優(yōu)勢互補,從而更全面地模擬溫度、土壤、管理措施和氮肥等影響因素對作物生長發(fā)育的影響。
(6)此外,作物模型的存在是為了解決實際生產(chǎn)問題,為實現(xiàn)模型的長期研究戰(zhàn)略規(guī)劃和實施,應(yīng)考慮模型使用的方便性和實用性,模型的使用不應(yīng)局限于科研,更應(yīng)該針對小農(nóng)生產(chǎn)提供強化管理技術(shù),以便實現(xiàn)生產(chǎn)力和環(huán)境效益的協(xié)同增長[67]。
[1] Jones J W,Tsuji G Y,Hoogenboom G,et al.Decision support system for agrotechnology transfer:DSSAT v3[M]. Understanding Options for Agricultural Production,Dordrecht:Springer Netherlands,1998:157-177.
[2] 陳學(xué)文,張興義,隋躍宇.農(nóng)田黑土玉米生長過程模擬研究[J].農(nóng)業(yè)系統(tǒng)科學(xué)與綜合研究,2009,25(2):163-166.
Chen X W,Zhang X Y,Sui Y Y.Modeling the maize growth processes in black farmland[J].System Sciences and Comprehensive Studies in Agriculture,2009,25(2):163- 166.(in Chinese)
[3] 孫揚越,申雙和.作物生長模型的應(yīng)用研究進展[J].中國農(nóng)業(yè)氣象,2019,40(7):444-459.
Sun Y Y,Shen S H.Research progress in application of crop growth models[J].Chinese Journal of Agrometeorology, 2019,40(7):444-459.(in Chinese)
[4] Ritchie J T.International consortium for agricultural systems applications (ICASA):establishment and purpose[J]. Agricultural Systems,1995,49(4):329-335.
[5] Jones J W,Hoogenboom G,Porter C H,et al.The DSSAT cropping system model[J].European Journal of Agronomy, 2003,18(3):235-265.
[6] Jiang M,Jin Z.A method for upscaling genetic parameters of CERES-Rice in regional applications[J].Rice Science, 2009,16(4):292-300.
[7] Mackinnon J C. CERES-Maize: A simulation model of maize growth and development[J].Computers and Electronics in Agriculture,1987(2):171-172.
[8] 宋利兵.氣候變化下中國玉米生長發(fā)育及產(chǎn)量的模擬[D].楊凌:西北農(nóng)林科技大學(xué),2020.
Song L B.Simulation of maize growth and yield under climate change in China[D].Yangling:Northwest A&F University,2020.(in Chinese)
[9] Hoogenboom G, Jones J W, Boote K J.Modeling growth, development,and yield of grain legumes using SOYGRO, PNUTGRO,and BEANGRO:a review[J]. Transactions of the ASAE,1992,35(6):2043-2056.
[10] Kn?rzer H,Gr?zinger H,Graeff H?nninger S,et al. Integrating a simple shading algorithm into CERES-wheat and CERES-maize with particular regard to a changing microclimate within a relay-intercropping system[J].Field Crops Research,2011,121(2):274-285.
[11] Iglesias A.Use of DSSAT models for climate change impact assessment:Calibration and validation of CERES- Wheat and CERES-Maize in Spain[C]. New York: Nova Science Publishers, 2006:1-45.
[12] Araya A,Hoogenboom G,Luedeling E,et al.Assessment of maize growth and yield using crop models under present and future climate in southwestern Ethiopia[J].Agricultural and Forest Meteorology,2015,214:252-265.
[13] Rosenzweig C,Jones J W,Hatfield J L,et al.The agricultural model intercomparison and improvement project (AgMIP):protocols and pilot studies[J].Agricultural and Forest Meteorology,2013,170:166-182.
[14] Tremblay M,Wallach D.Comparison of parameter estimation methods for crop models[J].Agronomie,2004,24(6-7):351- 365.
[15] He J,Jones J W,Graham W D,et al.Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method [J].Agricultural Systems,2010,103(5):256-264.
[16] Jiang R,He W,He L,et al.Modelling adaptation strategies to reduce adverse impacts of climate change on maize cropping system in Northeast China[J].Scientific Reports, 2021,11(1):1-13.
[17] 叢佳慧,田興帥,趙向陽,等.基于DSSAT模型和天氣預(yù)報策略預(yù)測農(nóng)戶當季玉米產(chǎn)量[J].玉米科學(xué),2022,30(4): 62-72.
Cong J H,Tian X S,Zhao X Y,et al.In-season maize yield prediction of farmers based on DSSAT and weather forecasting strategy[J].Journal of Maize Sciences,2022, 30(4):62-72.(in Chinese)
[18] Liu H L,Yang J,He P,et al.Optimizing parameters of CSM-CERES-Maize model to improve simulation performance of maize growth and nitrogen uptake in Northeast China[J].Journal of Integrative Agriculture,2012, 11(11):1898-1913.
[19] 劉影,關(guān)小康,楊明達,等.基于DSSAT模型對豫北地區(qū)夏玉米灌溉制度的優(yōu)化模擬[J].生態(tài)學(xué)報,2019,39(14): 5348-5358.
Liu Y,Guan X K,Yang M D,et al.Optimizing the summer maize irrigation schedule in North Henan Province based on the DSSAT model[J].Acta Ecologica Sinica,2019,39 (14):5348-5358.(in Chinese)
[20] Ray D K,Gerber J S,Macdonald G K,et al.Climate variation explains a third of global crop yield variability[J].Nature Communications,2015,6(1):1-9.
[21] Tofa A I,Kamara A Y,Babaji B A,et al.Assessing the use of a drought-tolerant variety as adaptation strategy for maize production under climate change in the savannas of Nigeria[J].Scientific Reports,2021,11(1):1-16.
[22] 李闊,熊偉,潘婕,等.未來升溫1.5℃與2.0℃背景下中國玉米產(chǎn)量變化趨勢評估[J].中國農(nóng)業(yè)氣象,2018,39(12): 765-777.
Li K,Xiong W,Pan J,et al.Trend evaluation on changes of maize yield in China under global warming by 1.5 and 2.0℃[J]. Chinese Journal of Agrometeorology,2018,39(12):765- 777.(in Chinese)
[23] 晉程繡,姜超,張曦月.CMIP6模式對中國西南地區(qū)氣溫的模擬與預(yù)估[J].中國農(nóng)業(yè)氣象,2022,43(8):597-611.
Jin C X,Jiang C,Zhang X Y.Evaluation and projection of temperature in Southwestern China by CMIP6 models [J].Chinese Journal of Agrometeorology,2022,43(8):597- 611.(in Chinese)
[24] 番興明,楊峻蕓,譚靜,等.用CERES玉米生長模型預(yù)測優(yōu)質(zhì)蛋白玉米生物產(chǎn)量的形成[J].西南農(nóng)業(yè)大學(xué)學(xué)報, 2001,45(1):1-3.
Fan X M,Yang J Y,Tan J,et al.Use of CERES-Maize model to predict biomass production of quality-protein maize cultivars[J].Journal of Southwest Agricultural University, 2001,45(1):1-3.(in Chinese)
[25] Olesen J,B?rgesen C,Elsgaard L,et al.Changes in time of sowing, flowering and maturity of cereals in Europe under climate change[J].Food Additives & Contaminants:Part A,2012,29(10):1527-1542.
[26] Araya A,Prasad P V V,Gowda P H,et al.Management options for mid-century maize (L.) in Ethiopia[J]. Science of the Total Environment,2021,758:e143635.
[27] Sanchez B,Rasmussen A,Porter J R.Temperatures and the growth and development of maize and rice:a review[J]. Glob Chang Biol,2014,20(2):408-417.
[28] Tigchelaar M,Battisti D S,Naylor R L,et al.Future warming increases probability of globally synchronized maize production shocks[J].Proceedings of the National Academy of Sciences,2018,115(26):6644-6649.
[29] Ritchie J T,Singh U,Godwin D C,et al.Cereal growth, development and yield[M].Kluwer Academic Publishers, 1998:79-89.
[30] Edreira J I R,Carpici E B,Sammarro D,et al.Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids[J].Field Crops Research,2011,123 (2):62-73.
[31] Chowdhury S,Wardlaw I F.The effect of temperature on kernel development in cereals[J].Crop & Pasture Science, 1978,29(2):205-223.
[32] Prasad P V V,Boote K J,Allen L H.Adverse high temperature effects on pollen viability,seed-set,seed yield and harvest index of grain-sorghum[(L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures[J].Agricultural and Forest Meteorology,2006,139(3-4):237-251.
[33] Prasad P V V,Boote K J,Allen L,et al.Species,ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress[J].Field Crops Research,2006,95(2-3):398-411.
[34] Asseng S,Ewert F,Martre P,et al.Rising temperatures reduce global wheat production[J].Nature Climate Change, 2015,5(2):143-147.
[35] Liu B,Asseng S,Liu L,et al.Testing the responses of four wheat crop models to heat stress at anthesis and grain filling[J].Global Chang Biology,2016,22(5):1890-1903.
[36] Strer M, Svoboda N, Herrmann A.Abundance of adverse environmental conditions during critical stages of crop production in Northern Germany[J].Environmental Sciences Europe,2018, 30(1):1-16.
[37] Ali M G M,Ahmed M,Ibrahim M M,et al.Optimizing sowing window,cultivar choice,and plant density to boost maize yield under RCP8.5 climate scenario of CMIP5[J]. International Journal of Biometeorology,2022,66(5):971- 985.
[38] Guo E,Liu X,Zhang J,et al.Assessing spatiotemporal variation of drought and its impact on maize yield in Northeast China[J].Journal of Hydrology,2017,553:231- 247.
[39] 段萌,張寶忠,魏征,等.不同施氮量對玉米器官形態(tài)指標的影響分析與定量模擬[J].農(nóng)業(yè)機械學(xué)報,2022,53(10): 284-292.
Duan M,Zhang B Z,Wei Z,et al.Effects of different nitrogen application rates on morphological indices of maize organs and quantitative simulation[J].Transactions of the Chinese Society for Agricultural Machinery,2022,53 (10):284-292.(in Chinese)
[40] Jiang R,He W,Zhou W,et al.Exploring management strategies to improve maize yield and nitrogen use efficiency in northeast China using the DNDC and DSSAT models[J].Computers and Electronics in Agriculture,2019, 166:e104988.
[41] Liu J,Zhu L,Luo S,et al.Response of nitrous oxide emission to soil mulching and nitrogen fertilization in semi-arid farmland[J].Agriculture, Ecosystems & Environment,2014, 188:20-28.
[42] Zhang Y,Wang H,Lei Q,et al.Optimizing the nitrogen application rate for maize and wheat based on yield and environment on the Northern China Plain[J].Science of the Total Environment,2018,618:1173-1183.
[43] Li S,Lei Y,Zhang Y,et al.Rational trade-offs between yield increase and fertilizer inputs are essential for sustainable intensification:a case study in wheat–maize cropping systems in China[J].Science of the Total Environment, 2019,679:328-336.
[44] Ren H,Li Z,Cheng Y,et al.Narrowing yield gaps and enhancing nitrogen utilization for summer maize (L.) by combining the effects of varying nitrogen fertilizer input and planting density in DSSAT simulations [J].Frontiers in Plant Science,2020,11:e560466.
[45] Ren H,Han K,Liu Y,et al.Improving smallholder farmers' maize yields and economic benefits under sustainable crop intensification in the North China Plain[J].Science of the Total Environment,2021,763:e143035.
[46] Jeong H,Bhattarai R.Exploring the effects of nitrogen fertilization management alternatives on nitrate loss and crop yields in tile-drained fields in Illinois[J].Journal of Environmental Management,2018,213:341-352.
[47] Zhao J,Yang X,Liu Z,et al.Greater maize yield improvements in low/unstable yield zones through recommended nutrient and water inputs in the main cropping regions,China[J]. Agricultural Water Management,2020,232:e106018.
[48] Zhou L,Wang Y,Jia Q,et al.Evapotranspiration over a rainfed maize field in northeast China:how are relationships between the environment and terrestrial evapotranspiration mediated by leaf area[J].Agricultural Water Management, 2019,221:538-546.
[49] Li Y,Yang L,Wang H,et al.Nutrient and planting modes strategies improves water use efficiency,grain-filling and hormonal changes of maize in semi-arid regions of China[J].Agricultural Water Management,2019,223:e105723.
[50] Li G,Zhao B,Dong S,et al.Controlled-release urea combining with optimal irrigation improved grain yield, nitrogen uptake, and growth of maize[J].Agricultural Water Management,2020,227:e105834.
[51] Anothai J,Soler C M T,Green A,et al.Evaluation of two evapotranspiration approaches simulated with the CSM- CERES-Maize model under different irrigation strategies and the impact on maize growth,development and soil moisture content for semi-arid conditions[J].Agricultural and Forest Meteorology,2013,176: 64-76.
[52] Jiang Y,Zhang L,Zhang B,et al.Modeling irrigation management for water conservation by DSSAT-maize model in arid northwestern China[J].Agricultural Water Management,2016,177:37-45.
[53] 楊曉娟,張仁和,路海東,等.基于CERES-Maize模型的玉米水分關(guān)鍵期干旱指數(shù)天氣保險:以陜西長武為例[J].中國農(nóng)業(yè)氣象,2020,41(10):655-667.
Yang X J,Zhang R H,Lu H D,et al.Drought index insurance of maize in water critical period based on CERES-Maize Model:a case study of Changwu,Shaanxi[J].Chinese Journal of Agrometeorology,2020,41(10):655-667.(in Chinese)
[54] 張建平,何永坤,王靖,等.不同發(fā)育期干旱對玉米籽粒形成與產(chǎn)量的影響模擬[J].中國農(nóng)業(yè)氣象,2015,36(1): 43-49.
Zhang J P,He Y K,Wang J,et al.Impact simulation of drought at different growth stages on grain formation and yield of Maize[J].Chinese Journal of Agrometeorology, 2015,36(1):43-49.(in Chinese)
[55] Chen S,Jiang T,Ma H,et al.Dynamic within-season irrigation scheduling for maize production in Northwest China:a method based on weather data fusion and yield prediction by DSSAT[J].Agricultural and Forest Meteorology, 2020,285:e107928.
[56] Ban H,Ahn J,Lee B.Assimilating MODIS data-derived minimum input data set and water stress factors into CERES-Maize model improves regional corn yield predictions[J].Plos One,2019,14(2): e211874.
[57] Wu W,Chen J,Liu H,et al.Parameterizing soil and weather inputs for crop simulation models using the VEMAP database[J].Agriculture,Ecosystems & Environment,2010, 135(1):111-118.
[58] 番興明,Jintrawet Attachai,陳洪梅.用CERES玉米模型模擬優(yōu)質(zhì)蛋白玉米品種葉片增長動態(tài)(英文)[J].西南農(nóng)業(yè)學(xué)報,2001,20(2):22-26.
Fan X M,Attachai J,Chen H M.Using CERES-maize model to simulate leaves dynamic for quality protein maize cultivars [J].Southwest China Journal of Agricultural Sciences,2001,20(2):22-26.(in Chinese)
[59] Han E,Ines A V M,Koo J.Development of a 10km resolution global soil profile dataset for crop modeling applications[J].Environmental Modelling & Software,2019, 119:70-83.
[60] 楊靖民,竇森,楊靖一,等.基于DSSAT模型的吉林省黑土作物-土壤氮循環(huán)和土壤有機碳平衡[J].應(yīng)用生態(tài)學(xué)報, 2011,22(8):2075-2083.
Yang J M,Dou S,Yang J Y,et al.Crop-soil nitrogen cycling and soil organic carbon balance in black soil zone of Jilin province based on DSSAT model[J].Chinese Journal of Applied Ecology,2011,22(8):2075-2083.(in Chinese)
[61] 楊玥.旱地保護性耕作對土壤水肥特征與作物產(chǎn)量的影響[D].楊凌:西北農(nóng)林科技大學(xué),2021.
Yang Y.Effects of conservation tillage on water, nutrient use and crop yield in dryland[D].Yangling:Northwest A&F University,2021.(in Chinese)
[62] 劉濤,萬能涵,張鎮(zhèn)濤,等.DSSAT模型對吉林省梨樹縣部分主要作物的適用性[J].生態(tài)學(xué)雜志,2022, 41(1):1-11.
Liu T,Wan N H,Zhang Z T,et al. Adaptability of DSSAT crop model to main crops in Lishu county, Jilin province [J]. Chinese Journal of Ecology,2022, 41(1):1-11. (in Chinese).
[63] 陶生才,潘婕,劉珂.DSSAT模型在中國農(nóng)業(yè)與氣候變化領(lǐng)域應(yīng)用進展[J].中國農(nóng)學(xué)通報,2015,31(9):200-206.
Tao S C,Pan J,Liu K.The application progress of DSSAT in the field of agriculture and climate change in China [J].Chinese Agricultural Science Bulletin,2015,31(9):200- 206.(in Chinese)
[64] Diepen C A V,Wolf J,Keulen H V,et al.WOFOST:a simulation model of crop production[J].Soil Use and Management,1989(5):16-24.
[65] Brisson N,Gary C,Justes E,et al.An overview of the crop model STICS[J].European Journal of Agronomy,2003, 18(3-4):309-332.
[66] Steduto P,Hsiao T C,Raes D,et al.AquaCrop:the FAO crop model to simulate yield response to water I:concepts and underlying principles[J].Agronomy Journal,2009,101(3): 426-437.
[67] Cui Z,Zhang H,Chen X,et al.Pursuing sustainable productivity with millions of smallholder farmers[J]. Nature,2018,555(7696):363-366.
Progress of DSSAT-CSM Model Application in Maize Planting Research
WANG Yu-ling1, XU Chun-xia2, BI Ya-qi2, FAN Jun2, GUO Rui-jia2, WANG Jing2, FAN Xing-ming2
(1. Institute of Resource Plants, Yunnan University, Kunming 650504, China; 2. Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205)
Crop models play an important role in the simulation, evaluation and prediction of maize production. Through literature review, the authors systematically summarized the development and application of DSSAT-CSM model in China; the composition, development and shortcomings of DSSAT-CSM model; and the process and results of using crop model to simulate the key factors affecting maize growth. It provided reference and technical support for crop model to optimize maize growth and yield by adjusting crop variety parameters, temperature variation, nitrogen fertilizer measures, irrigation system and key soil factors. Uncertainty and deficiencies of current crop models were the key factors that limited simulation accuracy and efficiency. Therefore, standardizing data collection, coupling multiple types of crop models, optimizing dynamic management processes, and modifying and optimizing models are the future trends of crop models.
Crop model; DSSAT-CSM; Maize; Crop growth
10.3969/j.issn.1000-6362.2023.06.004
王宇玲,徐春霞,畢亞琪,等.DSSAT-CSM模型在玉米種植研究中的應(yīng)用進展[J].中國農(nóng)業(yè)氣象,2023,44(6):492-501
2022?07?01
云南省院士專家工作站(202205AF150028);云南省高端外國專家專項
番興明,博士,研究員,研究方向為玉米種質(zhì)資源與遺傳育種,E-mail: xingmingfan@163.com
王宇玲,E-mail:13522506922@163.com