孫晗 黃曉程 姚志湘 欒天
摘 要:發(fā)展了一種以2-(2-乙炔基苯基)苯并呋喃為原料、醋酸鈀作為催化劑、三苯基膦作為配體、三氟醋酸作為助劑的炔烴環(huán)化反應(yīng)合成萘并[1,2-b]苯并呋喃的方法。通過(guò)考察催化劑、配體、助劑、溶劑因素等對(duì)反應(yīng)產(chǎn)率的影響,得到了最佳反應(yīng)條件:摩爾分?jǐn)?shù)為5%的醋酸鈀、摩爾分?jǐn)?shù)為10%的三苯基膦、5當(dāng)量三氟醋酸、二氯甲烷作為溶劑,反應(yīng)溫度為室溫,在氮?dú)獗Wo(hù)下進(jìn)行反應(yīng)。產(chǎn)物結(jié)構(gòu)經(jīng)1H NMR、13C NMR和GC-MS確證。該方法反應(yīng)條件溫和,反應(yīng)底物適用性良好,為萘并[1,2-b]苯并呋喃衍生物的合成提供了一種簡(jiǎn)便、高效的途徑。
關(guān)鍵詞:醋酸鈀;三苯基膦;三氟醋酸;環(huán)化反應(yīng);萘并苯并呋喃
中圖分類號(hào):TQ251.1 DOI:10.16375/j.cnki.cn45-1395/t.2023.01.015
0 引言
萘并呋喃作為一種重要的雜環(huán)芳香化合物,具有顯著的生物和藥物活性,廣泛存在于天然產(chǎn)物和藥物結(jié)構(gòu)中[1-3]。例如,潛在的抗癌藥物結(jié)構(gòu)xylarianaphthol-1中就含有萘并呋喃的骨架[4](圖1)。因此,其合成方法的研究一直是化學(xué)工作者關(guān)注的熱點(diǎn)[5-8]。通常的合成方式是以萘酚和溴代苯乙酮為原料,通過(guò)縮合反應(yīng)獲得,而這類方法受到反應(yīng)原料結(jié)構(gòu)的限制[9]。隨著過(guò)渡金屬催化的交叉偶聯(lián)技術(shù)的發(fā)展[10-12],反應(yīng)底物設(shè)計(jì)和合成水平不斷得到提高,通過(guò)設(shè)計(jì)含炔基結(jié)構(gòu)的反應(yīng)底物進(jìn)行環(huán)化反應(yīng)是合成此類多環(huán)芳香烴的重要途徑[13-16],此類方法在一些有機(jī)發(fā)光材料[17]和納米石墨烯的合成中同樣得到了應(yīng)用[18]。然而,在已報(bào)道的方法中還存在一定的局限性:當(dāng)前應(yīng)用最廣泛的是Swager課題組報(bào)道的方法,利用三氟醋酸和三氟甲基磺酸等強(qiáng)路易斯酸作為催化劑,經(jīng)過(guò)類似傅-克反應(yīng)過(guò)程,實(shí)現(xiàn)炔烴親電環(huán)化[19-21],該方法非常簡(jiǎn)便且高效,可以用于大分子稠環(huán)芳香化合物的合成,但是反應(yīng)底物僅限于含有烷氧基類強(qiáng)給電子基團(tuán)的結(jié)構(gòu)[22-24];此后,過(guò)渡金屬催化體系的發(fā)展消除了強(qiáng)給電子基團(tuán)的影響。鉑、金等催化條件實(shí)現(xiàn)了末端炔烴的環(huán)化[25-28],而Gevorgyan課題組報(bào)道的鈀催化體系使反應(yīng)底物范圍得到了更好的拓展,但反應(yīng)更傾向于生成環(huán)外烯烴的五元環(huán)產(chǎn)物[29-30]。因此,利用炔烴環(huán)化合成萘并苯并呋喃仍然是一個(gè)具有挑戰(zhàn)性的課題。研究發(fā)現(xiàn),以2-(2-乙炔基苯基)苯并呋喃衍生物為原料,在醋酸鈀催化條件下,以三苯基膦作為配體,三氟醋酸作為助劑,可以高效地合成萘并[1,2-b]苯并呋喃骨架。該催化體系反應(yīng)條件溫和,具有良好的底物適用性。
1 實(shí)驗(yàn)部分
1.1 儀器和試劑
HRMS使用賽默飛高分辨質(zhì)譜聯(lián)用儀(Thermo Scientific Q Exactive),1H NMR和13C NMR使用布魯克核磁共振儀(Bruker Avance-500),常規(guī)儀器包括:ZNCL-GS恒溫磁力攪拌器、ZF-8D暗箱四用紫外分析儀、RE-52AA旋轉(zhuǎn)蒸發(fā)儀、WRS-1B數(shù)字熔點(diǎn)儀等。實(shí)驗(yàn)用催化劑、配體、助劑、溶劑等試劑均為進(jìn)口或分析純?cè)噭?/p>
1.2 實(shí)驗(yàn)方法
典型合成方法(以6-苯基萘并[1,2-b]苯并呋喃2a的合成為例):在干燥的Schlenk管中依次加入2-(2-苯乙炔基苯基)苯并呋喃(1a)58.9 mg(0.20 mmol)、醋酸鈀(Pd(OAc)2)2.3 mg(0.01 mmol)、三苯基膦(PPh3)5.3 mg(0.02 mmol)、三氟醋酸(TFA)114.1 mg(1.00 mmol)、二氯甲烷(DCM)2.0 mL,混合均勻后通入氮?dú)獗Wo(hù),在室溫下攪拌反應(yīng)8 h,利用薄層層析硅膠板和GC-MS進(jìn)行監(jiān)測(cè)。觀察到原料反應(yīng)完全后,向反應(yīng)液中加入10 mL乙酸乙酯,再經(jīng)過(guò)堿液和飽和食鹽水洗滌、乙酸乙酯萃取、無(wú)水硫酸鈉干燥、旋蒸等操作后得到粗產(chǎn)品。最后用柱層析法分離提純:以200 ~ 300目(75 ~ 50 μm)柱層析硅膠為填充劑,以正己烷為洗脫液,分離、收集得到目標(biāo)產(chǎn)物2a。
2 結(jié)果與討論
2.1 反應(yīng)條件的優(yōu)化
選擇化合物2-(2-苯乙炔基苯基)苯并呋喃(1a)的環(huán)化反應(yīng)為模板,研究了催化劑、配體、助劑和溶劑對(duì)反應(yīng)產(chǎn)率的影響,篩選最佳反應(yīng)條件。實(shí)驗(yàn)結(jié)果如表1所示,化合物1a在摩爾分?jǐn)?shù)為10%的醋酸鈀、摩爾分?jǐn)?shù)為20%的三苯基膦、5當(dāng)量三氟醋酸的催化體系中,以甲苯為溶劑,氮?dú)獗Wo(hù),在60 ℃下反應(yīng)18 h,可以以94%的收率得到目標(biāo)產(chǎn)物2a(式(1))。隨后進(jìn)行了試劑控制實(shí)驗(yàn),在單獨(dú)缺少醋酸鈀、三苯基膦和三氟醋酸的實(shí)驗(yàn)中,反應(yīng)都無(wú)法正常進(jìn)行,由此確定催化劑、配體和助劑都是反應(yīng)不可以缺少的條件(Entries 1-4)。對(duì)反應(yīng)溶劑進(jìn)行了考察,發(fā)現(xiàn)該反應(yīng)在非極性和弱極性的溶劑中效果較好,環(huán)己烷、1,2-二氯乙烷和二氯甲烷作為溶劑都可以順利環(huán)化,收率分別為92%、80%和97%;而且當(dāng)以二氯甲烷為溶劑時(shí),反應(yīng)溫度可以降低至室溫,反應(yīng)時(shí)間縮短至8 h,也不會(huì)造成收率降低。在極性較大的乙腈中,反應(yīng)24 h后,反應(yīng)原料始終沒(méi)有變化(Entries 5-8)。在此基礎(chǔ)上,進(jìn)一步考察了催化劑、配體和助劑的用量對(duì)反應(yīng)的影響。當(dāng)醋酸鈀摩爾分?jǐn)?shù)為5%、三苯基膦摩爾分?jǐn)?shù)為10%時(shí),仍然可以在8 h以96%的收率得到目標(biāo)產(chǎn)物。但是當(dāng)醋酸鈀及三苯基膦摩爾分?jǐn)?shù)減少到1%和2%時(shí),收率降低至88%,反應(yīng)時(shí)間需要延長(zhǎng)至29 h。而醋酸鈀摩爾分?jǐn)?shù)為5%、三苯基膦摩爾分?jǐn)?shù)為10%,同時(shí)三氟醋酸的用量減少到2當(dāng)量時(shí),只有64%的收率(Entries 9-11)。通過(guò)對(duì)以上反應(yīng)條件的考察,得到該炔烴環(huán)化反應(yīng)的最佳條件為:摩爾分?jǐn)?shù)為5%的醋酸鈀作為催化劑,摩爾分?jǐn)?shù)為10%的三苯基膦作為配體,5當(dāng)量三氟醋酸作為助劑,二氯甲烷作為溶劑,反應(yīng)溫度為室溫,在氮?dú)獗Wo(hù)下進(jìn)行反應(yīng)。
2.2 反應(yīng)底物的拓展
在摩爾分?jǐn)?shù)為5%的醋酸鈀、摩爾分?jǐn)?shù)為10%的三苯基膦、5當(dāng)量三氟醋酸及2.0 mL 二氯甲烷的催化體系中,研究了室溫下不同炔烴取代基R對(duì)環(huán)化反應(yīng)的影響(式(2)),考察了反應(yīng)底物的適用范圍。實(shí)驗(yàn)結(jié)果表明(表2),當(dāng)R基團(tuán)為苯環(huán)時(shí),給電子取代基可以促進(jìn)反應(yīng)的進(jìn)行,對(duì)位甲基和對(duì)位甲氧基取代的苯環(huán)分別以96%和98%的收率得到6-(對(duì)甲苯基)萘并[1,2-b]苯并呋喃(2b)和6-(對(duì)甲氧基苯基)萘并[1,2-b]苯并呋喃(2c)(Entry 1和Entry 2)。鄰位上取代甲基和甲氧基之后,由于空間位阻增大,限制了反應(yīng)的進(jìn)行,反應(yīng)時(shí)間為12 h和9 h,分別以85%和86%的收率得到6-(鄰甲苯基)萘并[1,2-b]苯并呋喃(2d)和6-(鄰甲氧基苯基)萘并[1,2-b]苯并呋喃(2e)(Entry 3和Entry 4)。當(dāng)苯環(huán)對(duì)位連接有硝基時(shí),由于強(qiáng)吸電子基團(tuán)的作用,在最佳反應(yīng)條件下無(wú)法環(huán)化。只有在摩爾分?jǐn)?shù)為10%的醋酸鈀、摩爾分?jǐn)?shù)為20%的三苯基膦、5當(dāng)量三氟醋酸的條件下,同時(shí)將反應(yīng)溫度升高至80 ℃,反應(yīng)24 h,才能得到6-(對(duì)硝基苯基)萘并[1,2-b]苯并呋喃(2f),收率僅有69%(Entry 5)。由此可以推測(cè),該反應(yīng)過(guò)程為缺電子中心的中間體,給電子基團(tuán)可以提高反應(yīng)中間體的穩(wěn)定性,從而有利于反應(yīng)的進(jìn)行。此外,直鏈脂肪烴基取代的炔烴也能夠順利地得到環(huán)化產(chǎn)物6-正戊基萘并[1,2-b]苯并呋喃(2g)和6-正辛基萘并[1,2-b]苯并呋喃(2h),收率分別達(dá)到92%和91%(Entry 6和Entry 7)。含有共軛烯烴結(jié)構(gòu)的產(chǎn)物6-(環(huán)己基-1-烯)萘并[1,2-b]苯并呋喃(2i),可以以87%的收率獲得(Entry 8)。共軛烯烴結(jié)構(gòu)的引入,為產(chǎn)物結(jié)構(gòu)的進(jìn)一步修飾提供了便利的渠道,從而使本方法具有更廣闊的應(yīng)用前景。
在以上實(shí)驗(yàn)結(jié)果的基礎(chǔ)上,對(duì)2-(2-苯乙炔基苯基)苯并呋喃(1a)的炔烴環(huán)化反應(yīng)的機(jī)理進(jìn)行了推測(cè)(圖2)。首先,醋酸鈀與三苯基膦、三氟醋酸結(jié)合為配位的三氟醋酸鈀正離子[18];然后在與1a結(jié)合的過(guò)程中插入苯并呋喃的2位,同時(shí)失去一個(gè)質(zhì)子,形成芳香基醋酸鈀中間體A,中間體A經(jīng)過(guò)分子內(nèi)鈀遷移插入炔烴,實(shí)現(xiàn)炔烴關(guān)環(huán),得到烯基鈀中間體B;最后,該中間體在三氟醋酸作用下,通過(guò)質(zhì)子化得到目標(biāo)產(chǎn)物2a,同時(shí)使鈀催化劑再生,重新進(jìn)入催化循環(huán)。
2.3 產(chǎn)物結(jié)構(gòu)表征
產(chǎn)物2a(6-苯基萘并[1,2-b]苯并呋喃)的結(jié)構(gòu)(圖3)及表征數(shù)據(jù)如下所示。
White solid,m.p.:128.2 ~ 131.5 ℃(uncorrected);1H NMR(500 MHz,CDCl3)δ:8.46(d,J = 8.0 Hz,1H),7.95(d,J = 8.5 Hz,1H),7.68 ~ 7.70 (m,3H),7.64 (s,1H),7.60 ~ 7.63(m,1H),7.53 ~ 7.57 (m,3H),7.48 ~ 7.51(m,2H),7.40 (t,J = 7.0 Hz,1H),7.16(t,J = 8.0 Hz,1H);13C NMR(125 MHz,CDCl3)δ:156.2,152.3,140.0,135.6,132.8,129.2,128.5,128.3,127.9,126.5,126.3,126.0,124.7,123.5,122.5,122.2,120.9,120.5,117.6,111.7;HRMS(ESI)m/z calcd for C22H15O+ (M+H)+ 295.111 7,found 295.111 8。
產(chǎn)物2b(6-(對(duì)甲苯基)萘并[1,2-b]苯并呋喃)的結(jié)構(gòu)(圖4)及表征數(shù)據(jù)如下所示。
White solid,m.p.:106.1 ~ 110.6 ℃(uncorrected);1H NMR(500 MHz,CDCl3)δ:8.45(d,J = 8.0 Hz,1H),7.94(d,J = 8.0 Hz,1H),7.68(d,J = 8.5 Hz,1H),7.53 ~ 7.63(m,6H),7.41(t,J = 7.5 Hz,1H),7.34(d,J = 8.0 Hz,2H),7.16(t,J = 7.5 Hz,1H),2.49(s,3H);13C NMR(125 MHz,CDCl3)δ:156.1,152.3,137.6,137.0,135.6,132.9,129.2,129.0,128.2,126.5,126.2,125.9,124.8,123.4,122.5,122.3,120.9,120.4,117.7,111.6,21.3;HRMS(ESI)m/z calcd for C23H17O+(M+H)+ 309.127 4,found 309.127 3。
產(chǎn)物2c(6-(對(duì)甲氧基苯基)萘并[1,2-b]苯并呋喃)的結(jié)構(gòu)(圖5)及表征數(shù)據(jù)如下所示。
White solid,m.p.:138.4 ~ 141.5 ℃(uncorrected);1H NMR(500 MHz,CDCl3)δ:8.45(d,J = 8.5 Hz,1H),7.95(d,J = 8.0 Hz,1H),7.69(d,J = 8.5 Hz,1H),7.59 ~ 7.62(m,4H),7.54 ~ 7.58(m,2H),7.40(t,J = 7.5 Hz,1H),7.17(t,J = 8.0 Hz,1H),7.06 ~ 7.09(m,2H),3.92(s,3H);13C NMR(125 MHz,CDCl3)δ:159.4,156.1,152.3,135.3,132.9,132.4,130.3,128.2,126.5,126.1,125.9,124.8,123.3,122.5,122.2,120.9,120.3,117.8,113.9,111.7,55.4;HRMS(ESI)m/z calcd for C23H17O2+(M+H)+ 325.122 3,found 325.122 4。
產(chǎn)物2d(6-(鄰甲苯基)萘并[1,2-b]苯并呋喃)的結(jié)構(gòu)(圖6)及表征數(shù)據(jù)如下所示。
White solid,m.p.:138.2 ~ 142.4 ℃(uncorrected);1H NMR(500 MHz,CDCl3)δ:8.49(d,J = 8.0 Hz,1H),7.97(d,J = 8.0 Hz,1H),7.55 ~ 7.44(m,5H),7.33 ~ 7.44(m,5H),7.11(t,J = 7.5 Hz,1H),6.94(d,J = 8.0 Hz,1H),2.12(s,3H);13C NMR(125 MHz,CDCl3)δ:156.0,151.8,139.5,136.5,134.9,132.9,130.0,129.7,128.3,128.1,126.4,126.2,126.0,126.0,124.9,123.0,122.9,121.3,120.9,120.5,118.5,111.6,19.9;HRMS(ESI)m/z calcd for C23H17O+(M+H)+ 309.127 4,found 309.127 3。
產(chǎn)物2e(6-(鄰甲氧基苯基)萘并[1,2-b]苯并呋喃)的結(jié)構(gòu)(圖7)及表征數(shù)據(jù)如下所示。
White solid,m.p.:125.6 ~ 128.4 ℃(uncorrected);1H NMR(500 MHz,CDCl3)δ:8.47(d,J = 8.5 Hz,1H),7.96(d,J = 8.0 Hz,1H),7.67(d,J = 8.0 Hz,1H),7.61(t,J = 7.0 Hz,1H),7.54(t,J = 7.5 Hz,1H),7.45 ~ 7.51(m,2H),7.37(t,J = 7.5 Hz,1H),7.19(t,J = 7.5 Hz,1H),7.11 ~ 7.15(m,2H),7.08(d,J = 8.5 Hz,1H),3.65(s,3H);13C NMR(125 MHz,CDCl3)δ:157.2,156.0,151.7,132.9,131.9,131.3,129.5,128.9,128.3,126.2,125.7,125.3,123.8,122.5,121.6,120.9,120.8,120.6,118.8,111.5,110.7,55.4;HRMS(ESI)m/z calcd for C23H17O2+(M+H)+ 325.122 3,found 325.122 4。
產(chǎn)物2f(6-(對(duì)硝基苯基)萘并[1,2-b]苯并呋喃)的結(jié)構(gòu)(圖8)及表征數(shù)據(jù)如下所示。
Yellow solid,m.p.:203.2 ~ 205.8 ℃(uncorrected);1H NMR(500 MHz,CDCl3)δ:8.48(d,J = 8.0 Hz,1H),8.40(d,J = 8.5 Hz,2H),7.98(d,J = 8.0 Hz,1H),7.84 ~ 7.91(m,2H),7.65 ~ 7.73(m,3H),7.61(t,J = 7.5 Hz,1H),7.41 ~ 7.46(m,2H),7.20(t,J = 8.0 Hz,1H);13C NMR(125 MHz,CDCl3)δ:156.1,152.5,147.5,146.7,138.6,132.9,132.6,130.0,128.5,127.1,127.0,126.5,124.8,124.0,123.8,122.8,121.6,121.0,121.0,116.7,112.0;HRMS(ESI)m/z calcd for C22H14NO3+(M+H)+ 340.096 8,found 340.097 3.
產(chǎn)物2g(6-正戊基萘并[1,2-b]苯并呋喃)的結(jié)構(gòu)(圖9)及表征數(shù)據(jù)如下所示。
White solid,m.p. 69.0 ~ 70.0 ℃(uncorrected);1H NMR(500 MHz,CDCl3)δ:8.39(d,J = 8.0 Hz,1H),7.99(d,J = 8.0 Hz,1H),7.88(d,J = 8.0 Hz,1H),7.70(d,J = 8.0 Hz,1H),7.43 ~ 7.56(m,4H),7.38(t,J = 7.0 Hz,1H),3.19(t,J = 8.0 Hz,2H),1.82 ~ 1.88(m,2H),1.36 ~ 1.52(m,4H),0.92(t,J = 8.0 Hz,3H);13C NMR(125 MHz,CDCl3)δ:155.9,152.2,136.0,133.0,127.7,126.1,125.7,125.0,122.9,121.9,121.7,120.8,119.9,118.4,111.8,34.2,31.9,29.4,22.6,14.1;(M+H)HRMS(ESI)m/z calcd for C21H21O+(M+H)+ 289.158 7,found 289.158 7。
產(chǎn)物2h(6-正辛基萘并[1,2-b]苯并呋喃)的結(jié)構(gòu)(圖10)及表征數(shù)據(jù)如下所示。
White solid,m.p. 80.3 ~ 83.6 ℃(uncorrected);1H NMR(500 MHz,CDCl3)δ:0.88(t,J = 7.0 Hz,3H),1.26 ~ 1.40(m,8H),1.49 ~ 1.56(m,2H),1.86 ~ 1.89(m,2H),3.24(t,J = 7.5 Hz,2H),7.41(t,J = 7.5 Hz,1H),7.48(t,J = 7.0 Hz,1H),7.52 ~ 7.59(m,3H)7.73(d,J = 8.0 Hz,1H),7.92(d,J = 8.0 Hz,1H),8.03(d,J = 7.5 Hz,1H),8.41(d,J = 8.0 Hz,1H);13C NMR(125 MHz,CDCl3)δ:14.1,22.7,29.3,29.5,29.7,29.8,31.9,34.2,111.8,118.4,119.9,120.8,121.8,122.0,122.9,125.0,125.5,125.7,126.2,127.8,133.0,136.1,152.2,155.9;HRMS(ESI)m/z calcd for C21H21O+(M+H)+ 331.205 6,found 331.205 5。
產(chǎn)物2i(6-(環(huán)己基-1-烯)萘并[1,2-b]苯并呋喃)的結(jié)構(gòu)(圖11)及表征數(shù)據(jù)如下所示。
White solid,m.p. 120.2 ~ 123.6 ℃:(uncorrected);1H NMR(500 MHz,CDCl3)δ:8.41(d,J = 8.0 Hz,1H),7.99(d,J = 7.5 Hz,1H),7.91(d,J = 8.5 Hz,1H),7.69(d,J = 8.5 Hz,1H),7.57(t,J = 8.0 Hz,1H), 7.50 ~ 7.53(m,2H),7.43(t,J = 7.5 Hz,1H),7.34(t,J = 7.5 Hz,1H),6.00 ~ 6.06(m,1H),2.50 ~ 2.52(m,2H),2.31 ~ 2.38(m,2H),1.592 ~ 1.950(m,2H),1.82 ~ 1.87(m,2H);13C NMR(125 MHz,CDCl3)δ:156.0,152.1,138.2,137.0,132.9,128.0,127.0,126.2,125.8,125.8,124.9,122.7,122.1,121.3,120.8,120.2,117.5,111.7,29.6,25.5,23.2,22.3;HRMS(ESI)m/z calcd for C21H21O+(M+H)+ 299.143 0,found 299.143 0.
3 結(jié)論
本研究實(shí)現(xiàn)了鈀催化炔烴環(huán)化合成萘并[1,2-b]苯并呋喃衍生物。以摩爾分?jǐn)?shù)為5%的醋酸鈀作為催化劑,摩爾分?jǐn)?shù)為10%的三苯基膦作為配體,5當(dāng)量三氟醋酸作為助劑的催化體系,反應(yīng)條件溫和,具有較高的催化效率。催化劑用量降低至1%,配體降低至5%,仍然可以得到88%的收率,為擴(kuò)大量的反應(yīng)提供了參考。該反應(yīng)不僅適用于給電子和拉電子取代的芳基炔烴,并且對(duì)脂肪炔烴和共軛烯烴的反應(yīng)底物也同樣適用,具有良好的底物適用性。為進(jìn)一步合成具有生物和藥物活性的萘并[1,2-b]苯并呋喃骨架提供了簡(jiǎn)便、高效的途徑,具有潛在的應(yīng)用價(jià)值。
參考文獻(xiàn)
[1] LICHITSKII B V,MELEKHINA V G,KOMOGORT-SEV A N,et al. Synthesis of substituted naphtho[1,2-b]- benzofuran-7(8H)-ones via photoinduced rearrangement of 4H-chromen-4-one derivatives[J]. Organic & Biomolecular Chemistry,2020,18(13):2501-2509.
[2] MILYUTIN C V,LICHITSKY B V,MELEKHINA V G,et al. Synthesis of 1H-pyrano[4,3-b]benzofuran-1-one derivatives via photochemical cyclization of substituted 4H-furo[3,2-c]pyran-4-ones[J]. Tetrahedron Letters,2020,61(44):152469.
[3] LICHITSKII B V,MILYUTIN C V,MELEKHINA V G,et al. Photochemical synthesis of novel naphtho[1,2-b]- benzofuran derivatives from 2,3-disubstituted benzofurans[J]. Chemistry of Heterocyclic Compounds,2021,57:13-19.
[4] SRIVASTAVA V,NEGI A S,KUMAR J K,et al. Synthesis of 1-(3′,4′,5′-trimethoxy) phenyl naphtho[2,1-b]furan as a novel anticancer agent[J]. Bioorganic & Medicinal Chemistry Letters,2006,16(4):911-914.
[5] NAYAK M,SINGH D K,KIM I. Regiospecific synthesis of 5- and 6-acylated naphtho[1,2-b]benzofurans via intramolecular alkyne carbonyl metathesis[J]. Synthesis,2017,49(9):2063-2073.
[6] CHEN K,LIU S,WANG D,et al. Silver/scandium-cocatalyzed bicyclization of β-alkynyl ketones leading to benzo[c]xanthenes and naphtho[1,2-b]benzofurans[J]. The Journal of Organic Chemistry,2017,82(21):11524-11530.
[7] LICHITSKY B V,KARIBOV T T,MELEKHINA V G,et al. General approach to substituted naphtho[1,2-b]benzofurans via photochemical 6π-electrocyclization of benzofuranyl containing cinnamonitriles[J]. Tetrahedron,2021,90:132207.
[8] HUANG X C,WANG F,LIANG Y,et al. Halopalladation/decarboxylation/carbon?carbon forming domino process:synthesis of 5-halo-6-substituted benzo[b]naphtho[2,1-d]furans[J]. Organic Letters,2009,11(5):1139-1142.
[9] ABARGHOOEI M A,MOHEBAT R,KARIMI-JABERI Z,et al. Synthesis of 3-aryl-benzo[b]furans and 3-aryl-naphtho[b]furans using N-propyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride immobilised on SiO2 as an efficient and reusable catalyst[J]. Journal of Chemical Research,2018,42(2):86-89.
[10] WU X F,ANBARASAN P,NEUMANN H,et al. From noble metal to Nobel Prize:palladium-catalyzed coupling reactions as key methods in organic synthesis[J]. Angewandte Chemie International Edition,2010,49(48):9047-9050.
[11] TORBORG C,BELLER M. Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical,agrochemical,and fine chemical industries[J]. Advanced Synthesis & Catalysis,2009,351(18):3027-3043.
[12] SEECHURN C C C J,KITCHING M O,COLACOT T J,et al. Palladium-catalyzed cross-coupling:a historical contextual perspective to the 2010 Nobel Prize[J]. Angewandte Chemie International Edition,2012,51(21):5062-5085.
[13] MITSUDO K,SATO H,YAMASAKI A,et al. Synthesis and properties of ethene-bridged terthiophenes[J]. Organic Letters,2015,17(19):4858-4861.
[14] LU Y F,QIAO Y J,XUE H D,et al. From colorless to near-infrared S-heteroarene isomers:unexpected cycloaromatization of cyclopenta[b]thiopyran catalyzed by PtCl2[J]. Organic Letters,2018,20(21):6632-6635.
[15] YAO T F,XIA T,YAN W,et al. Copper-catalyzed chemodivergent cyclization of N-(ortho-alkynyl)aryl-pyrrole and indoles[J]. Organic Letters,2020,22(11):4511-4516.
[16] BOLDT S,PARPART S,VILLINGER A,et al. Synthesis and properties of aza-ullazines[J]. Angewandte Chemie International Edition,2017,56(16):4575-4578.
[17] QIANG P R,SUN Z B,WAN M Q,et al. Successive annulation to fully zigzag-edged polycyclic heteroaromatic hydrocarbons with strong blue-green electroluminescence[J]. Organic Letters,2019,21(12):4575-4579.
[18] BAM R,YANG W L,LONGHI G,et al. Four-fold alkyne benzannulation: synthesis,properties,and structure of pyreno[a]pyrene-based helicene hybrids[J]. Organic Letters,2019,21(21):8652-8656.
[19] JIA C G,PIAO D G,OYAMADA J Z,et al. Efficient activation of aromatic C-H bonds for addition to C-C multiple bonds[J]. Science,2000,287(5460):1992-1995.
[20] YAMAMOTO Y. Synthesis of heterocycles via transition-metal-catalyzed hydroarylation of alkynes[J]. Chemical Society Reviews,2014,43(5):1575-1600.
[21] AGUILAR E,SANZ R,F(xiàn)ERNANDEZ-RODRIGUEZ M A,et al. 1,3-Dien-5-ynes:versatile building blocks for the synthesis of carbo- and heterocycles[J]. Chemical Reviews,2016,116(14):8256-8311.
[22] GOLDFINGER M B,CRAWFORD K B,SWAGER T M. Directed electrophilic cyclizations:efficient methodology for the synthesis of fused polycyclic aromatics[J]. Journal of the American Chemical Society,1997,119(20):4578-4593.
[23] YANG W L,MONTEIRO J H S K,DE BETTENCO-URTDIAS A,et al. Pyrenes,peropyrenes,and teropyrenes:synthesis,structures,and photophysical properties[J]. Angewandte Chemie International Edition,2016,55(35):10427-10430.
[24] YANG W L,LONGHI G,ABBATE S,et al. Chiral peropyrene:synthesis,structure,and properties[J]. Journal of the American Chemical Society,2017,139(37):13102-13109.
[25] MERLIC C A,PAULY M E. Ruthenium-catalyzed cyclizations of dienylalkynes via vinylidene intermediates[J]. Journal of the American Chemical Society,1996,118(45):11319-11320.
[26] FURSTNER A,MAMANE V. Flexible synthesis of phenanthrenes by a PtCl2-catalyzed cycloisomerization reaction[J]. The Journal of Organic Chemistry,2002,67(17):6264-6267.
[27] MAMANE V,HANNEN P,F(xiàn)URSTNER A. Synthesis of phenanthrenes and polycyclic heteroarenes by transition-metal catalyzed cycloisomerization reactions[J]. Chemistry-A European Journal,2004,10(18):4556-4575.
[28] MILIAN A,GARCIA-GARCIA P,PEREZ-REDONDO A,et al. Selective synthesis of phenanthrenes and dihydrophenanthrenes via gold-catalyzed cycloisomerization of biphenyl embedded trienynes[J]. Organic Letters,2020,22(21):8464-8469.
[29] CHERNYAK N,GEVORGYAN V. Exclusive 5-exo-dig hydroarylation of o-alkynyl biaryls proceeding via C?H activation pathway[J]. Journal of the American Chemical Society,2008,130(17):5636-5637.
[30] AZIZ J,F(xiàn)RISON G,LE MENEZ P,et al. Gold versus palladium:a regioselective cycloisomerization of aromatic enynes[J]. Advanced Synthesis & Catalysis,2013,355(17):3425-3436.
Pdlladium-catalyzed cyclization of alkynes for the synthesis of
naphtho[1,2-b]benzofuran derivatives
SUN Han1,2, HUANG Xiaocheng*1,2, YAO Zhixiang1,2, LUAN Tian1,2
(1. School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China;2. Guangxi Key Laboratory of Green Processing of Sugar Resources (Guangxi University of Science and Technology), Liuzhou 545006, China)
Abstract: A palladium acetate-catalyzed cyclization of 2-(2-ethynylphenyl)benzofurans for the synthesis of naphtho[1,2-b] -benzo-furans was developed. This method used triphenylphosphine as ligand and trifluoroacetic acid as additive, respectively. After screening the catalyst, ligand, additive and solution, the optimized reaction condition was obtained: 5% palladium acetate(mole fraction), 10% triphenyl phosphine(mole fraction), 5 equivalent trifluoroacetic acid, dichloromethane as solvent, reaction temperature was room temperature with nitrogen protection. The structures were confirmed by 1H NMR, 13C NMR and GC-MS. This reaction provides a simple and efficient route for the synthesis of naphtho[1,2-b]benzofuran derivatives with mild conditions and broad substrate scope.
Key words: palladium acetate; triphenylphosphine; trifluoroacetic acid; cyclization; naphthobenzofuran
(責(zé)任編輯:于艷霞)