陳佳音 鐘斌 賈蕓菁 李莎莎 陳依燭 李晨羽 凌雁武
【摘要】 目的 利用生物信息學(xué)篩選阿爾茨海默?。ˋlzheimers disease,AD)海馬組織的差異表達(dá)基因(DEGs),分析DEGs的生物學(xué)功能和信號通路,為AD的診斷、治療靶點(diǎn)的篩選提供參考。方法 利用GEO(gene expression omnibus)數(shù)據(jù)庫下載基因芯片GSE48350、GSE5281,使用數(shù)據(jù)庫GEO2R工具在線分析,以P<0.05,|logFC>1|為條件篩選差異基因,篩選出與AD海馬組織相關(guān)的DEGs,通過制作維恩圖取交集獲得兩個(gè)芯片共同DEGs;使用R語言enrichGO函數(shù)對篩選出來的DEGs進(jìn)行基因本體論(GO)功能富集分析;在Metascape網(wǎng)站做京都基因與基因組百科全書(KEGG)通路分析;使用STRING數(shù)據(jù)庫和Cytoscape3.9.1軟件進(jìn)行蛋白-蛋白相互作用(PPI)網(wǎng)絡(luò)分析。把篩選出來的共同DEGs作為關(guān)鍵基因,通過Cytoscape3.9.1軟件中插件Mcode和CytoHubba分析后,按照節(jié)點(diǎn)度值大小排序,將前四個(gè)基因視為核心基因。最后,通過TargetScan與miRanda數(shù)據(jù)庫評估核心基因相關(guān)的miRNA,并選用基因芯片GSE129053進(jìn)行驗(yàn)證,構(gòu)建核心基因的miRNA-mRNA調(diào)控網(wǎng)絡(luò)。結(jié)果 兩個(gè)基因芯片共有67個(gè)DEGs,其中上調(diào)基因36個(gè),下調(diào)基因31個(gè)。GO分析結(jié)果顯示,主要富集在生物過程中為突觸囊泡介導(dǎo)的運(yùn)輸、神經(jīng)元突觸囊泡循環(huán)、網(wǎng)格蛋白介導(dǎo)的突觸囊泡內(nèi)吞機(jī)制等;在細(xì)胞定位中主要的過程有胞外囊泡、突觸小泡等;分子功能主要過程有網(wǎng)格蛋白結(jié)合、葡萄糖的跨膜轉(zhuǎn)運(yùn)活性等。KEGG通路富集分析結(jié)果顯示,DEGs富集在甲狀腺激素信號通路(hsa04919);DEGs編碼蛋白的PPI網(wǎng)絡(luò)含節(jié)點(diǎn)10個(gè);運(yùn)用Cytoscape中CytoHubba插件和Mcode插件,把篩選出來的共同基因作為關(guān)鍵基因,前四個(gè)基因視為核心基因,分別為SNAP-25、SNAP-91、STMN2、GAP43,可以發(fā)現(xiàn)hsa-miR-153-3p關(guān)聯(lián)的靶基因最多。結(jié)論 AD患者海馬組織中關(guān)鍵的核心基因?yàn)镾NAP-25、SNAP-91、STMN2、GAP43,hsa-miR-153-3p可能通過調(diào)控其靶基因SNAP-25、STMN2在AD患者海馬組織中發(fā)揮重要作用,為AD的診斷和治療提供了候選靶點(diǎn)。
【關(guān)鍵詞】 阿爾茨海默??;生物信息學(xué);GEO數(shù)據(jù)庫;海馬;鋁致認(rèn)知障礙
中圖分類號:R749.1 文獻(xiàn)標(biāo)志碼:A DOI:10.3969/j.issn.1003-1383.2023.06.003
A study on the analysis of differentially expressed genes in the hippocampus of Alzheimer's disease based on bioinformatics
CHEN Jiayin, ZHONG Bin, JIA Yunjing, LI Shasha, CHEN Yizhu, LI Chenyu, LING Yanwu▲
(School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China)
【Abstract】 Objective To screen differentially expressed genes (DEGs) in the hippocampus of Alzheimer's disease (AD) by bioinformatics, analyze the biological functions and signal pathways of DEGs, and provide reference for the diagnosis and treatment target screening of Alzheimer's disease. Methods The gene chips GSE48350 and GSE5281 were downloaded from GEO (gene expression omnibus) database, database GEO2R tool was used to analyze them online. The differential genes were screened on the condition of P<0.05, |logFC>1|, DEGs related to AD hippocampal tissue were screened, and two chip common DEGs were obtained by making the Venn diagram to take intersection; R language enrichGO function was used to enrich the GO function of the selected DEGs; the pathway analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) was conducted on the Metascape website; STRING database and Cytoscape 3.9.1 software were used to analyze protein-protein interaction (PPI) network. The selected common DEGs were considered as key genes, and after analyzing them through the plugins Mcode and CytoHubba in Cytoscape 3.9.1 software, the common genes of the two were considered as key genes. Finally, the miRNA related to the core gene was evaluated through TargetScan and miRanda websites, and the gene chip GSE129053 was selected for verification to construct the miRNA-mRNA regulatory network of the core gene. Results There were 67 DEGs in the two gene chips, of which 36 were up-regulated genes and 31 were down regulated genes. The results of GO analysis showed that synaptic vesicle mediated transportation, neuronal synaptic vesicle circulation, and synaptic vesicle endocytosis mechanisms mediated by grid proteins mainly enriched on biological processes; the main processes in cell localization included extracellular vesicles, synaptic vesicles, etc; the main processes of molecular functions included the binding of clathrin and the transmembrane transport activity of glucose. The enrichment analysis of KEGG pathway showed that DEGs were enriched in the thyroid hormone signal pathway (hsa04919); the PPI network of DEGs encoding proteins contained 10 nodes; by using the CytoHubba and Mcode plugins in Cytoscape, the selected common genes were served as key genes, and the first four genes were considered as the core genes, namely, SNAP-25, SNAP-91, STMN2, and GAP43, respectively, and it was found that hsa-miR-153-3p was associated with the most target genes. Conclusion Key core genes in the hippocampus of AD patients are SNAP-25, SNAP-91, STMN2, and GAP43. hsa-miR-153-3p may play an important role in the hippocampus of AD patients by regulating its target genes SNAP-25 and STMN2, which provides candidate targets for the diagnosis and treatment of AD.
【Key words】 Alzheimer's disease(AD); bioinformatics; GEO database;? hippocampus; aluminum induced cognitive impairment
阿爾茨海默?。ˋlzheimers disease,AD)是一種神經(jīng)退行性疾病,癥狀發(fā)展從輕到重,主要表現(xiàn)為認(rèn)知能力下降和大腦不可逆轉(zhuǎn)的記憶喪失[1]。AD的發(fā)病機(jī)制有多種,比較公認(rèn)的有β-淀粉蛋白異常沉積、tau蛋白的磷酸化、神經(jīng)原纖維纏結(jié)(NFT)、氧化應(yīng)激、胰島素信號通路障礙、線粒體功能障礙等[2]。近年來,隨著我國人口老齡化進(jìn)程加劇,AD患者數(shù)量迅速增加,目前已超過700萬人[3]。海馬是中樞神經(jīng)系統(tǒng)中參與學(xué)習(xí)和記憶貯存的重要組織,其改變與衰老、Aβ沉積、tau蛋白過度磷酸化、缺血等影響因素相關(guān)。本研究旨在通過生物信息學(xué)方法聯(lián)合雙芯片分析,探索AD患者海馬組織中的關(guān)鍵基因靶點(diǎn),為治療AD提供新的思路。
1 材料與方法
1.1 基因芯片數(shù)據(jù)來源
在NCBI公共數(shù)據(jù)庫GEO(https://www.ncbi.nlm.nih.gov/geo/)以“Alzheimer's Disease”為關(guān)鍵詞搜索目標(biāo),下載GSE5281與GSE48350的基因芯片數(shù)據(jù)集,在這兩個(gè)芯片中篩選60歲以上人群的海馬樣本,在GSE48350選取44個(gè)樣本,其中19個(gè)AD樣本和25個(gè)對照樣本;在GSE5281選取23個(gè)樣本,其中10個(gè)AD樣本和13個(gè)對照樣本,以上兩個(gè)數(shù)據(jù)集平臺(tái)都是GPL570。
1.2 差異表達(dá)基因(DEGs)的篩選
應(yīng)用GEO數(shù)據(jù)庫的分析工具GEO2R(www.ncbi.nlm.nih.gov/geo/ge2r)進(jìn)行分析,GEO2R采用R語言軟件GEOquery包讀取數(shù)據(jù),limma包用于篩選基因表達(dá),去除沒有相應(yīng)基因符號的探針集或有多探針集的基因,以P<0.05,|logFC|>1作為條件篩選,兩個(gè)芯片取交集獲得共同DEGs。
1.3 DEGs的GO富集分析和KEGG通路分析
基因本體論(gene ontology,GO)從生物過程(biological process, BP)、細(xì)胞定位(cellular component, CC)和分子功能(molecular function, MF)三個(gè)方面提供基因的簡單注釋,使用R語言enrichGO函數(shù)對篩選出來的DEGs進(jìn)行GO功能富集分析。京都基因與基因組百科全書(KEGG)是一個(gè)專門存儲(chǔ)不同物種基因路徑信息的數(shù)據(jù)庫,將DEGs輸入Metascape網(wǎng)站(http://metascape.org/)進(jìn)行KEGG基因通路分析,Metascape是一個(gè)公開的數(shù)據(jù)庫,有助于全面基因列表注釋和分析。
1.4 構(gòu)建蛋白-蛋白質(zhì)互作網(wǎng)絡(luò)
相互作用基因庫檢索工具STRING11.5(https://cn.string-db.org/)數(shù)據(jù)庫能夠?qū)ふ谊P(guān)鍵基因并構(gòu)建編碼蛋白質(zhì)與預(yù)測蛋白質(zhì)之間的相互作用,構(gòu)建DEGs編碼蛋白相互作用網(wǎng)絡(luò)(protein-protein interaction,PPI)。篩選條件可信度為0.7。然后將PPI結(jié)果導(dǎo)入Cytoscape 3.9.1軟件中進(jìn)行可視化,運(yùn)用Cytoscape中CytoHubba插件和Mcode插件,把篩選出來的共同基因作為關(guān)鍵基因,按照節(jié)點(diǎn)度值大小排序,前四個(gè)基因視為核心基因。
1.5 構(gòu)建核心基因的miRNA-mRNA調(diào)控網(wǎng)絡(luò)
用在線數(shù)據(jù)庫TargetScan(www.TargetScan.org)與miRanda(www.microrna.org/microrna/home.do)尋找一些潛在的miRNAs,用于預(yù)測核心基因上游靶標(biāo)。
2 結(jié)果
2.1 篩選的DEGs
基因芯片GSE5281數(shù)據(jù)集共篩選出DEGs 5496個(gè),其中上調(diào)基因3844個(gè),下調(diào)基因1652個(gè),見圖1?;蛐酒珿SE48350篩選出DEGs共228個(gè),上調(diào)基因144個(gè),下調(diào)基因84個(gè),見圖2。這兩個(gè)數(shù)據(jù)集有共同DEGs 90個(gè),其維恩圖見圖3。排除GSE5281和GSE48350中表達(dá)趨勢相反的基因后,最終我們得到了上調(diào)DEGs 36個(gè),下調(diào)DEGs 31個(gè),共67個(gè)。
2.2 DEGs的GO功能分析與KEGG通路分析
DEGs在R語言中的GO功能分析見圖4,差異基因名稱與GO富集生物功能的關(guān)系見圖5。GO分析結(jié)果顯示,DEGs主要集中于為網(wǎng)格蛋白介導(dǎo)的突觸囊泡內(nèi)吞機(jī)制、神經(jīng)元突觸囊泡循環(huán)等生物過程;富集在胞外囊泡、突觸小泡等細(xì)胞過程;富集在網(wǎng)格蛋白結(jié)合、葡萄糖的跨膜轉(zhuǎn)運(yùn)活性、SNARE復(fù)合體、脂質(zhì)轉(zhuǎn)運(yùn)體活性等分子功能。KEGG通路富集分析結(jié)果顯示,DEGs富集在甲狀腺激素信號通路(hsa04919),分析結(jié)果見圖6。
2.3 DEGs調(diào)控蛋白網(wǎng)絡(luò)與關(guān)鍵基因分析
以DEGs構(gòu)建蛋白互作網(wǎng)絡(luò),互作關(guān)系的蛋白質(zhì)共有10個(gè),將蛋白互作網(wǎng)絡(luò)可視化,如圖7所示。我們把篩選出來的共同基因作為關(guān)鍵基因,分別為SNAP-25、SNAP-91、STMN2、GAP43、STON2、SYT13、AMPH、SNCB、MET、KITLG,其中前四個(gè)基因視為核心基因。
2.4 構(gòu)建核心基因的miRNA-mRNA調(diào)控網(wǎng)
用在線數(shù)據(jù)庫TargetScan、miRanda尋找一些潛在的miRNAs,用于預(yù)測核心基因上游靶標(biāo),并用基因芯片GSE129053來驗(yàn)證。GSE129053驗(yàn)證有3個(gè)AD與3個(gè)大鼠海馬組織,平臺(tái)GPL18058通過陣列進(jìn)行非編碼RNA分析,以P<0.05,|logFC|>1作為條件篩選,共有90個(gè)上調(diào)的miRNA,368個(gè)下調(diào)的miRNA,篩選出與核心miRNA重復(fù)的miRNA并構(gòu)建核心基因的miRNA-mRNA調(diào)控網(wǎng),可以發(fā)現(xiàn)hsa-miR-153-3p關(guān)聯(lián)的靶基因最多。見表1。
3 討論
AD是一種病因較多、病程較長、危險(xiǎn)因素較多、發(fā)病機(jī)制較為復(fù)雜的神經(jīng)退行性疾病,由于其發(fā)病機(jī)制研究尚未有定論,目前仍缺乏有效的治療方法。
本研究通過生物信息學(xué)方法從GEO數(shù)據(jù)庫中選取GSE5281與GSE48350雙芯片聯(lián)合分析AD患者海馬組織關(guān)鍵的核心基因,用在線數(shù)據(jù)庫TargetScan、miRanda尋找核心基因上游核心miRNA靶標(biāo),并選用基因芯片GSE129053對核心miRNA進(jìn)行驗(yàn)證;構(gòu)建關(guān)鍵核心基因的miRNA-mRNA調(diào)控網(wǎng)絡(luò);分析結(jié)果顯示hsa-miR-153-3p可能通過調(diào)控靶基因SNAP-25、STMN2,在AD患者海馬組織中是可行的生物標(biāo)志物。
SNAP-25是DEGs海馬組織中PPI網(wǎng)絡(luò)連接節(jié)點(diǎn)數(shù)量最多的基因,與突觸囊泡釋放和再循環(huán)、神經(jīng)軸突延伸、神經(jīng)元修復(fù)和突觸形成[4]等多種生理功能有關(guān)。許多參與突觸囊泡運(yùn)輸和釋放的基因隨著AD患者年齡的增長發(fā)生了顯著變化。SNAP-25直接介導(dǎo)突觸小泡與突觸前膜的融合調(diào)控突觸囊泡轉(zhuǎn)運(yùn)和神經(jīng)遞質(zhì)釋放到突觸中,因此對調(diào)節(jié)神經(jīng)遞質(zhì)釋放到突觸間隙中是至關(guān)重要的[5]。有研究結(jié)果表明海馬CA1區(qū)域中的SNAP-25參與了記憶鞏固[6]。通過敲除SNAP-25并對海馬突觸內(nèi)吞作用進(jìn)行成像,發(fā)現(xiàn)SNAP-25參與網(wǎng)格蛋白依賴性內(nèi)吞作用[7]。ZHANG等[8]研究表明SNAP-25和SNAP-25/Aβ42比率有望作為AD最早癥狀階段的診斷和預(yù)后評估生物標(biāo)志物。突觸體相關(guān)蛋白91(SNAP-91)也稱為AP180,HU等[9]通過基于疾病臨床和病理狀態(tài)的基因共表達(dá)網(wǎng)絡(luò)分析,確定SNAP-91與AD發(fā)病機(jī)制的新關(guān)聯(lián)。有研究表明,STMN2可以維持正常的軸突生長和再生[10]。GAP43是一種與神經(jīng)發(fā)育和突觸重塑密切相關(guān)的特異性蛋白,它在神經(jīng)系統(tǒng)的海馬體中大量表達(dá),與長期學(xué)習(xí)和記憶有關(guān)[11]。有學(xué)者對死后AD患者的大腦研究報(bào)告發(fā)現(xiàn)海馬體區(qū)域GAP43增加[12]。
隨著我國廣西鋁礦開發(fā)規(guī)模的不斷擴(kuò)大,礦區(qū)高鋁環(huán)境對周圍居民的健康造成嚴(yán)重的威脅[13]。流行病學(xué)資料顯示,長期接觸鋁可導(dǎo)致認(rèn)知功能障礙(mild cognitive impairment,MCI),MCI是AD發(fā)病前階段,早期發(fā)現(xiàn)并干預(yù)治療有望延緩或阻止AD的發(fā)生[14]。有研究發(fā)現(xiàn)MCI患者體液或多個(gè)腦區(qū)已經(jīng)發(fā)生了改變[15]。我們課題組前期通過對廣西百色市平果市鋁礦區(qū)12位60歲以上老人進(jìn)行調(diào)查取樣,其中6人為MCI患者,6人為對照組,利用高通量測序?qū)嶒?yàn)對上述樣品進(jìn)行深入分析,研究發(fā)現(xiàn)共有130個(gè)差異表達(dá)的miRNA,上調(diào)表達(dá)12個(gè),下調(diào)表達(dá)118個(gè),其中hsa-miR-153-3p表達(dá)下調(diào),證明鋁導(dǎo)致認(rèn)知障礙發(fā)生發(fā)展與AD具有相似的發(fā)病機(jī)制,為進(jìn)一步早期治療MCI延緩成嚴(yán)重AD的發(fā)生提供新的治療思路[16]。有研究表明miR-153-3p通過SRC依賴性MAPK信號通路,可改善認(rèn)知功能障礙并減少腦損傷[17]。
綜上所述,AD患者海馬組織中關(guān)鍵的核心基因?yàn)镾NAP-25、SNAP-91、STMN2、GAP43,同時(shí)hsa-miR-153-3p表達(dá)水平在AD海馬組織中具有較高的診斷、預(yù)后評估價(jià)值,并可能通過調(diào)控靶基因SNAP-25、STMN2發(fā)揮作用。
參 考 文 獻(xiàn)
[1] ISAEV N K, STELMASHOOK E V, GENRIKHS E E, et al. Alzheimer's disease:an exacerbation of senile phenoptosis[J].Biochemistry Moscow, 2015, 80(12):1578-1581.
[2]SHAH H,? ALBANESE E,? DUGGAN C, et al. Research priorities to reduce the global burden of dementia by 2025[J].Lancet Neurol, 2016, 15(12):1285-1294.
[3]JIA J P, WEI C B,? CHEN S Q, et al. The cost of Alzheimer's disease in China and re-estimation of costs worldwide[J].Alzheimer's Dement, 2018, 14(4): 483-491.
[4]BARK I C, HAHN K M, RYABININ A E, et al. Differential expression of SNAP-25 protein isoforms during divergent vesicle fusion events of neural development[J].Proc Natl Acad Sci U S A, 1995, 92(5):1510-1514.
[5]JAHN R, SCHELLER R H.SNAREs:engines for membrane fusion[J].Nat Rev Mol Cell Biol, 2006, 7(9):631-643.
[6]HOU Q L, GAO X,? LU Q, et al. SNAP-25 in hippocampal CA3 region is required for long-term memory formation[J].Biochem Biophys Res Commun, 2006, 347(4):955-962.
[7]ZHANG Z, WANG D S, SUN T, et al. The SNARE proteins SNAP25 and synaptobrevin are involved in endocytosis at hippocampal synapses[J].J Neurosci, 2013, 33(21):9169-9175.
[8]ZHANG H, THERRIAULT J, KANG M S, et al. Cerebrospinal fluid synaptosomal-associated protein 25 is a key player in synaptic degeneration in mild cognitive impairment and Alzheimers disease[J].Alzheimers Res Ther, 2018, 10(1):80.
[9]HU R T, YU Q, ZHOU S D, et al. Co-expression network analysis reveals novel genes underlying alzheimer's disease pathogenesis[J].Front Aging Neurosci, 2020, 12:605961.
[10]KLIM J R, WILLIAMS LA, LIMONE F, et al. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair[J].Nat Neurosci, 2019, 22(2):167-179.
[11]NEVE R L, FINCH E A, BIRD E D, et al. Growth-associated protein GAP-43 is expressed selectively in associative regions of the adult human brain[J].Proc Natl Acad Sci U S A, 1988, 85(10):3638-3642.
[12]REKART J L,? QUINN B, ?MESULAM M M, et al. Subfield-specific increase in brain growth protein in postmortem hippocampus of Alzheimers patients[J].Neuroscience, 2004, 126(3):579-584.
[13]漆光紫,周敏,龐廣福,等.職業(yè)性鋁暴露與認(rèn)知功能障礙的關(guān)系研究[J].右江民族醫(yī)學(xué)院學(xué)報(bào),2016,38(1):20-21.
[14]BRADBURN S,? MURGATROYD C, RAY N.Neuroinflammation in mild cognitive impairment and Alzheimer's disease:a meta-analysis[J].Ageing Res Rev, 2019, 50:1-8.
[15]PAK V M, ONEN S H, BLIWISE D L, et al. Sleep disturbances in MCI and AD: neuroinflammation as a possible mediating pathway[J].Front Aging Neurosci, 2020, 12:69.
[16]李莎莎.廣西鋁暴露致認(rèn)知障礙老年人群血清外泌體差異表達(dá)miRNAs的研究[D].百色:右江民族醫(yī)學(xué)院,2022.
[17]LI Y M,? PENG B,? LI Y, et al. MiR-203a-3p/153-3p improves cognitive impairments induced by ischemia/reperfusion via blockade of SRC-mediated MAPK signaling pathway in ischemic stroke[J].Chem Biol Interact, 2022, 358:109900.
(收稿日期:2022-08-21 修回日期:2022-12-14)
(編輯:潘明志)