• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      一類具有Holling IV型功能反應(yīng)函數(shù)的競爭模型平衡態(tài)正解的存在性和穩(wěn)定性

      2023-07-14 10:14:12王利娟白娜娜武陽鴿楊佳饒

      王利娟 白娜娜 武陽鴿 楊佳饒

      摘? ? 要:在Dirichlet 邊界條件下研究一類具有Holling IV 型功能反應(yīng)函數(shù)的競爭模型平衡態(tài)正解的存在性和穩(wěn)定性。利用特征值問題的主特征值得到平衡態(tài)正解存在的必要條件,通過橢圓型方程比較原理給出平衡態(tài)正解的先驗(yàn)估計(jì)。運(yùn)用局部分歧理論和穩(wěn)定性理論研究了平衡態(tài)正解的存在性和穩(wěn)定性。 通過數(shù)值模型驗(yàn)證了平衡態(tài)正解的存在性定理。結(jié)果表明,當(dāng)兩競爭物種的增長率滿足一定條件時(shí),兩競爭物種可以共存且共存態(tài)是穩(wěn)定的。

      關(guān)鍵詞:Holling IV型功能反應(yīng)函數(shù);競爭模型;分歧理論;穩(wěn)定性理論

      中圖分類號:O175. 26? ? ? ? ?文獻(xiàn)標(biāo)志碼:A? ? ? ? ?文章編號:1009-5128(2023)05-0087-08

      收稿日期:2022-12-22

      基金項(xiàng)目:陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃面上項(xiàng)目:兩類電流體宏觀連續(xù)介質(zhì)模型大解的定性理論研究(2022JM-034);陜西省科技廳自然科學(xué)基礎(chǔ)研究計(jì)劃項(xiàng)目:具有自控能力的V-T捕食模型的Dirichlet問題研究(2018JQ1066)

      作者簡介:王利娟,女,山西呂梁人,寶雞文理學(xué)院數(shù)學(xué)與信息科學(xué)學(xué)院副教授,理學(xué)博士,主要從事反應(yīng)擴(kuò)散方程研究;白娜娜,女,陜西榆林人,寶雞文理學(xué)院數(shù)學(xué)與信息科學(xué)學(xué)院碩士研究生。

      5? ? 結(jié)語

      本文討論了一類具有Holling IV型功能反應(yīng)函數(shù)的兩種競爭的反應(yīng)擴(kuò)散模型。在齊次Dirichlet邊界條件下,運(yùn)用分歧理論分析了該模型在兩個(gè)半平凡解附近,平衡態(tài)正解的局部存在性。通過線性算子的穩(wěn)定性理論得到平衡態(tài)正解穩(wěn)定和不穩(wěn)定性的充分條件,并利用數(shù)值模擬對得到的部分結(jié)果進(jìn)行了驗(yàn)證。該研究表明,當(dāng)兩競爭物種的增長率滿足一定條件時(shí),兩競爭物種可以共存且共存解穩(wěn)定。另外,我們的數(shù)值模擬表明,在適當(dāng)遠(yuǎn)離兩個(gè)半平凡解時(shí),模型也存在平衡態(tài)正解,這說明從半平凡解處發(fā)出的局部分歧解可能延拓為全局解。

      參考文獻(xiàn):

      [1]? CASTILLO-ALVINO H H,MARVA M.Group defense promotes coexistence in interference? competition:The Holling type IV competitive response[J].Mathematics and Computers in Simulation,2022,198:426-445.

      [2]? PAO C V.Coexistence and stability of a competition-diffusion system in population dynamics[J].Journal of Mathematical Analysis and Applications,1981,83(1):54-76.

      [3]? BROWN K J.Spatially inhomogeneous steady state solutions for systems of equations describing interacting populations[J].Journal of Mathematical Analysis and Applications,1983,95(1):251-264.

      [4]? WU J H.Global bifurcation of coexistence state for the competition model in the chemostat[J].Nonlinear Analysis,2000,39(7):817-835.

      [5]? GUO Z M,GAO R H.Structure of positive solutions for some semilinear elliptic systems where bifurcation from infinity occurs[J].Nonlinear Analysis Real World Applications,2006,7(1):109-123.

      [6]? HE X Q,NI W M.The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I:heterogeneity vs.homogeneity[J].Journal of Differential Equations,2013,254(2):528-546.

      [7]? JIANG H,WU J,WANG L,et al.Qualitative Analysis for a Competition Model with B-D Functional Response and Numerical Simulation[J].Numerical Methods for Partial Differential Equations,2014,30(5):1575-1594.

      [8]? SMOLLER J.Shock waves and reaction-diffusion equations[M].New York:Springer-Verlag,1983.

      [9]? CRANDALL M G,RABINOWITZ P H.Bifurcation,perturbation of simple eigenvalues and linearized stability[J].Arch. Rat.Mech. Anal,1973,52(2):161-180.

      [10]? CRANDALL M G,RABINOWITZ P H.Bifurcation from simple eigenvalues[J].Functional Analysis,1971,8(2):321-340.

      【責(zé)任編輯? ? 牛懷崗】

      Existence and Stability of Positive Solutions for a Competing Model with Type Holling IV Functional Response

      WANG Lijuan, BAI Nana, WU Yangge, YANG Jiarao

      (School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, China)

      Abstract: The existence and the stability of steady-state positive solutions of a competition model with Holling type IV functional response are studied under Dirichlet boundary conditions. The necessary conditions for the existence of the steady-state positive solution of the model are obtained by using the principal eigenvalue of the eigenvalue problem, and a priori estimate of the steady-state positive solution is given by using the comparison principle of the elliptic equation. The existence and the stability of steady-state positive solutions of the model are studied by using local bifurcation theory and stability theory. The existence theorem of steady-state positive solution is verified by numerical simulation. The results show that when the growth rates of two competing species satisfy certain conditions, the two competing species can coexist and the coexistence state is stable.

      Key words:Holling IV functional response; competition model; bifurcation theory; stability theory

      囊谦县| 临夏县| 荃湾区| 文昌市| 林口县| 舟山市| 延边| 仁化县| 兖州市| 贵州省| 慈溪市| 收藏| 兴宁市| 左云县| 兴安县| 石嘴山市| 武城县| 东乌珠穆沁旗| 浪卡子县| 长春市| 随州市| 尼木县| 黔东| 黑龙江省| 保康县| 独山县| 左云县| 上思县| 拉萨市| 安塞县| 通州区| 同德县| 台东县| 房产| 泊头市| 尚志市| 江北区| 那坡县| 孝感市| 新乡市| 贵德县|