韓長(zhǎng)杰,周 亭,尤 佳,徐 陽(yáng),毛罕平,2,梁 佳
蔬菜穴盤苗弧形展開式自動(dòng)取投苗裝置設(shè)計(jì)與試驗(yàn)
韓長(zhǎng)杰1,周 亭1,尤 佳1,徐 陽(yáng)1,毛罕平1,2,梁 佳3
(1. 新疆農(nóng)業(yè)大學(xué)機(jī)電工程學(xué)院,烏魯木齊 830052;2. 江蘇大學(xué)農(nóng)業(yè)工程學(xué)院,鎮(zhèn)江 212013;3.巴州良佳農(nóng)機(jī)制造有限公司,焉耆 841100)
針對(duì)穴盤苗取投苗裝置機(jī)械結(jié)構(gòu)較復(fù)雜、取投苗易失敗等問(wèn)題,該研究設(shè)計(jì)了一種蔬菜穴盤苗弧形展開式自動(dòng)取投苗裝置。通過(guò)對(duì)取投苗作業(yè)過(guò)程進(jìn)行分析,提出整排取苗、弧形展開投苗的自動(dòng)取投苗作業(yè)方式,對(duì)夾苗組件、導(dǎo)向槽、旋轉(zhuǎn)接苗機(jī)構(gòu)等進(jìn)行設(shè)計(jì),并確定各部件關(guān)鍵參數(shù),搭建PLC自動(dòng)控制系統(tǒng),設(shè)計(jì)執(zhí)行單元的氣動(dòng)回路方案,并提出匹配延時(shí)函數(shù)。以辣椒穴盤苗為試驗(yàn)對(duì)象,以平均取投苗頻率、供氣壓力、基質(zhì)平均含水率為試驗(yàn)因素,以取投苗成功率、損傷率為試驗(yàn)指標(biāo)進(jìn)行正交試驗(yàn),并以較優(yōu)參數(shù)組合進(jìn)行重復(fù)驗(yàn)證試驗(yàn)。試驗(yàn)結(jié)果表明:平均取投苗頻率為90株/min、供氣壓力為0.4 MPa、基質(zhì)平均含水率為30%時(shí),取投苗成功率為94.05%,損傷率為1.19%,該研究可為自動(dòng)取投苗裝置的研發(fā)提供參考。
農(nóng)業(yè)機(jī)械;自動(dòng)化;蔬菜;移栽;取投苗裝置;氣壓驅(qū)動(dòng);PLC控制
育苗移栽是蔬菜穴盤苗的主要種植方式[1]。目前,移栽作業(yè)仍以人工移栽、半自動(dòng)移栽為主,勞動(dòng)力成本高、機(jī)械化效益不明顯[2]。自動(dòng)穴盤苗移栽機(jī)可實(shí)現(xiàn)移栽作業(yè)過(guò)程自動(dòng)化,提高蔬菜穴盤苗種植效率,降低農(nóng)民勞動(dòng)強(qiáng)度,因此研發(fā)能夠自動(dòng)取投苗的移栽機(jī)是實(shí)現(xiàn)高效率機(jī)械化移栽的必然趨勢(shì)[3]。
自動(dòng)取投苗裝置是全自動(dòng)移栽機(jī)的核心部件[4-5]。國(guó)內(nèi)外學(xué)者對(duì)自動(dòng)取投苗裝置進(jìn)行了大量研究[6-7]。典型機(jī)型有美國(guó)Renaldo公司研制的負(fù)壓取苗、導(dǎo)苗管送苗的直落式取投苗裝置,結(jié)構(gòu)簡(jiǎn)單傷苗率低,但只適合小型秧苗的移栽,且需要特制的倒錐形苗盤,造價(jià)較高。意大利法拉利公司研制的頂夾結(jié)合式取投苗裝置,采用頂桿將穴盤苗頂出穴盤,夾苗合頁(yè)夾持秧苗,經(jīng)翻轉(zhuǎn)后投入苗杯中,該取投苗裝置采用氣、電、液系統(tǒng),自動(dòng)化程度高,工作效率高,但系統(tǒng)復(fù)雜、尺寸較大且需專用硬質(zhì)穴盤。綜上,國(guó)外發(fā)達(dá)國(guó)家如美國(guó)、意大利等,自動(dòng)取投苗裝置價(jià)格昂貴、結(jié)構(gòu)復(fù)雜,且不適宜旱地膜上移栽農(nóng)藝要求,不適宜中國(guó)國(guó)情[8-13]。國(guó)內(nèi)部分高校、科研院所與農(nóng)機(jī)企業(yè)著眼于國(guó)內(nèi)移栽農(nóng)藝要求,研制了多種自動(dòng)取投苗裝置[14-21]。謝守勇等設(shè)計(jì)了一種斜插夾缽式取投苗裝置,利用凸輪控制夾缽閉合與打開,調(diào)節(jié)步進(jìn)電機(jī)的轉(zhuǎn)角改變苗夾打開的角度,增強(qiáng)了裝置對(duì)不同缽苗的適應(yīng)性[8]。文永雙等設(shè)計(jì)了一種插入頂出式取投苗裝置,該裝置取投苗頻率可達(dá)120株/min,有效解決了頂出式取苗機(jī)構(gòu)落苗一致性差、機(jī)構(gòu)復(fù)雜等問(wèn)題,具有結(jié)構(gòu)簡(jiǎn)單、取苗及落苗一致性好等優(yōu)點(diǎn)[1,22-24]。袁挺等設(shè)計(jì)了一種氣吹振動(dòng)復(fù)合式取苗機(jī)構(gòu),通過(guò)振動(dòng)裝置克服一部分缽苗基質(zhì)與穴盤間的粘結(jié)力,再由壓縮空氣將缽苗吹落至落苗管,取苗性能穩(wěn)定,但只適用葉展較小的缽苗[25-27]。王超等設(shè)計(jì)了一種氣動(dòng)下壓式取苗裝置及配套組合式穴盤,可實(shí)現(xiàn)快速低損下落、低損取苗作業(yè)[28]。胡建平等設(shè)計(jì)了一種頂夾拔組合式取苗裝置,該裝置取苗機(jī)構(gòu)采用先頂松苗缽再插入拔取穴盤苗的取苗模式,具有較高的取苗成功率和缽體完整率[29]。俞高紅等提出了一種大重合度非圓齒輪傳動(dòng)機(jī)構(gòu)應(yīng)用于行星輪系取苗機(jī)構(gòu)中,可降低齒側(cè)間隙引起的傳動(dòng)誤差進(jìn)而提高取投苗運(yùn)動(dòng)的準(zhǔn)確性[30]。
目前主流的自動(dòng)取投苗裝置接苗機(jī)構(gòu)以長(zhǎng)槽形、矩形輸送鏈?zhǔn)綖橹?,一般采用增加苗杯口徑、?shù)量的方式來(lái)保證投苗成功率,致使取投苗裝置結(jié)構(gòu)較復(fù)雜,尺寸較大。
為簡(jiǎn)化自動(dòng)取投苗裝置整體結(jié)構(gòu),減小尺寸,提高取投苗準(zhǔn)確性,本文設(shè)計(jì)了一種蔬菜穴盤苗弧形展開式自動(dòng)取投苗裝置,并搭建配套PLC自動(dòng)控制系統(tǒng)。以辣椒穴盤苗為試驗(yàn)對(duì)象,獲得較優(yōu)參數(shù)組合并通過(guò)重復(fù)試驗(yàn)驗(yàn)證該裝置的取投苗效果。
蔬菜穴盤苗弧形展開式自動(dòng)取投苗裝置如圖1所示,主要由升降氣缸、導(dǎo)向槽板、支臂軸、變位氣缸、弧形擋片、電控箱、旋轉(zhuǎn)接苗機(jī)構(gòu)、齒輪換向器、電容式傳感器、移盤氣缸、移盤機(jī)構(gòu)、夾苗組件、支臂、機(jī)架等組成。齒輪換向器由地輪驅(qū)動(dòng),將動(dòng)力輸入旋轉(zhuǎn)接苗機(jī)構(gòu),驅(qū)動(dòng)苗杯旋轉(zhuǎn)。移盤機(jī)構(gòu)采用課題組前期研究成果,通過(guò)移盤氣缸驅(qū)動(dòng)變步距角棘輪實(shí)現(xiàn)間歇移盤。電控箱集成西門子PLC S7-200 SMART,型號(hào)SR40、磁性開關(guān)、接線端子、氣動(dòng)三聯(lián)件、氣動(dòng)控制閥組、通斷開關(guān)等元器件,取投苗過(guò)程由電控箱進(jìn)行信號(hào)集中處理,控制各執(zhí)行氣缸有序動(dòng)作,滿足自動(dòng)取苗、投苗作業(yè)要求。
1.升降氣缸 2.導(dǎo)向槽板 3.支臂軸 4.變位氣缸 5.弧形擋片 6.電控箱 7.旋轉(zhuǎn)接苗機(jī)構(gòu) 8.齒輪換向器 9.電容式傳感器 10.移盤氣缸 11.移盤機(jī)構(gòu) 12.穴盤苗 13.夾苗組件 14.支臂 15.機(jī)架
本文弧形展開式自動(dòng)取投苗裝置利用可進(jìn)行整排取苗并能弧形展開投苗的夾苗組件完成取投苗作業(yè),橫向尺寸最大為730 mm,采用氣壓驅(qū)動(dòng)方式,主要技術(shù)參數(shù)如表1所示。
表1 弧形展開式自動(dòng)取投苗裝置主要技術(shù)參數(shù)
工作時(shí),由磁性開關(guān)、電容式傳感器進(jìn)行信號(hào)采集,經(jīng)PLC控制系統(tǒng)處理,將控制信號(hào)輸出給氣動(dòng)控制閥組,控制移盤機(jī)構(gòu)、夾苗組件、旋轉(zhuǎn)接苗機(jī)構(gòu)等有序配合、協(xié)調(diào)運(yùn)動(dòng),完成移盤、取苗、拔苗、投苗作業(yè)。具體過(guò)程如下:移盤氣缸驅(qū)動(dòng)苗盤移動(dòng),使得苗盤移動(dòng)至取苗位置,完成移盤動(dòng)作。當(dāng)變位氣缸桿推出,通過(guò)支臂軸、支臂,驅(qū)動(dòng)夾苗組件沿導(dǎo)向槽運(yùn)動(dòng)至取苗位置,此時(shí),夾苗組件呈一字形整排排列,如圖2a、2b所示。夾苗氣缸動(dòng)作,夾苗組件夾取整排8株穴盤苗,完成取苗動(dòng)作。升降氣缸驅(qū)動(dòng)夾苗組件、導(dǎo)向槽板等上升,將穴盤苗從穴盤中拔出,完成拔苗動(dòng)作。然后變位氣缸桿縮回,通過(guò)支臂使得夾苗組件沿導(dǎo)向槽向投苗位置移動(dòng)。升降氣缸經(jīng)過(guò)一定延時(shí)后驅(qū)動(dòng)夾苗組件下降至投苗高度。夾苗組件返回至與弧形擋片接觸時(shí),因弧形擋片與導(dǎo)向槽板固接,夾苗組件沿弧形擋片的半圓表面彎折,逐漸展開成半圓弧形,完成分苗,展開后如圖2c、2d所示。經(jīng)過(guò)匹配延時(shí)之后,夾苗組件將穴盤苗投入苗杯中。
1.變位氣缸 2.旋轉(zhuǎn)接苗機(jī)構(gòu) 3.夾苗組件 4.導(dǎo)向槽板 5.弧形擋片 6.支臂 7.Y型接頭 8.支臂軸
夾苗組件與穴盤苗直接接觸,利用夾苗氣缸完成夾苗、投苗動(dòng)作,并且需要滿足整排取苗,弧形展開投苗的作業(yè)要求,是取投苗裝置的核心部件。夾苗組件主要由固定板、萬(wàn)向球、鉸接軸、左側(cè)板、鉸鏈、8組夾苗機(jī)械手、右側(cè)板、輔助軸、輔助軸承、限位軸承、限位軸等組成,如圖3a所示。單組夾苗機(jī)械手由擋苗支撐板、加強(qiáng)筋、夾苗氣缸組成,如圖3b所示。
1.固定板 2.萬(wàn)向球 3.鉸接軸 4.左側(cè)板 5.鉸鏈 6.夾苗機(jī)械手 7.右側(cè)板 8.限位軸 9.限位軸承 10.輔助軸承 11.輔助軸 12.擋苗支撐板 13.加強(qiáng)筋 14.夾苗氣缸
鉸接軸同輔助軸共軸心布置,固定板與輔助軸、限位軸固接,限位軸承與導(dǎo)向槽內(nèi)壁接觸。為防止夾苗組件在滑軌內(nèi)運(yùn)動(dòng)時(shí)因單一軸承限位而轉(zhuǎn)動(dòng),輔助軸承也與導(dǎo)向槽內(nèi)壁接觸,并與限位軸承存在一定間距。
萬(wàn)向球同固定板固接,每組4個(gè),共有滾珠朝上的萬(wàn)向球組及滾珠朝下的萬(wàn)向球組各2組。上下組共同作用,限制夾苗組件僅沿導(dǎo)向槽內(nèi)側(cè)滑動(dòng)并起到固定支撐的作用。輔助軸上設(shè)有防松螺母,可通過(guò)調(diào)節(jié)輔助軸上螺紋連接預(yù)緊力調(diào)節(jié)上下萬(wàn)向球組與導(dǎo)向槽的夾持力至適宜范圍,防止夾持力過(guò)小取投苗過(guò)程中產(chǎn)生松動(dòng)、搖晃或夾持力過(guò)大夾苗組件沿導(dǎo)向槽滑動(dòng)困難。8組夾苗機(jī)械手以雙排鉸鏈的方式鉸接。根據(jù)一次夾取整排8株穴盤苗的取苗方案,當(dāng)夾苗組件呈一字形取苗時(shí),兩輔助軸間距與兩限位軸間距相等,記為1,穴盤穴距為0,則有:
本文選用8×16穴苗盤,穴距0=32 mm,由式(1),可得1=288 mm。
如圖4所示,導(dǎo)向槽板上設(shè)置有關(guān)于軸對(duì)稱的導(dǎo)向槽,夾苗組件中限位軸承、輔助軸承與導(dǎo)向槽內(nèi)壁接觸,可沿導(dǎo)向槽中心線及運(yùn)動(dòng)。取苗、投苗作業(yè)時(shí),限位軸承沿、路徑運(yùn)動(dòng)。輔助軸承與限位軸承由于存在間距,輔助軸承沿、運(yùn)動(dòng)。
注:D'、D為取苗時(shí)兩限位軸的位置;S1為兩限位軸間距,mm;N'、N為取苗時(shí)兩輔助軸的位置;C'、C為夾苗組件與弧形擋片剛剛接觸時(shí)兩限位軸的位置;E為夾苗組件與弧形擋片剛剛接觸時(shí)的接觸點(diǎn);B'、B為夾苗組件投苗時(shí)兩限位軸的位置;M'、M為夾苗組件投苗時(shí)兩輔助軸的位置;A'、A為導(dǎo)向槽的終點(diǎn)位置;Y軸為導(dǎo)向槽對(duì)稱軸;O為基圓圓心;R1為基圓半徑,mm;J為輔助軸承與限位軸承的間距,mm;L為CND的長(zhǎng),mm;L1為AMB的長(zhǎng),mm;S3為A'A的長(zhǎng),mm。
兩限位軸位于時(shí),夾苗組件8組夾苗機(jī)械手呈一字形整排排列,兩限位軸間距1。受變位氣缸驅(qū)動(dòng),夾苗組件自取苗位置向投苗位置運(yùn)動(dòng),當(dāng)夾苗組件鉸鏈與弧形擋片剛剛接觸時(shí),兩限位軸位置為,夾苗組件保持整排取苗狀態(tài),間距為1。隨著變位氣缸繼續(xù)驅(qū)動(dòng)夾苗組件向投苗位置移動(dòng),由于夾苗組件鉸鏈可彎折且弧形擋片與導(dǎo)向槽板固接,使得夾苗組件接觸弧形擋片后沿弧形擋片的半圓表面彎折,直至夾苗組件成半圓弧形展開,展開完全時(shí)兩限位軸到達(dá)投苗位置。由于彎折過(guò)程前后鉸鏈長(zhǎng)度不變,可將弧形展開的夾苗組件圍成的半圓半徑近似等于弧形擋片半圓面的半徑,夾苗組件圍成的半圓弧長(zhǎng)近似等于1。因此,彎折過(guò)程中,限位軸自點(diǎn)運(yùn)動(dòng)至點(diǎn)的軌跡近似于直線繞半徑1的基圓做純滾動(dòng)。因此,為一段漸開線,記其基圓圓心為點(diǎn),半徑為1,展角為,則點(diǎn)的展角=0 rad,點(diǎn)的展角= 0.5π rad。同理為與關(guān)于軸對(duì)稱的一段漸開線,其基圓圓心為點(diǎn),半徑為1。
結(jié)合以上分析可知,兩限位軸自運(yùn)動(dòng)至的軌跡為一段漸開線,且基圓圓心為點(diǎn),半徑為1,展角為,0≤≤0.5π。直線、與漸開線段相切。
基于以上分析可得漸開線段參數(shù)方程為
式中X、Y為漸開線段上任意點(diǎn)的橫、縱坐標(biāo),mm。
由式(2)可得漸開線上任一點(diǎn)的斜率K為
與相切,則段直線斜率為
故直線方程為
同理,段直線斜率為
故直線方程為
因此直線平行于軸且間距為1,符合上文夾苗組件保持整排排列狀態(tài)自取苗位置運(yùn)動(dòng)至與弧形擋片剛剛接觸的設(shè)計(jì)方案。點(diǎn)既是漸開線上展角=0.5π的一點(diǎn),又是直線段上的一點(diǎn),其橫坐標(biāo)為
由此求得1=91.6 mm,取整為92 mm。
、1、3、所受尺寸限制較少,設(shè)計(jì)時(shí)保證各零部件分布合理、不干涉、尺寸小、滿足限位軸承與輔助軸承能夠在導(dǎo)向槽順利滑動(dòng)即可,因此本文取=138 mm;1=60 mm;3=65 mm;=20 mm。通過(guò)SolidWorks仿真及樣機(jī)實(shí)測(cè),夾苗組件可在導(dǎo)向槽內(nèi)順利滑動(dòng)且無(wú)干涉。
旋轉(zhuǎn)接苗機(jī)構(gòu)與夾苗組件相配合接住投下的穴盤苗并將苗轉(zhuǎn)移至栽植部件,故接苗機(jī)構(gòu)是保證投苗成功率的關(guān)鍵部件。為了與弧形展開狀態(tài)下的夾苗組件相適應(yīng),接苗機(jī)構(gòu)采用圓形旋轉(zhuǎn)板接苗,如圖5a所示。主要由苗杯、旋轉(zhuǎn)板、苗杯固定鈑金、底板、落苗口調(diào)節(jié)板組成,與現(xiàn)有長(zhǎng)槽型、矩形輸送鏈?zhǔn)浇用鐧C(jī)構(gòu)相比,減小了接苗機(jī)構(gòu)的整體尺寸。
取投苗裝置工作時(shí),由地輪驅(qū)動(dòng)齒輪換向器,齒輪換向器驅(qū)動(dòng)旋轉(zhuǎn)板旋轉(zhuǎn),由旋轉(zhuǎn)板帶動(dòng)苗杯旋轉(zhuǎn)。苗杯底部?jī)?nèi)置活門托板,活門托板與底板接觸時(shí),處于關(guān)閉狀態(tài);當(dāng)苗杯旋轉(zhuǎn)至落苗口時(shí),活門托板與底板脫離接觸,托板打開,將穴盤苗投入至栽植裝置,完成投苗作業(yè)。旋轉(zhuǎn)接苗機(jī)構(gòu)參數(shù)設(shè)計(jì)如圖5b所示。
根據(jù)圖5b:可得
由式(9)可得
1.苗杯 2.苗杯固定板 3.旋轉(zhuǎn)板 4.底板 5.落苗口調(diào)節(jié)板 6.落苗口
1.Seedling cup 2.Fixing plate of seedling cup 3.Rotating plate 4.Base board 5.Adjustment plate of seedlings throwing hole 6.Seedlings throwing hole
注:1為苗杯幾何中心所在圓的圓心,2為該圓的半徑,mm;為相鄰兩苗杯的幾何中心夾角,rad;為苗杯數(shù)量,本文=14;2為相鄰兩苗杯間最小間距,mm;1為圓心到苗杯頂點(diǎn)的距離,mm;2為圓心1到苗杯的中垂線長(zhǎng)度,mm;為1與2的夾角,rad;為2與2中垂線的夾角,rad;為苗杯邊長(zhǎng),=70 mm。
Note:1is the center of the circle formed by the geometric center of the seedling cups,2is the radius of the circle , mm;is the included angle between the geometric centers of two adjacent seedling cups, rad;is the number of seedling cups and= 14;2is the minimum distance between two adjacent seedling cups, mm;1is the distance from the center of the circle to the apex of the seedling cup, mm;2is the length from the center of the circle1to the middle perpendicular of the seedling cup, mm;is the included angle between1and2, rad;is the included angle between the center perpendicular of2and2, rad;is the length of the seedling cup side,=70 mm.
圖5 旋轉(zhuǎn)接苗機(jī)構(gòu)
Fig.5 Rotary seedling receiving mechanism
為了減小機(jī)構(gòu)尺寸且保證機(jī)構(gòu)容易裝配、苗杯不干涉,半徑2及最小間距2應(yīng)取適宜的較小值??紤]到保證苗杯圓形排列時(shí)互不干涉且容易裝配,2不宜過(guò)小,取2=20 mm,代入式(10),可得2=233.296 mm,圓整為235 mm。
在取投苗裝置的齒輪換向器上裝有電容式傳感器,可檢測(cè)輪齒轉(zhuǎn)動(dòng),用于定位苗杯位置以及記錄轉(zhuǎn)過(guò)的苗杯數(shù)量,每當(dāng)?shù)?個(gè)苗杯旋轉(zhuǎn)至夾苗機(jī)械手正下方時(shí),電容式傳感器檢測(cè)到上升沿信號(hào),PLC控制系統(tǒng)控制夾苗氣缸桿縮回,夾爪立即松開,完成投苗動(dòng)作。通過(guò)電容式傳感器記錄轉(zhuǎn)過(guò)的苗杯數(shù)量可換算為每分鐘取投苗株數(shù),即平均取投苗頻率。
取投苗過(guò)程中,每分鐘從落苗口投入栽植器的穴盤苗株數(shù)也與夾苗組件每分鐘取投苗的株數(shù)一致,故得出苗杯旋轉(zhuǎn)角速度與平均取投苗頻率關(guān)系式為
式中0為苗杯旋轉(zhuǎn)角速度,rad/s;為平均取投苗頻率,株/min。
穴盤苗以自由落體落入正下方苗杯時(shí),由于苗杯作旋轉(zhuǎn)運(yùn)動(dòng),基質(zhì)落下后與正下方苗杯中心產(chǎn)生一定的偏移量,該偏移量影響投苗效果。
如圖6所示,投苗開始時(shí)刻,穴盤苗被夾苗機(jī)械手夾持在苗杯1正上方,其基質(zhì)中心與苗杯1的中心P點(diǎn)重合,夾苗機(jī)械手松開夾爪后,穴盤苗作自由落體運(yùn)動(dòng)落入苗杯中,記穴盤苗自由落體至穴盤苗基質(zhì)上表面與苗杯上表面重合的時(shí)長(zhǎng)為t。苗杯作角速度0,半徑為2的勻速旋轉(zhuǎn)運(yùn)動(dòng),圓心為2點(diǎn),記t時(shí)段內(nèi)苗杯1轉(zhuǎn)過(guò)的角度為。以苗杯1作為參照物,t時(shí)段后,穴盤苗相對(duì)苗杯1從P點(diǎn)旋轉(zhuǎn)至P點(diǎn)。直線段PP的長(zhǎng)即穴盤苗基質(zhì)中心與苗杯中心產(chǎn)生的偏移量,記為4。當(dāng)2較大而角較小時(shí),可將偏移量4近似于角對(duì)應(yīng)的弧長(zhǎng),記為2。
1.夾苗機(jī)械手 2.穴盤苗 3.苗杯1 4.苗杯2
1.Seedling clamping manipulator 2.Plug seedling 3.Seedling cup 1 4.Seedling cup 2
注:2為苗杯旋轉(zhuǎn)中心;0為苗杯旋轉(zhuǎn)角速度,rad·s-1;2為苗杯所在圓的半徑,mm;1為夾苗機(jī)械手與苗杯1上表面的高度差,mm;2為夾苗機(jī)械手與穴盤苗基質(zhì)上表面的高度差,mm;為t時(shí)段內(nèi)苗杯1轉(zhuǎn)過(guò)的角度,rad;P為苗杯的幾何中心;P為t時(shí)段后穴盤苗相對(duì)苗杯1的位置;2為角對(duì)應(yīng)的弧長(zhǎng),mm;4為穴盤苗基質(zhì)中心相對(duì)苗杯中心的偏移量,mm;4max為偏移量最大值,mm。
Note:2is the rotation center of the seedling cups;0is the angular velocity of the seedling cups, rad·s-1;2is the radius of the circle formed by seedling cups, mm;1is the height difference between the seedling clamping manipulator and the upper surface of the seedling cup 1, mm;2is the height difference between the seedling clamping manipulator and the upper surface of the substrate, mm;is the angle of seedling cup 1 rotates during thetperiod, rad;Pis the geometric center of the seedling cup;Pis the position of the plug seedling relative to the seedling cup 1 after thetperiod;2is the arc length of angle, mm;4is the offset distance between the center of the substrate and the geometric center of the seedling cup, mm;4maxis the maximum offset distance of4, mm.
圖6 投苗方案分析
Fig.6 Analysis of seedling throwing scheme
結(jié)合圖6可得:
式中0為重力加速度,m·s-2。
由式(11)~(12)可得
由圖6可知,1越小,穴盤苗自由落體時(shí)間越短,越易落入苗杯,基質(zhì)落地碰撞損失也越少,但1過(guò)小時(shí),由于穴盤苗滯空時(shí)間過(guò)短,姿態(tài)不穩(wěn),容易發(fā)生翻轉(zhuǎn)、枝葉碰撞、掛苗纏葉等情況。穴盤苗莖稈從頂部至根部,有趨于豎直、接近苗穴中心位置的趨勢(shì),因此高度差2越小,夾苗機(jī)械手夾取穴盤苗的成功率越高,但機(jī)械手也更易與基質(zhì)接觸甚至插入基質(zhì)中而發(fā)生基質(zhì)損失、根系損傷。經(jīng)過(guò)多次試驗(yàn),取1=115 mm可保證1較小的同時(shí)有較好的下落姿態(tài);取2=15 mm可保證2盡量小且?jiàn)A苗機(jī)械手不損傷基質(zhì)。
苗杯開口為70 mm×70 mm,穴盤苗基質(zhì)塊長(zhǎng)寬尺寸約為28 mm×28 mm。當(dāng)苗杯旋轉(zhuǎn)至與穴盤苗基質(zhì)接觸時(shí)偏移量取得最大值,經(jīng)計(jì)算4max=0.5×(70-28)= 21 mm。
根據(jù)預(yù)試驗(yàn),平均取投苗頻率為80~100株/min時(shí)取投苗效果較好。將=100株/min、2=235 mm、=14、1=115 mm、2=15 mm、0=9.8 m/s2代入式(13)中,可得4=25 mm。由于4=25 mm>4max=21 mm,故當(dāng)平均取投苗頻率較高時(shí),偏移量較大,基質(zhì)與苗杯邊緣有碰撞風(fēng)險(xiǎn)。因此,必須設(shè)計(jì)合理的投苗方案以防基質(zhì)與苗杯邊緣碰撞。
本研究的投苗方案為:引入一定的延時(shí),并且該延時(shí)能夠依據(jù)當(dāng)前取投苗頻率設(shè)定,使得穴盤苗落入苗杯2中。且當(dāng)穴盤苗基質(zhì)上表面與苗杯上表面重合時(shí),穴盤苗基質(zhì)中心與苗杯幾何中心理論上重合無(wú)偏移,避免碰撞造成的基質(zhì)損失及投苗失敗問(wèn)題。記該延時(shí)為t,結(jié)合以上分析有:
式中t為苗杯旋轉(zhuǎn)過(guò)角所需時(shí)間,s。
由式(9)、式(11)~(12)、式(14)可得匹配延時(shí)t為
由于1、2、0均為常數(shù),由式(15)可知,匹配延時(shí)t僅與平均取投苗頻率相關(guān)。為實(shí)現(xiàn)匹配延時(shí)t可依據(jù)當(dāng)前平均取投苗頻率自動(dòng)調(diào)整,以上次投苗完畢為計(jì)時(shí)初始時(shí)刻t,以第8個(gè)空苗杯轉(zhuǎn)過(guò)為計(jì)時(shí)結(jié)束時(shí)刻t,則當(dāng)前平均取投苗頻率1為
式中t、t由電容式傳感器測(cè)得。
依據(jù)式(15)~(16)在PLC控制系統(tǒng)中設(shè)置匹配延時(shí)函數(shù)6,則
實(shí)際試驗(yàn)過(guò)程中地輪轉(zhuǎn)速取決于裝置前進(jìn)速度,考慮到車速難以保持以及輪胎打滑等影響,接苗機(jī)構(gòu)難以保持勻速旋轉(zhuǎn),故將試驗(yàn)過(guò)程中測(cè)得的所有當(dāng)前平均取投苗頻率1取平均值,圓整后作為該次試驗(yàn)的平均取投苗頻率。
依據(jù)式(17)可得平均取投苗頻率取80、90、100株/min對(duì)應(yīng)的延時(shí)時(shí)長(zhǎng),如表2所示。
表2 取投苗頻率延時(shí)時(shí)長(zhǎng)對(duì)照表
本控制系統(tǒng)硬件由信號(hào)輸入單元、信號(hào)處理單元、信號(hào)輸出單元、氣動(dòng)執(zhí)行單元組成。啟動(dòng)按鈕SB1、停止按鈕SB2、電容式傳感器CT、磁性開關(guān)SN1~SN5為信號(hào)輸入單元;PLC為信號(hào)處理單元,型號(hào)為西門子S7-200 SMART SR40;二位五通電磁閥DT1、DT3、DT4,二位三通電磁閥DT2為信號(hào)輸出單元;變位氣缸、夾苗氣缸、升降氣缸、移盤氣缸為氣動(dòng)執(zhí)行單元。PLC控制系統(tǒng)I/O端口定義如表3所示。
表3 I/O地址與控制說(shuō)明
控制系統(tǒng)氣動(dòng)執(zhí)行單元由變位氣缸、夾苗氣缸、升降氣缸、移盤氣缸組成,各氣缸規(guī)律動(dòng)作、有序配合實(shí)現(xiàn)取投苗作業(yè)。執(zhí)行單元?dú)鈩?dòng)回路如圖7所示。
變位氣缸由電磁閥DT1控制,夾苗氣缸由電磁閥DT2控制,升降氣缸由電磁閥DT3控制,移盤氣缸由電磁閥DT4控制。磁性開關(guān)SN1用于檢測(cè)變位氣缸桿縮回是否到位,磁性開關(guān)SN2用于檢測(cè)變位氣缸桿伸出是否到位,磁性開關(guān)SN3用于檢測(cè)升降氣缸桿縮回是否到位,磁性開關(guān)SN4用于檢測(cè)升降氣缸桿伸出是否到位,磁性開關(guān)SN5用于檢測(cè)移盤氣缸桿伸出是否到位。
注:P為氣源泵;T為氣動(dòng)三聯(lián)件;J為單向節(jié)流閥;A為變位氣缸;B為夾苗氣缸;C為升降氣缸;D為移盤氣缸;DT1、DT3、DT4為二位五通電磁閥;DT2為二位三通電磁閥;SN1~SN5為磁性開關(guān)。
當(dāng)取投苗裝置接通氣源、電源時(shí),執(zhí)行單元中各氣缸初始狀態(tài)為:變位氣缸、夾苗氣缸、移盤氣缸為氣缸桿縮回狀態(tài),升降氣缸處于氣缸桿伸出狀態(tài)。開始工作后,各氣缸動(dòng)作時(shí)序如圖8所示。
工作時(shí),按下啟動(dòng)按鈕SB1,取投苗裝置開始工作,PLC輸出Y4信號(hào)使得電磁閥DT4開始動(dòng)作,移盤氣缸桿伸出,苗盤被向前送一個(gè)苗穴的距離,當(dāng)磁性開關(guān)SN5檢測(cè)到X5信號(hào)時(shí),表明移盤氣缸桿已伸出完畢,第一排穴盤苗被送至預(yù)定取苗位置,移盤氣缸經(jīng)移盤復(fù)位延時(shí)1后自動(dòng)復(fù)位。穴盤苗達(dá)到取苗位置后PLC輸出Y1信號(hào)使得電磁閥DT1動(dòng)作,變位氣缸桿開始伸出,夾苗組件由弧形轉(zhuǎn)變?yōu)橐蛔中?,并向取苗位置移?dòng)。當(dāng)SN2檢測(cè)到X2信號(hào)時(shí),即變位氣缸桿已伸出完畢,夾苗組件到達(dá)取苗位置。為減少變位氣缸桿伸出至行程終點(diǎn)時(shí)的振動(dòng)對(duì)取苗的影響,設(shè)定變位氣缸桿伸出完畢至夾苗氣缸桿開始伸出這段時(shí)間為變位氣缸伸出停穩(wěn)延時(shí)2。經(jīng)延時(shí)2后,PLC輸出Y3信號(hào)使得電磁閥DT3動(dòng)作,夾苗氣缸桿開始伸出,為保證8個(gè)夾苗機(jī)械手都能夾住并夾穩(wěn)穴盤苗莖稈,設(shè)定夾苗氣缸桿開始伸出至升降氣缸桿開始縮回這段時(shí)間為夾苗穩(wěn)定延時(shí)3。經(jīng)延時(shí)3后,PLC輸出Y2信號(hào)使得電磁閥DT2動(dòng)作,升降氣缸桿開始縮回,夾苗組件上升,當(dāng)SN3檢測(cè)到X3信號(hào)時(shí),即夾苗組件上升到最高點(diǎn),此時(shí)DT1復(fù)位,使得變位氣缸桿縮回,夾苗組件向投苗位置移動(dòng)。變位氣缸桿開始縮回時(shí),升降氣缸沒(méi)有與之同時(shí)下降,而是經(jīng)一定的延時(shí)4后,DT2復(fù)位,夾苗組件開始下降,引入4是為了避免夾苗組件下降過(guò)早,穴盤苗與穴盤等部件相撞,記延時(shí)4為升降氣缸下降防撞延時(shí)。變位氣缸縮回完畢前,升降氣缸已下降完畢。當(dāng)SN1、SN4檢測(cè)到X1、X4信號(hào)時(shí),表明夾苗組件已下降完畢且變位氣缸也縮回完畢。為保證投苗準(zhǔn)確,避免變位氣缸桿縮回至行程終點(diǎn)時(shí)振動(dòng)對(duì)投苗的影響,設(shè)定變位氣缸縮回停穩(wěn)延時(shí)5。整個(gè)取投苗過(guò)程中,電容傳感器CT一直累計(jì)轉(zhuǎn)過(guò)的苗杯數(shù),當(dāng)計(jì)數(shù)結(jié)果為8時(shí),經(jīng)6延時(shí)后,DT3復(fù)位,同時(shí)DT4動(dòng)作,夾苗氣缸將穴盤苗被精準(zhǔn)投入苗杯中心,移盤機(jī)構(gòu)再次驅(qū)動(dòng)苗盤移動(dòng)開始下一次取投苗作業(yè)。記一個(gè)取投苗周期為0。
注:t1為移盤氣缸復(fù)位延時(shí),ms;t2為變位氣缸伸出停穩(wěn)延時(shí),ms;t3為夾苗穩(wěn)定延時(shí),ms;t4為升降氣缸下降防撞延時(shí),ms;t5為變位氣缸縮回停穩(wěn)延時(shí),ms;t6為匹配延時(shí)函數(shù)的延時(shí)時(shí)長(zhǎng),ms;T0為一個(gè)取投苗周期,ms。
為驗(yàn)證蔬菜穴盤苗弧形展開式自動(dòng)取投苗裝置的取投苗效果,并以較少的試驗(yàn)次數(shù)尋求較優(yōu)參數(shù)組合,根據(jù)設(shè)計(jì)結(jié)果試制樣機(jī)并開展自動(dòng)取投苗裝置正交試驗(yàn)及重復(fù)驗(yàn)證試驗(yàn)。試驗(yàn)于新疆農(nóng)業(yè)大學(xué)農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室進(jìn)行。試驗(yàn)儀器包括土壤-機(jī)器-植物系統(tǒng)技術(shù)平臺(tái)(TCC-3.0型)、恒美土壤水分測(cè)定儀(量程0~100%,測(cè)量精度:0~50%范圍內(nèi)±2%;50%~100%范圍內(nèi)±2%,復(fù)測(cè)誤差<2%)。試驗(yàn)材料為辣椒穴盤苗,每組試驗(yàn)使用56株,重復(fù)3次取平均值,穴盤苗培育在128穴型硬質(zhì)塑料穴盤,穴距32 mm,育苗基質(zhì)體積配方比例為泥炭∶蛭石=2∶1。
試驗(yàn)以取投苗成功率、損傷率為試驗(yàn)指標(biāo)。取投苗成功率是指成功取苗并投苗的概率,損傷率是指取投苗過(guò)程中穴盤苗出現(xiàn)莖葉損傷的概率,試驗(yàn)中葉片出現(xiàn)破損及莖稈出現(xiàn)夾傷、折斷時(shí)為莖葉損傷。取投苗成功率越高、損傷率越低,取投苗效果越好。取投苗成功率與損傷率計(jì)算式如下:
式中為取投苗成功率,%;為該次試驗(yàn)的穴盤苗總株數(shù);為該次試驗(yàn)未能成功取苗并投苗的株數(shù);為損傷率,%;為該次試驗(yàn)出現(xiàn)莖葉損傷的株數(shù)。
預(yù)試驗(yàn)結(jié)果表明,平均取投苗頻率在80~100株/min時(shí)具有較好的取投苗效果且不易產(chǎn)生莖葉損傷。因此,正交試驗(yàn)選取平均取投苗頻率為80、90和100株/min三個(gè)水平。氣動(dòng)執(zhí)行單元供氣壓力直接影響氣缸動(dòng)作的速度及振動(dòng)情況,供氣壓力較低(<0.4 MPa)時(shí),氣缸動(dòng)作慢、作業(yè)效率較低但振動(dòng)小、取投苗成功率高、莖葉損傷?。还鈮毫^高(>0.6 MPa)時(shí),氣缸動(dòng)作快作業(yè)效率高,但振動(dòng)大、莖葉易損傷,因此選取供氣壓力為0.4、0.5和0.6 MPa三個(gè)水平。穴盤苗基質(zhì)平均含水率直接影響缽體力學(xué)特性(如缽體與穴盤的粘結(jié)力、缽苗重心等)從而影響取投苗成功率,當(dāng)基質(zhì)平均含水率過(guò)低(<20%)時(shí),基質(zhì)過(guò)于干燥,質(zhì)量輕,投苗時(shí)容易受振動(dòng)、重心偏移等影響導(dǎo)致基質(zhì)破碎、下落姿態(tài)不穩(wěn)、翻轉(zhuǎn)等現(xiàn)象,造成投苗失敗。投苗失敗的穴盤苗常常伴隨碰撞、跌落等情況,因而莖葉損傷的概率增加。基質(zhì)含水率過(guò)高(>40%)時(shí),根系不發(fā)達(dá)的穴盤苗因含水率上升,基質(zhì)與穴盤的粘結(jié)力增大,受振動(dòng)等影響,穴盤苗基質(zhì)中根系不發(fā)達(dá)的部分粘結(jié)在穴盤內(nèi)或運(yùn)動(dòng)中途出現(xiàn)破碎掉落等現(xiàn)象,致使投苗失敗概率增加;另一方面,基質(zhì)平均含水率過(guò)高時(shí),穴盤苗莖稈抗壓能力降低,易被夾傷[22]。因此選取基質(zhì)平均含水率水平為20%、30%、40%。試驗(yàn)因素及水平如表4所示。
表4 因素水平表
本試驗(yàn)選取L9(34)正交試驗(yàn)表進(jìn)行試驗(yàn),整個(gè)試驗(yàn)過(guò)程中,取投苗裝置在PLC控制系統(tǒng)下,各機(jī)構(gòu)協(xié)調(diào)動(dòng)作,取投苗過(guò)程工作良好。取投苗正交試驗(yàn)方案和試驗(yàn)結(jié)果如表5所示。采用極差分析法、方差分析法對(duì)試驗(yàn)結(jié)果進(jìn)行分析,如表6、表7所示。
表5 取投苗正交試驗(yàn)方案和結(jié)果表
由表6、表7可得,各因素對(duì)取投苗成功率影響的顯著性順序?yàn)?、、。各因素?duì)損傷率影響的顯著性順序?yàn)椤?、。采用綜合平衡法,綜合分析各因素對(duì)試驗(yàn)指標(biāo)的影響,在保證取投苗成功率的基礎(chǔ)上,盡可能獲得較低的損傷率,因此得出較優(yōu)參數(shù)組合為212,即平均取投苗頻率為90株/min,供氣壓力為0.4 MPa,基質(zhì)平均含水率為30%。
表6 極差分析
表7 方差分析
注:**表示極顯著(<0.01);*表示顯著(0.01≤<0.05)。
Note:** indicates extremely significant (<0.01); * indicates significant (0.01≤<0.05).
為驗(yàn)證正交試驗(yàn)結(jié)果的準(zhǔn)確性,以較優(yōu)參數(shù)組合進(jìn)行重復(fù)驗(yàn)證試驗(yàn),試驗(yàn)過(guò)程如圖9所示,試驗(yàn)結(jié)果如表8所示。
圖9 驗(yàn)證試驗(yàn)
表8 重復(fù)驗(yàn)證試驗(yàn)結(jié)果表
重復(fù)驗(yàn)證試驗(yàn)結(jié)果表明,平均取投苗頻率為90株/min,供氣壓力為0.4 MPa,基質(zhì)平均含水率為30%時(shí),平均取投苗成功率為94.05%,平均損傷率為1.19%,滿足農(nóng)業(yè)生產(chǎn)要求。
1)設(shè)計(jì)了一種蔬菜穴盤苗弧形展開式自動(dòng)取投苗裝置,對(duì)夾苗組件、導(dǎo)向槽、旋轉(zhuǎn)接苗機(jī)構(gòu)等進(jìn)行設(shè)計(jì)與參數(shù)確定,實(shí)現(xiàn)了整排取苗,弧形展開投苗作業(yè)方式,該自動(dòng)取投苗裝置,相較于機(jī)械式取投苗裝置,結(jié)構(gòu)較簡(jiǎn)單、體積較小。
2)設(shè)計(jì)了PLC自動(dòng)控制系統(tǒng)并搭建了控制系統(tǒng)硬件,設(shè)計(jì)了執(zhí)行單元?dú)鈩?dòng)回路,并提出了匹配延時(shí)函數(shù),可以主動(dòng)匹配取投苗頻率。
3)以取投苗成功率、損傷率為試驗(yàn)指標(biāo),以平均取投苗頻率、供氣壓力、基質(zhì)平均含水率為試驗(yàn)因素,開展了正交試驗(yàn),得出較優(yōu)參數(shù)組合為平均取投苗頻率為90株/min,供氣壓力為0.4 MPa,基質(zhì)平均含水率為30%。以此較優(yōu)工作參數(shù)組合進(jìn)行重復(fù)驗(yàn)證試驗(yàn),結(jié)果表明:平均取投苗成功率為94.05%,平均損傷率為1.19%。
該取投苗裝置在較優(yōu)參數(shù)組合下滿足移栽作業(yè)要求,可為自動(dòng)取投苗裝置設(shè)計(jì)提供參考。裝置中夾苗組件使用的鉸鏈結(jié)構(gòu)由于田間作業(yè)環(huán)境復(fù)雜,長(zhǎng)期使用必須提高彎折的可靠性,后續(xù)研究中可采用具有更高可靠性的彎折結(jié)構(gòu)。
[1] 文永雙,張俊雄,袁挺,等. 蔬菜穴盤苗移栽自動(dòng)取苗技術(shù)現(xiàn)狀與分析[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2021,26(4):128-142. WEN Yongshuang, ZHANG Junxiong, YUAN Ting, et al. Current situation and analysis of automatic pick-up technology for vegetable plug seedlings[J]. Journal of China Agricultural University, 2021, 26(4): 128-142. (in Chinese with English abstract)
[2] 李華,曹衛(wèi)彬,李樹峰,等. 辣椒穴盤苗自動(dòng)取苗機(jī)構(gòu)運(yùn)動(dòng)學(xué)分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(23):20-27. LI Hua, CAO Weibin, LI Shufeng, et al. Kinematic analysis and test on automatic pick-up mechanism for chili plug seedling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(23): 20-27. (in Chinese with English abstract)
[3] 韓長(zhǎng)杰,楊宛章,張學(xué)軍,等. 穴盤苗移栽機(jī)自動(dòng)取喂系統(tǒng)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(8):51-61. HAN Changjie, YANG Wanzhang, ZHANG Xuejun, et al. Design and test of automatic feed system for tray seedlings transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(8): 51-61. (in Chinese with English abstract)
[4] 馬曉曉,李華,曹衛(wèi)彬,等. 番茄缽苗移栽機(jī)自動(dòng)取苗裝置作業(yè)參數(shù)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(10):46-55. MA Xiaoxiao, LI Hua, CAO Weibin, et al. Optimization and experiment of working parameters of automatic seedling picking device for tomato seedlings transplanting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 46-55. (in Chinese with English abstract)
[5] 廖慶喜,王洋,胡喬磊,等. 油菜基質(zhì)塊苗移栽機(jī)取苗裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(11):93-102. LIAO Qingxi, WANG Yang, HU Qiaolei, et al. Design and experiment on pick-up device for rapeseed substrate seedling transplanter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 93-102. (in Chinese with English abstract)
[6] 胡喬磊,袁佳誠(chéng),李心志,等. 油菜基質(zhì)塊苗移栽機(jī)雙向遞進(jìn)式送苗裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(2):106-115. HU Qiaolei, YUAN Jiacheng, LI Xinzhi, et al. Design and experiment of two-way progressive seedling feeding for rape substrate transplanters[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 106-115. (in Chinese with English abstract)
[7] 韓長(zhǎng)杰,郭輝,張學(xué)軍,等. 硬質(zhì)穴盤苗自動(dòng)取苗裝置設(shè)計(jì)[J]. 農(nóng)業(yè)工程,2013,3(4):99-102. HAN Changjie, GUO Hui, ZHANG Xuejun, et al. Design of automatic hard-plug-seedlings pick device[J]. Agricultural Engineering, 2013, 3(4): 99-102. (in Chinese with English abstract)
[8] 謝守勇,陽(yáng)尚宏,劉軍,等. 蔬菜移栽機(jī)斜插夾缽式取投苗裝置研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(6):1-10. XIE Shouyong, YANG Shanghong, LIU Jun, et al. Development of the seedling taking and throwing device with oblique insertion and plug clipping for vegetable transplanters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(6): 1-10. (in Chinese with English abstract)
[9] 韓綠化,毛罕平,胡建平,等. 溫室穴盤苗自動(dòng)移栽機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(11):59-67. HAN Lühua, MAO Hanping, HU Jianping, et al. Design and test of automatic transplanter for greenhouse plug seedlings[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 59-67. (in Chinese with English abstract)
[10] 韓長(zhǎng)杰,徐陽(yáng),張靜,等. 半自動(dòng)壓縮基質(zhì)型西瓜缽苗移栽機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):54-61. HAN Changjie, XU Yang, ZHANG Jing, et al. Design and experiment of semi-automatic transplanter for watermelon seedlings raised on compression substrate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 54-61. (in Chinese with English abstract)
[11] 韓長(zhǎng)杰,郭輝,楊宛章,等. 取苗機(jī)械手雙氣缸三位置的驅(qū)動(dòng)及優(yōu)化[J]. 農(nóng)機(jī)化研究,2017,39(2):17-21. HAN Changjie, GUO Hui, YANG Wanzhang, et al. The driving and optimization for double-cylinders three-position pick seedlings manipulator[J]. Journal of Agricultural Mechanization Research, 2017, 39(2): 17-21. (in Chinese with English abstract)
[12] 張振國(guó),曹衛(wèi)彬,王鵬,等. 番茄穴盤苗自動(dòng)移栽機(jī)頂桿式取苗裝置的設(shè)計(jì):基于UG三維軟件[J]. 農(nóng)機(jī)化研究,2013,35(4):72-75. ZHANG Zhenguo, CAO Weibin, WANG Peng, et al. The design of the UG-based tomato plug seedlings transplanting machine ejector take seedlings institutions[J]. Journal of Agricultural Mechanization Research, 2013, 35(4): 72-75. (in Chinese with English abstract)
[13] PARADKAR V, RAHEMAN H, RAHUL K. Development of a metering mechanism with serial robotic arm for handling paper pot seedlings in a vegetable transplanter[J]. Artificial Intelligence in Agriculture, 2021, 5(5): 52-63.
[14] 王俊,張海洋,金鑫,等. 穴盤苗自動(dòng)移栽機(jī)苗缽?qiáng)A持力檢測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(5):79-87. WANG Jun, ZHANG Haiyang, JIN Xin, et al. Design and experiment of seedling bowl clamping force detection system for plug seedling automatic transplanter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 79-87. (in Chinese with English abstract)
[15] 韓長(zhǎng)杰,肖立強(qiáng),徐陽(yáng),等. 辣椒穴盤苗自動(dòng)移栽機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(13):20-29. HAN Changjie, XIAO Liqiang, XU Yang, et al. Design and experiment of the automatic transplanter for chili plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(13): 20-29. (in Chinese with English abstract)
[16] 張靜,龍新華,韓長(zhǎng)杰,等. 機(jī)械驅(qū)動(dòng)式辣椒穴盤苗自動(dòng)取投苗系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(5):20-30. ZHANG Jing, LONG Xinhua, HAN Changjie, et al. Design and experiments of mechanically-driven automatic taking and throwing system for chili plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(5): 20-30. (in Chinese with English abstract)
[17] 胡喬磊,王磊,李心志,等. 油菜基質(zhì)塊苗移栽機(jī)對(duì)輥式取苗裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(9):12-23. HU Qiaolei, WANG Lei, LI Xinzhi, et al. Design and experiment of the counter roll seedling taking equipment for rapeseed substrate block seedlings transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(9): 12-23. (in Chinese with English abstract)
[18] 蔣蘭,吳崇友,湯慶,等. 油菜毯狀苗移栽機(jī)栽植過(guò)程動(dòng)力學(xué)模型及參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(21):37-46. JIANG Lan, WU Chongyou, TANG Qing, et al. Kinematics model and parameter optimization of planting process of rape carpet seedling transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 37-46. (in Chinese with English abstract)
[19] 吳儉敏,張小超,金鑫,等. 苗盤缽苗自動(dòng)識(shí)別及控制裝置的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(1):47-52. WU Jianming, ZHANG Xiaochao, JIN Xin, et al. Design and experiment on transplanter pot seedling disk conveying and positioning control system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 47-52. (in Chinese with English abstract)
[20] 胡喬磊,廖慶喜,王洋. 油菜機(jī)械移栽載苗基質(zhì)塊力學(xué)與生物學(xué)特性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(24):58-65. HU Qiaolei, LIAO Qingxi, WANG Yang. Mechanical and biological characteristics analysis of mechanically transplanted rapeseed substrate block seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 58-65. (in Chinese with English abstract)
[21] 王蒙蒙,宋建農(nóng),劉彩玲,等. 蔬菜移栽機(jī)曲柄擺桿式夾苗機(jī)構(gòu)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(14):49-57. WANG Mengmeng, SONG Jiannong, LIU Cailing, et al. Design and experiment of crank rocker type clamp seedlings mechanism of vegetable transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(14): 49-57. (in Chinese with English abstract)
[22] 文永雙,張俊雄,張宇,等. 蔬菜穴盤苗插入頂出式取苗裝置研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(22):96-104. WEN Yongshuang, ZHANG Junxiong, ZHANG Yu, et al. Development of insertion and ejection type seedling taking device for vegetable plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(22): 96-104. (in Chinese with English abstract)
[23] WEN Y S, ZHANG L A, HUANG X M, et al. Design of and experiment with seedling selection system for automatic transplanter for vegetable plug seedlings[J]. Agronomy, 2021, 11(10): 2031.
[24] WEN Y S, ZHANG J X, TIAN J Y, et al. Design of a traction double-row fully automatic transplanter for vegetable plug seedlings[J]. Computers and Electronics in Agriculture, 2021, 182: 106017.
[25] 袁挺,王棟,文永雙,等. 蔬菜移栽機(jī)氣吹振動(dòng)復(fù)合式取苗機(jī)構(gòu)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(10):80-87. YUAN Ting, WANG Dong, WEN Yongshuang, et al. Design and experiment of seedlings unloading mechanism based on methods of air-blowing and vibration for vegetable transplanter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 80-87. (in Chinese with English abstract)
[26] 任玲,趙斌棟,曹衛(wèi)彬,等. 穴苗移栽機(jī)雙旋轉(zhuǎn)式分苗裝置設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(8):10-18. REN Ling, ZHAO Bingdong, CAO Weibin, et al. Design of double-rotation seedlings separating device for transplanters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(8): 10-18. (in Chinese with English abstract)
[27] 胡喬磊,張青松,李心志,等. 油菜基質(zhì)塊苗移栽機(jī)取苗裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(10):18-27. HU Qiaolei, ZHANG Qingsong, LI Xinzhi, et al. Design and parameter analysis of seedling collection device of rapeseed substrate block seedlings transplanter machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(10): 18-27. (in Chinese with English abstract)
[28] 王超,劉彩玲,李永磊,等. 蔬菜移栽機(jī)氣動(dòng)下壓式高速取苗裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(5):35-43,51. WANG Chao, LIU Cailing, LI Yonglei, et al. Design and experiment of pneumatic punching high-speed seedling picking device for vegetable transplanter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 35-43, 51. (in Chinese with English abstract)
[29] 胡建平,劉育彤,劉偉,等. 蔬菜自動(dòng)移栽機(jī)頂夾拔組合式取苗裝置試驗(yàn)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(S1):110-117,184. HU Jianping, LIU Yutong, LIU Wei, et al. Experiment on combined seedling picking device with top clamping and pulling[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(S1): 110-117, 184. (in Chinese with English abstract)
[30] 俞高紅,王系林,劉建剛,等. 蔬菜缽苗密植移栽機(jī)多行取苗機(jī)構(gòu)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(1):94-103. YU Gaohong, WANG Xilin, LIU Jian′gang, et al. Design and experiment of multi row seedling taking mechanism for dense planting and transplanting of vegetable pot peedlings[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(1): 94-103. (in Chinese with English abstract)
Design and experiments of an arc expansion type automatic seedling taking and throwing device for vegetable plug seedlings
HAN Changjie1, ZHOU Ting1, YOU Jia1, XU Yang1, MAO Hanping1,2, LIANG Jia3
(1.,,830052,; 2.,,212013,; 3..,.,841100,)
Seedling transplanting has been one of the most important planting steps for vegetable plug seedlings raising in China. However, manual and semi-automatic transplanting cannot fully meet the large-scale transplanting operations in recent years, due to the high labor cost. Alternatively, mechanization can also be a benefit to modern agriculture. An automatic seedling taking and throwing device can be expected for the vegetable plug seedlings to fully meet the vegetable transplanting for the high efficiency of vegetable plug seedling planting and the low labor intensity. Therefore, this study aims at the problems of the automatic seedling taking and throwing device for the vegetable plug seedling, such as the large structural size, easy failure in taking and throwing seedlings. The transplanting operation was proposed to analyze the individual taking and throwing seedlings, where the taking seedlings in a straight shape, and throwing seedlings in an arc shape. An arc-type expansion automatic seedling taking and throwing device was also designed for the transplanting operation of vegetable plug seedlings. A systematic analysis was performed on the main structure and working principle of this device. Three components included a seedling clamping assembly, a guided groove plate, and a rotary seedling receiving mechanism. Among them, the seedling clamping assembly was firstly bent into an arc-shaped expansion through the hinge structure, and then the eight vegetable plug seedlings were taken away from the seedling tray, and finally thrown into the seedling cups at one time. Theoretical analysis was carried out to determine the parameter equation of the guided groove centerline, including the radius of the circle formed by the geometric center of the seedling cups, and the minimum distance between two adjacent seedling cups. Some limitations were also considered, such as the reduced size of the rotary seedling receiving mechanism. As such, the mechanism was easy to assemble without the interference of seedling cups each other. A risk of collision was found between the vegetable plug seedling and the seedling cup when the seedling was thrown into the seedling cup with a high average frequency of taking and throwing seedlings. For this reason, the seedling throwing scheme was introduced to automatically set an appropriate delay using the current average frequency of taking and throwing seedlings. The centers of the substrate and the seedling cup coincided without deviation, in order to avoid substrates loss and seedling throwing failure caused by collision when the vegetable plug seedlings were thrown into the seedling cups under this seedling throwing scheme. The PLC automatic control system was built with the pneumatic circuits of the execution units, in order to coordinate the movements of various mechanisms, complete efficient and regular seedling taking and throwing operations. An orthogonal test was carried out, where the influencing factors, average frequency, air supply pressure, and average moisture content of substrates were selected as the experimental factors, while the success rate of taking and throwing seedlings and the rate of wounded seedlings were the target objectives. The range and variance analyses were performed on the experimental data. A better combination of experimental factors was obtained: the average frequency of taking and throwing seedlings was 90 plants per min, the air supply pressure was 0.4MPa, and the average moisture content of substrates was 30%. The demonstration tests were conducted with a combination of experimental factors. The success rate of taking and throwing seedlings was 94.05%, and the rate of wounded seedlings was 1.19%. This finding can provide a sound reference to design the automatic seedling taking and throwing device.
agricultural machinery; automation; vegetable; transplants; seedling taking and throwing device; pneumatic driving; PLC control
2023-02-10
2023-03-14
自治區(qū)天山創(chuàng)新團(tuán)隊(duì)項(xiàng)目(2021D14010);國(guó)家自然科學(xué)基金項(xiàng)目(50905153,51565059);國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0700800);農(nóng)機(jī)一體化項(xiàng)目(YTHSD2022-21);新疆蔬菜產(chǎn)業(yè)技術(shù)體系崗位科學(xué)家項(xiàng)目
韓長(zhǎng)杰,博士,教授,博士生導(dǎo)師,研究方向?yàn)檗r(nóng)業(yè)機(jī)械設(shè)計(jì)與智能農(nóng)業(yè)裝備。Email:hcj_627@163.com
10.11975/j.issn.1002-6819.202302045
S223.9
A
1002-6819(2023)-08-0054-11
韓長(zhǎng)杰,周亭,尤佳,等. 蔬菜穴盤苗弧形展開式自動(dòng)取投苗裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(8):54-64. doi:10.11975/j.issn.1002-6819.202302045 http://www.tcsae.org
HAN Changjie, ZHOU Ting, YOU Jia, et al. Design and experiments of an arc expansion type automatic seedling taking and throwing device for vegetable plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(8): 54-64. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202302045 http://www.tcsae.org