周黎 李伽文 徐郅卓 曾拓 王彩云
摘 要:? 天然除蟲(chóng)菊酯是從除蟲(chóng)菊(Tanacetum cinerariifolium)中提取的綠色植物源生物殺蟲(chóng)劑。醛脫氫酶(TcALDH)和GDSL脂肪酶(TcGLIP)是除蟲(chóng)菊酯生物合成途徑中的關(guān)鍵限速酶。為探究TcALDH和TcGLIP基因的功能,該研究從除蟲(chóng)菊無(wú)性系‘W99中克隆得到TcALDH和TcGLIP基因的啟動(dòng)子,并通過(guò)生物信息學(xué)分析、組織化學(xué)染色(GUS染色)、熒光素酶報(bào)告實(shí)驗(yàn)和外源植物激素處理實(shí)驗(yàn)對(duì)其啟動(dòng)子的調(diào)控元件、啟動(dòng)子活性、激素誘導(dǎo)特異性和組織特異性進(jìn)行分析。結(jié)果表明:(1)克隆得到的TcALDH和TcGLIP啟動(dòng)子序列分別為2 848、1 343 bp,均含有多個(gè)與逆境應(yīng)答和激素信號(hào)相關(guān)的順式作用元件。(2)分別構(gòu)建了啟動(dòng)子和熒光素酶融合的植物表達(dá)載體,在煙草葉片中觀察熒光成像發(fā)現(xiàn),TcALDH啟動(dòng)子具有茉莉酸甲酯(MeJA)和脫落酸(ABA)激素誘導(dǎo)特異性。(3)用MeJA和ABA處理除蟲(chóng)菊‘W99組培苗發(fā)現(xiàn),TcALDH的表達(dá)量在12 h內(nèi)受ABA誘導(dǎo)時(shí)上調(diào),受MeJA誘導(dǎo)時(shí)先升高后降低,TcGLIP的表達(dá)量受ABA和MeJA誘導(dǎo)下調(diào)。(4)分別構(gòu)建了TcALDH和TcGLIP啟動(dòng)子與GUS基因融合的植物表達(dá)載體,轉(zhuǎn)化煙草并對(duì)其轉(zhuǎn)基因葉片進(jìn)行GUS活性染色發(fā)現(xiàn),TcALDH啟動(dòng)子在煙草葉片腺體、腺毛頭部及葉肉細(xì)胞中表達(dá),而TcGLIP啟動(dòng)子僅在煙草葉肉細(xì)胞中表達(dá)。綜上認(rèn)為,TcALDH和TcGLIP的啟動(dòng)子具有組織特異性,TcALDH啟動(dòng)子具有MeJA和ABA激素誘導(dǎo)特性。該研究結(jié)果為除蟲(chóng)菊TcALDH和TcGLIP基因參與除蟲(chóng)菊酯合成的調(diào)控機(jī)制提供了新見(jiàn)解。
關(guān)鍵詞: 除蟲(chóng)菊, 醛脫氫酶(TcALDH), GDSL脂肪酶(TcGLIP), 啟動(dòng)子, 功能分析
中圖分類號(hào):? Q943
文獻(xiàn)標(biāo)識(shí)碼:? A
文章編號(hào):? 1000-3142(2023)07-1276-11
收稿日期:? 2022-10-18
基金項(xiàng)目:? 國(guó)家重點(diǎn)研發(fā)項(xiàng)目(2019YFD1001500); 中央高?;A(chǔ)研究基金(2662019FW016); 國(guó)家自然科學(xué)基金(32160718)。
第一作者: 周黎(1998-),碩士,研究方向?yàn)橛^賞植物生理與調(diào)控,(E-mail)zhouli@webmail.hzau.edu.cn。
通信作者:? 王彩云,博士,教授,研究方向?yàn)榛ɑ苌砼c品質(zhì)及其花卉應(yīng)用,(E-mail)wangcy@mail.hzau.edu.cn。
Cloning and functional analysis of promoter of TcALDH
and TcGLIP genes in Tanacetum cinerariifolium
ZHOU Li1, LI Jiawen1, XU Zhizhuo1, ZENG Tuo2, WANG Caiyun1*
( 1. Key Laboratory of Horticultural Plant Biology (HZAU), MOE, Wuhan 430070, China;
2. School of Life Sciences, Guizhou Normal University, Guiyang 550001, China )
Abstract:? Natural pyrethrin is a green botanical insecticide that extracted from the aboveground tissues of pyrethrum (Tanacetum cinerariifolium). Aldehyde dehydrogenase (TcALDH) and GDSL lipase (TcGLIP) are key rate-limiting enzymes involved in pyrethrin biosynthesis pathway in pyrethrum. The promoters of TcALDH and TcGLIP genes were cloned from the genomic DNA of pyrethrum clone ‘W99 in order to investigate the regulatory mechanism of these genes. The regulatory elements, activity, hormone specificity and tissue inducibility of the two promoters were analyzed through bioinformatics analysis, histochemical staining (GUS staining), luciferase reporting, and exogenous hormone treatment. The results were as follows: (1) Using pyrethrum genomic DNA as a template, specific primers were used to clone the pTcALDH and pTcGLIP fragments. The sequence lengths of pTcALDH and pTcGLIP were 2 848 and 1 343 bp, respectively, and the promoter analysis software the PlantCARE predicted that they both contained multiple cis-elements related to stress response and hormone signals. (2) The plant expression vectors fused by pTcALDH and pTcGLIP and luciferase report gene were constructed, and were transformed into tobacco (Nicotiana benthamiana) to analyse hormone inducibility by observing the fluorescence imaging in tobacco leaves. The results demonstrated that the pTcALDH displayed typical hormone inducibility of methyl jasmonate (MeJA) and abscisic acid (ABA), whereas the pTcGLIP showed no response. (3) The tissue culture seedlings of pyrethrum ‘W99 were treated with MeJA and ABA, the expression of TcALDH was up-regulated by ABA within 12 h, and first increased and then decreased under MeJA treatment; the expression of TcGLIP was down-regulated by ABA and MeJA. (4) We constructed the expression vectors of pTcALDH and pTcGLIP fused with GUS reporters and transformed them into tobacco, then the transient transformation of tobacco drived the expression of GUS gene and showed initiating activity. It was found that the pTcALDH expressed in the glands, glandular hair heads and mesophyll of the leaves, while the pTcGLIP was only expressed in the parenchyma cell. These results indicated that the pTcALDH and pTcGLIP were tissue-specific promoters, and the pTcALDH appeared MeJA-inducible and ABA-inducible characteristics. This study provides a new insight into the regulatory mechanism of TcALDH and TcGLIP genes involved in pyrethrin synthesis.
Key words: Tanacetum cinerariifolium, TcALDH, TcGLIP, promoter, functional analysis
除蟲(chóng)菊(Tanacetum cinerariifolium)作為一種多年生菊科植物,幾個(gè)世紀(jì)以來(lái)一直被用于提取綠色植物源殺蟲(chóng)劑除蟲(chóng)菊酯(Lybrand et al., 2020)。其因提取于花頭的除蟲(chóng)菊酯具有殺蟲(chóng)迅速、無(wú)富集易降解、對(duì)哺乳動(dòng)物毒性小、適用于敏感人群等特性,被廣泛應(yīng)用于有機(jī)農(nóng)業(yè)和家居防治(Nelson, 1974),其花頭還能夠釋放大量揮發(fā)性萜烯(E)-beta-法尼烯 [(E)-beta-farnesene, ESymbolbA@F], 能夠在田間吸引瓢蟲(chóng)驅(qū)避蚜蟲(chóng)(Li et al., 2019; Li et al., 2021),同時(shí)吸引大量授粉昆蟲(chóng)如食蚜蠅等(Zeng et al., 2021; 曾拓等,2021)。因此,除蟲(chóng)菊也作為一種間作作物,在我國(guó)云南有廣泛的應(yīng)用(周黎等,2022)。全世界對(duì)除蟲(chóng)菊酯的需求較大,將其作為天然植物源殺蟲(chóng)劑以避免過(guò)度使用化學(xué)合成殺蟲(chóng)劑(Suraweera et al., 2017)。因此,如何提高除蟲(chóng)菊酯的含量一直是除蟲(chóng)菊產(chǎn)業(yè)和基礎(chǔ)研究的熱點(diǎn)和重點(diǎn)。
除蟲(chóng)菊酯在植物體內(nèi)由單萜羧基部分(菊酸和除蟲(chóng)菊酸)和酮醇部分(除蟲(chóng)菊酮醇、茉莉酮醇和瓜葉酮醇)酯化形成(Staudinger & Ruzicka 1924; Mossa et al., 2018)。酸前體來(lái)源于萜烯途徑的質(zhì)體甲基赤蘚醇-4磷酸(methylerythritol 4-phosphate, MEP)途徑(Lybrand et al., 2020),酮醇前體來(lái)源于茉莉酸類激素(jasmonates, JAas)途徑(Matsuda et al., 2005)。在除蟲(chóng)菊酯單萜合成模型中,兩分子二甲基烯丙基二磷酸(dimethylallyl pyrophosphate, DMAPP)首先在腺體中依次由菊基二磷酸合成酶(chrysanthemyl diphosphate synthase, CDS)、乙醇脫氫酶2(alcohol dehydrogenase 2, ADH2)、醛脫氫酶 1(aldehyde dehydrogenase 1, ALDH1)催化形成前體分子菊酸,隨后菊酸被運(yùn)輸?shù)较袤w下方的皮下組織,最終在種子和果皮中被GDSL脂肪酶(GDSL lipase protein, GLIP)催化形成除蟲(chóng)菊酯,后被胚胎吸收轉(zhuǎn)移至幼苗組織中(Kikuta et al., 2012; Ramirez et al., 2012; Xu et al., 2018; Lybrand et al., 2020; Li et al., 2022a)。TcALDH參與除蟲(chóng)菊酸部分最后一步催化反應(yīng)合成菊酸CoA,菊酸CoA和酮醇則在TcGLIP的催化作用下通過(guò)酯鍵相連合成最終產(chǎn)物除蟲(chóng)菊酯(Kikuta et al., 2012; Wang et al., 2022)。由此可知, TcALDH和TcGLIP是除蟲(chóng)菊酯合成的關(guān)鍵限速酶基因。目前,已經(jīng)從擬南芥和棉花中克隆到大量ALDH和GLIP基因的啟動(dòng)子(Hou & Bartels, 2015; Guo et al., 2017; Ma et al., 2018; Yang et al., 2021),此外,高粱、大豆以及黃花蒿等物種中也報(bào)道了ALDH基因的啟動(dòng)子。然而從除蟲(chóng)菊中僅分離出一個(gè)具有腺體特異表達(dá)的菊基二磷酸合成酶基因TcCHS的啟動(dòng)子(Sultana et al., 2015)。因此,研究其他除蟲(chóng)菊酯合成酶基因的啟動(dòng)子是解析除蟲(chóng)菊酯合成調(diào)控機(jī)制的前提。
茉莉酸及其衍生物不僅作為反應(yīng)底物參與除蟲(chóng)菊酯酮醇部分的生物合成,同時(shí)作為防御應(yīng)激類激素調(diào)控除蟲(chóng)菊酯的合成(Matsuda et al., 2005; Li et al., 2018)。課題組前期進(jìn)行了茉莉酸甲酯處理下的白花除蟲(chóng)菊葉片和花期轉(zhuǎn)錄組數(shù)據(jù)分析,注釋到了很多與除蟲(chóng)菊酯合成代謝相關(guān)的基因?;诖耍狙芯客ㄟ^(guò)除蟲(chóng)菊無(wú)性系‘W99克隆得到TcALDH和TcGLIP基因的啟動(dòng)子序列,對(duì)其調(diào)控元件、啟動(dòng)子活性、激素誘導(dǎo)特異性和組織特異性進(jìn)行了分析,進(jìn)一步揭示除蟲(chóng)菊酯的合成機(jī)制及代謝調(diào)控中植物激素的作用,從而為培育除蟲(chóng)菊優(yōu)良品種和提高除蟲(chóng)菊酯含量提供理論依據(jù)。
1 材料與方法
1.1 實(shí)驗(yàn)材料
除蟲(chóng)菊無(wú)性系‘W99的葉片取自華中農(nóng)業(yè)大學(xué)組培室。大腸桿菌DH5α 和根癌農(nóng)桿菌GV3101、EHA105購(gòu)自上海唯地生物技術(shù)有限公司。用于轉(zhuǎn)化的本氏煙草(Nicotiana benthamiana)在 25 ℃、16 h光照/8 h黑暗條件的組培室中生長(zhǎng)。
1.2 啟動(dòng)子克隆
利用RaPure plant DNA mini kit(美基生物, 中國(guó))提取除蟲(chóng)菊葉片的gDNA作為模板,依據(jù)除蟲(chóng)菊基因組(Yamashiro et al., 2019),設(shè)計(jì)TcALDH基因啟動(dòng)子的特異引物F-ALDH-pro及ORF下游R-ALDH-ORF(表1),TcGLIP基因啟動(dòng)子的特異引物F-GLIP-pro及ORF下游R-GLIP-ORF(表1),利用高保真酶High-Fidelity Master Mix(MCLAB, China)進(jìn)行擴(kuò)增,將擴(kuò)增產(chǎn)物連接到pBLUE-T載體(ZOMANBIO, China),轉(zhuǎn)化大腸桿菌,挑選單菌落進(jìn)行測(cè)序。利用除蟲(chóng)菊基因組對(duì)獲得的片段進(jìn)行檢驗(yàn)。利用PlantCARE軟件對(duì)啟動(dòng)子的元件進(jìn)行預(yù)測(cè)。
1.3 載體構(gòu)建
以測(cè)序正確的質(zhì)粒為模板,分別利用含有同源重組片段的引物L(fēng)uc-aldh-F、Luc-aldh-R、Luc-glip-F、Luc-glip-R(表1)進(jìn)行擴(kuò)增?;厥誔CR產(chǎn)物,連接到經(jīng)HindⅢ酶切的pGreenII 0800-LUC載體上,轉(zhuǎn)化大腸桿菌,挑選單菌落進(jìn)行測(cè)序,選取測(cè)序正確的載體轉(zhuǎn)化GV3101農(nóng)桿菌。
以測(cè)序正確的質(zhì)粒為模板,分別利用含有同源重組片段的引物F-aldh121pro、R-aldh121pro、F-glip121pro、R-glip121pro(表1)進(jìn)行擴(kuò)增?;厥誔CR產(chǎn)物,連接到經(jīng)Hind III和BamH I酶切的PBI121載體上,轉(zhuǎn)化大腸桿菌,挑選單菌落進(jìn)行測(cè)序,選取測(cè)序正確的載體轉(zhuǎn)化EHA105農(nóng)桿菌。
1.4 煙草中LUC瞬時(shí)表達(dá)和熒光成像
將含有重組pGreenⅡ 0800-LUC載體的農(nóng)桿菌單菌落接種到發(fā)根農(nóng)桿菌培養(yǎng)基(YEB)中,培養(yǎng)至OD600=0.5,5 000 r·min-1離心7 min后,用MES侵染液重懸,調(diào)節(jié)至OD600=1.0。選取生長(zhǎng)2至3周的本氏煙草,用無(wú)針頭的注射器將農(nóng)桿菌菌液注射到煙草葉片,葉片左半部分注射含有空載pGreenⅡ 0800-LUC載體的農(nóng)桿菌,右半部分注射含有重組pGreenⅡ 0800-LUC載體的農(nóng)桿菌。注射后的煙草置于人工氣候室中培養(yǎng)2 d后,在煙草葉片上噴施50 μmol·L-1的脫落酸(abscisic acid, ABA),濃度參考胡慧敏等(2021)的方法,或噴施100 μmol·L-1的茉莉酸甲酯(methyl jasmonate, MeJA),濃度參考陳雨倩等(2021)的方法,以噴施清水植株的葉片作為對(duì)照。放置12 h后,將Dual-Luciferase Reporter Assay 試劑盒中的Luaferase Assay Substrate與Luaferase Assay Buffer II混合,涂抹在煙草的注射區(qū),然后使用LB 985 Nightshade system(Berthold,Bad Wildbad,德國(guó))儀器觀察熒光。
1.5 不同激素處理下除蟲(chóng)菊TcALDH和TcGLIP基因表達(dá)分析
MeJA處理:以繼代培養(yǎng)一個(gè)月的除蟲(chóng)菊‘W99無(wú)性系作為實(shí)驗(yàn)材料,使用5 mL的2 mmol·L-1的MeJA溶液噴施處理組培苗,濃度參考(Buraphaka & Putalun, 2020),擰緊瓶蓋,培養(yǎng)0、4、12 h后,將實(shí)驗(yàn)材料葉片放置在液氮中迅速冷卻后,保存于-80 ℃冰箱。
ABA處理:以繼代培養(yǎng)一個(gè)月的除蟲(chóng)菊‘W99無(wú)性系作為實(shí)驗(yàn)材料,使用5 mL的1 mmol·L-1的ABA溶液噴施處理組培苗,擰緊瓶蓋,培養(yǎng)0、4、12 h后,將實(shí)驗(yàn)材料葉片放置在液氮中迅速冷卻后,保存于-80 ℃冰箱。
利用Real-time qPCR分析兩種激素處理后的基因表達(dá)水平。RNA提取使用植物RNA提取試劑盒Ultrapure RNA Kit(CWBIO康為世紀(jì)生物科技有限公司),反轉(zhuǎn)錄形成cDNA,使用EasyScript One-Step gDNA Removal and cDNA Synthesis SuperMix(TRAN北京全式金生物技術(shù)有限公司)進(jìn)行熒光定量分析,熒光定量的儀器為Applied Biosystems 7500 platform,試劑為2×Sybr Green qPCR Mix(Aidlab,北京艾德萊生物科技有限公司),熒光定量使用的引物為TcALDH-RT-F、TcALDH-RT-R、TcGLIP-RT-F、TcGLIP-RT-R、TcGAPDH-F和TcGAPDH-R(表1)(Ramirez et al., 2012)。
1.6 煙草遺傳轉(zhuǎn)化篩選及GUS表達(dá)
將含有pTcGLIP-GUS質(zhì)粒的農(nóng)桿菌單菌落接種到Y(jié)EB液體培養(yǎng)基中,培養(yǎng)至OD600=0.5,5 000 r·min-1離心7 min后,用液體MS(Murashige & Skoog)基本培養(yǎng)基重懸,調(diào)節(jié)至OD600=0.5。將煙草葉片切成0.5 cm×0.5 cm,放入農(nóng)桿菌菌液,侵染10 min后,在濾紙上晾干,將侵染后的煙草葉片轉(zhuǎn)移至共培養(yǎng)培養(yǎng)基上,培養(yǎng)基配方為MS基本培養(yǎng)基+2.25 mg·L-16-芐氨基嘌呤(6-benzyladenine, 6-BA)+0.3 mg·L-11-萘乙酸(1-naphthylacetic acid, NAA),黑暗條件下培養(yǎng)2 d后,將葉片轉(zhuǎn)移至篩選培養(yǎng)基,培養(yǎng)基配方為MS基本培養(yǎng)基+2.25 mg·L-1 6-BA+0.3 mg·L-1 NAA+400 mg·L-1頭孢霉素(cefotaxime, Cef)+50 mg·L-1 卡那霉素(kanamycin, Kan),每2周繼代一次,當(dāng)抗性芽生長(zhǎng)至1 cm時(shí),將抗性芽切下,放置在含有400 mg·L-1 Cef和50 mg·L-1 Kan的MS培養(yǎng)基中,繼續(xù)培養(yǎng)。
提取卡納霉素抗性本氏煙草葉片的DNA,以其為模板,用F-aldh121pro作為上游,TcALDH啟動(dòng)子特異引物R-aldh-pro280作為下游,檢驗(yàn)pTcALDH-GUS轉(zhuǎn)基因煙草;用F-glip121pro作為上游,R-GUS-T作為下游,檢驗(yàn)pTcGLIP-GUS轉(zhuǎn)基因煙草,轉(zhuǎn)化所用菌株為陽(yáng)性對(duì)照,野生煙草為陰性對(duì)照。植物DNA提取試劑盒為HiPure Plant DNA Mini Kit(美基生物,中國(guó)),PCR擴(kuò)增mix為2×Taq Master Mix(近岸蛋白質(zhì)科技有限公司,中國(guó))。
將繼代培養(yǎng)一個(gè)月的陽(yáng)性煙草用GUS Staining Kit(Coolaber, 中國(guó))進(jìn)行染色,實(shí)驗(yàn)步驟參照試劑盒說(shuō)明書(shū),染色后用70%的酒精脫色至葉片完全褪綠后,在體視顯微鏡下觀察染色情況。每個(gè)啟動(dòng)子均取3個(gè)獨(dú)立的轉(zhuǎn)基因株系進(jìn)行染色。
2 結(jié)果與分析
2.1 TcALDH和TcGLIP啟動(dòng)子克隆
以提取的除蟲(chóng)菊基因組DNA為模板,使用特異性引物F-ALDH-pro和R-ALDH-ORF克隆得到TcALDH基因ATG上游2 848 bp的啟動(dòng)子序列,使用特異性引物F-GLIP-pro和R-GLIP-ORF擴(kuò)增TcGLIP啟動(dòng)子,獲得條帶大小為1 343 bp(圖1)。分別命名為pTcALDH和pTcGLIP。
2.2? pTcALDH和pTcGLIP調(diào)控元件分析
利用PlantCARE軟件分析了pTcALDH和pTcGLIP的順式作用元件。結(jié)果顯示在pTcALDH序列2 848 bp 的區(qū)域共檢測(cè)到43種210個(gè)作用元件,在pTcGLIP序列1 343 bp的區(qū)域檢測(cè)到30種116個(gè)作用元件。pTcALDH和pTcGLIP均含有多個(gè)核心啟動(dòng)子元件(TATA-box)和增強(qiáng)子元件(CAAT-box)等基本特征元件,此外還包含許多與激素響應(yīng)[MeJA、水楊酸(salicylic acid,SA)、生長(zhǎng)素(auxin)、ABA、赤霉素(gibberellin,GA)等],脅迫響應(yīng)(損傷、低溫、干旱等)和光響應(yīng)相關(guān)的元件(表2,表3)。這兩個(gè)基因啟動(dòng)子序列均含有MeJA響應(yīng)元件(TGACG-motif和CGTCA-motif)和ABA響應(yīng)元件(ABRE)。
2.3 pTcALDH和pTcGLIP活性和激素誘導(dǎo)特性分析
將含有pTcALDH-LUC和pTcGLIP-LUC表達(dá)載體的農(nóng)桿菌分別注射煙草葉片,熒光成像結(jié)果顯示,含有pTcALDH-LUC和pTcGLIP-LUC載體的農(nóng)桿菌注射部位,熒光強(qiáng)度高于空載對(duì)照,說(shuō)明pTcALDH和pTcGLIP能夠驅(qū)動(dòng)LUC基因的表達(dá),具有啟動(dòng)子活性。注射含有pTcALDH-LUC表達(dá)載體農(nóng)桿菌的葉片在ABA和MeJA激素處理后,熒光強(qiáng)度顯著高于清水對(duì)照,表明pTcALDH具有ABA和MeJA激素誘導(dǎo)特性(圖2)。而注射含有pTcGLIP-LUC表達(dá)載體農(nóng)桿菌的葉片在ABA和MeJA激素處理后,熒光強(qiáng)度低于清水對(duì)照(圖2)。
2.4 不同激素處理下除蟲(chóng)菊葉片TcALDH和TcGLIP基因表達(dá)分析
用ABA和MeJA處理除蟲(chóng)菊組培苗,檢測(cè)TcALDH和TcGLIP基因轉(zhuǎn)錄水平。結(jié)果表明,MeJA和ABA處理可顯著影響除蟲(chóng)菊TcALDH和TcGLIP基因的表達(dá),其中TcALDH的表達(dá)受ABA誘導(dǎo)上調(diào),受MeJA誘導(dǎo)表達(dá)量先升高后降低;TcGLIP的表達(dá)受ABA和MeJA誘導(dǎo)下調(diào)(圖 3)。
2.5 pTcALDH和pTcGLIP組織特異性分析
將TcALDH和TcGLIP啟動(dòng)子區(qū)域與GUS報(bào)告基因融合,轉(zhuǎn)化煙草,獲得了4個(gè)獨(dú)立的pTcALDH-GUS轉(zhuǎn)基因株系和5個(gè)獨(dú)立的pTcALDH-GUS轉(zhuǎn)基因株系。對(duì)這些轉(zhuǎn)基因株系進(jìn)行GUS染色,結(jié)果表明,在野生型植物中無(wú)任何組織觀察到藍(lán)色,在pTcALDH-GUS轉(zhuǎn)基因煙草葉的腺毛頭部顯現(xiàn)出明顯藍(lán)色,而在pTcALDH-GUS轉(zhuǎn)基因煙草葉中未發(fā)現(xiàn)明顯的組織特異染色(圖4)。
3 討論與結(jié)論
本研究利用除蟲(chóng)菊基因組及PCR測(cè)序驗(yàn)證,獲得了TcALDH和TcGLIP的啟動(dòng)子序列。pTcALDH和pTcGLIP序列均含有多個(gè)核心啟動(dòng)子元件(TATA-box)和增強(qiáng)子元件(CAAT-box)等基本特征元件,表明這兩個(gè)基因的啟動(dòng)子擁有典型啟動(dòng)子的功能。此外,pTcALDH和pTcGLIP區(qū)域還包含了激素響應(yīng)、脅迫響應(yīng)和光響應(yīng)元件。啟動(dòng)子序列分析表明,pTcALDH和pTcGLIP均含有參與MeJA響應(yīng)的CGTCA基序和ABA響應(yīng)基序,這恰好解釋了MeJA可以促進(jìn)除蟲(chóng)菊酯的合成。類似地,在pTcALDH和pTcGLIP中均發(fā)現(xiàn)了MBS元件,它是參與干旱誘導(dǎo)的MYB的結(jié)合位點(diǎn),而有趣的是,之前Suraweera等(2017)
研究表明除蟲(chóng)菊酯的產(chǎn)量受干旱的影響。除了除蟲(chóng)菊中TcALDH和TcGLIP基因會(huì)響應(yīng)機(jī)械損傷使得除蟲(chóng)菊酯含量上升外(Kikuta et al., 2012),黃花蒿中AaALDH基因也會(huì)因?yàn)閭μ幚矶险{(diào)(王煥燕,2016),這可能與損傷響應(yīng)元件W-box相關(guān)。綜上可知,pTcALDH和pTcGLIP序列包含MYB、MYC、BZIP、WRKY等轉(zhuǎn)錄因子可結(jié)合的元件,如MBS、RBRE、G-box、W-box等(Yang et al., 2020; Fu et al., 2021),因此推測(cè)這兩個(gè)基因的表達(dá)可能受這些轉(zhuǎn)錄因子的調(diào)控。最新的研究發(fā)現(xiàn)證實(shí)了白花除蟲(chóng)菊中TcMYC2和TcMYB8均可以通過(guò)上調(diào)TcGLIP基因表達(dá)進(jìn)而提高葉片中除蟲(chóng)菊酯的含量(Zhou et al., 2022; Zeng et al., 2022)。
植物次生代謝物質(zhì)合成受茉莉酸(jasmonic acid,JA)、ABA、SA等植物激素的調(diào)控(Lv et al., 2017)。TcALDH作為除蟲(chóng)菊酯合成關(guān)鍵基因,其啟動(dòng)子具有ABA和MeJA激素誘導(dǎo)特性。TcALDH的基因表達(dá)量在ABA誘導(dǎo)下上調(diào),在MeJA誘導(dǎo)下先顯著上升后下降。這與前人的研究結(jié)果基本一致,除蟲(chóng)菊中TcALDH和TcGLIP基因的表達(dá)受MeJA的影響(Li et al., 2018),進(jìn)一步證明MeJA可以調(diào)控除蟲(chóng)菊酯合成。在除蟲(chóng)菊的近緣種黃花蒿中,用MeJA處理黃花蒿,AaALDH1基因表達(dá)量也有顯著的提高(王煥燕,2016)。這說(shuō)明MeJA也會(huì)調(diào)控青蒿素的合成。與TcALDH處理結(jié)果相反的是,TcGLIP啟動(dòng)子不具備MeJA和ABA誘導(dǎo)特異性,且處理后基因表達(dá)量顯著下降。這與前人研究報(bào)道的擬南芥NtGLIP1不受JA調(diào)控結(jié)果基本一致,NtGLIP1僅為SA響應(yīng)分泌蛋白(Oh et al., 2005)。而NtGLIP2可以響應(yīng)JA,并通過(guò)響應(yīng)生長(zhǎng)素抵御生物脅迫(Lee et al., 2009)。擬南芥、棉花和除蟲(chóng)菊的ALDH基因啟動(dòng)子均能響應(yīng)ABA,除此之外,除蟲(chóng)菊pTcALDH可以響應(yīng)MeJA;擬南芥和棉花GLIP基因啟動(dòng)子均可響應(yīng)乙烯(ethylene, ET),且擬南芥NtGLIP基因啟動(dòng)子具有生長(zhǎng)素誘導(dǎo)特性,這在除蟲(chóng)菊中未見(jiàn)報(bào)道(Kirch et al., 2005; Hou & Bartels, 2015; Guo et al., 2017; 胡陽(yáng)光,2019 )。這說(shuō)明參與代謝合成的基因通常具有各自的激素誘導(dǎo)特異性,通過(guò)響應(yīng)一種或者多種植物激素調(diào)控次生代謝物質(zhì)合成,在植物生物或非生物脅迫中發(fā)揮作用。
Wasternack等(2019)研究表明MeJA能夠促進(jìn)次生代謝物在植物體內(nèi)的積累。MeJA短效處理可以促進(jìn)除蟲(chóng)菊酯合成基因的瞬時(shí)上調(diào),但不能維持較高的除蟲(chóng)菊酯含量,JA路徑部分合成酶基因和TcGLIP基因表達(dá)量反而下調(diào)(Zeng et al., 2022)。除蟲(chóng)菊酯前體物質(zhì)主要在腺體中合成,被運(yùn)輸?shù)郊?xì)胞外形成最終產(chǎn)物,儲(chǔ)存在花頭的子房中(王鳳姣等,2021)。花頭中具有豐富的特殊結(jié)構(gòu),如分泌管/腔或胞外空間(Ramirez et al., 2012)。然而在葉片中并沒(méi)有發(fā)現(xiàn)類似的結(jié)構(gòu)或空間來(lái)儲(chǔ)存除蟲(chóng)菊酯。除蟲(chóng)菊毛狀根中也僅存在極低含量的除蟲(chóng)菊酯(Li et al., 2022b)。這意味著除蟲(chóng)菊酯的生物合成可能受到強(qiáng)大的負(fù)反饋,以避免除蟲(chóng)菊酯的過(guò)度積累。植物體內(nèi)這種負(fù)反饋調(diào)節(jié)機(jī)制可能通過(guò)抑制GLIP酶的活性從而降低除蟲(chóng)菊酯的含量。
此外,GUS組織染色結(jié)果表明,TcALDH主要在腺體中表達(dá),而TcGLIP僅在皮下薄壁細(xì)胞表達(dá)。這些結(jié)果基本與前人的研究一致,即腺體中表達(dá)的TcALDH用以合成菊酸,薄壁細(xì)胞中表達(dá)TcGLIP用以合成除蟲(chóng)菊酯(Kikuta et al., 2012; Ramirez et al., 2012; Xu et al., 2018)。黃花蒿ALDH1基因只在成熟的蓮座葉的腺毛體中表達(dá)(王煥燕,2016)。然而,本研究的結(jié)果與前人的預(yù)測(cè)略有不同,本研究表明薄壁細(xì)胞也可能具有表達(dá)TcALDH的能力,TcALDH基因并非為腺體特異表達(dá)。擬南芥中NtGLIP1和其他NtGLIPs信號(hào)同樣定位在細(xì)胞壁或者胞外(Oh et al., 2005; Lee et al., 2009)。通過(guò)亞細(xì)胞定位研究擬南芥NtALDH和NtGLIP,NtALDH蛋白多分泌于質(zhì)體和細(xì)胞質(zhì)中,NtGLIP蛋白通常分布在細(xì)胞壁或胞外(Oh et al., 2005; Lee et al., 2009; Hou & Bartels, 2015)。當(dāng)前報(bào)道僅分析了棉花GhALDH和GhGLIP基因組數(shù)據(jù)和啟動(dòng)子的元件,在空間表達(dá)研究上未見(jiàn)報(bào)道(Guo et al., 2017; Ma et al., 2018)。
本研究分析了pTcALDH和pTcGLIP的調(diào)控元件、啟動(dòng)子活性、激素誘導(dǎo)特異性和組織特異性。其中pTcALDH具有MeJA和ABA激素誘導(dǎo)特異性,且這兩種激素影響除蟲(chóng)菊酯合成基因的表達(dá)水平。TcALDH主要定位在腺體中,而TcGLIP主要定位在胞外,這再次驗(yàn)證了菊酸的合成部位在腺體而除蟲(chóng)菊酯的合成部位在胞外。本研究可為進(jìn)一步探討除蟲(chóng)菊中TcALDH和TcGLIP基因的表達(dá)調(diào)控機(jī)制提供理論參考依據(jù)。
參考文獻(xiàn):
BURAPHAKA H, PUTALUN W, 2020. Stimulation of health-promoting triterpenoids accumulation in Centella asiatica (L.) Urban leaves triggered by postharvest application of methyl jasmonate and salicylic acid elicitors? [J]. Ind Crops Prod, 146: 112171.
CHEN YQ, XU G, LINGHU QQ, 2021. Cloning and functional analysis of Jatropha curcas JcGAST1 gene promoter? [J]. Plant Physiol J, 57(11): 2145-2154. [陳雨倩, 徐剛, 令狐前前, 2021. 麻瘋樹(shù)JcGAST1基因啟動(dòng)子克隆及其功能初步分析? [J]. 植物生理學(xué)報(bào), 57(11): 2145-2154.]
FU XQ, PENG BW, HASSANI D, et al., 2021. AaWRKY9 contributes to light- and jasmonate-mediated to regulate the biosynthesis of artemisinin in Artemisia annua [J]. New Phytol, 231(5): 1858-1874.
GUO XL, WANG YY, LU HJ, et al., 2017. Genome-wide characterization and expression analysis of the aldehyde dehydrogenase (ALDH) gene superfamily under abiotic stresses in cotton? [J]. Gene, 628: 230-245.
HOU QC, BARTELS D, 2015. Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes? [J]. Ann Bot, 115(3): 465-479.
HU HM, CAI WH, MU KB, et al., 2021. Study on the heterologous expression of GmCDPK SK5 gene in soybean ABA signaling pathway? [J]. Soybean Sci, 40(6): 737-747.[胡慧敏, 蔡婉菡, 穆可彬, 等, 2021. 大豆ABA信號(hào)途徑GmCDPK? SK5基因異源表達(dá)探究? [J]. 大豆科學(xué), 40(6): 737-747.]
HU YG, 2019. Preliminary analiysis of ALDH7 and ALDH12 gene functions in cotton under salt and drought stress? [D]. Kaifeng: Henan University. [胡陽(yáng)光, 2019. 棉花ALDH7和ALDH12基因在鹽和干旱脅迫下功能初步分析? [D]. 開(kāi)封: 河南大學(xué).]
KIKUTA Y, UEDA H, TAKAHASHI M, et al., 2012. Identification and characterization of a GDSL lipase-like protein that catalyzes the ester-forming reaction for pyrethrin biosynthesis in Tanacetum cinerariifolium—a new target for plant protection? [J]. Plant J, 71(2): 183-193.
KIRCH HH, SCHLINGENSIEPEN S, KOTCHONI S, et al, 2005. Detailed expression analysis of selected genes of the aldehyde dehydrogenase (ALDH) gene superfamily in Arabidopsis thaliana? [J]. Plant Mol Biol, 57: 315-332.
LEE DS, KIM BK, KWON SJ, et al., 2009. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling? [J]. Biochem Biophys Res Commun, 379(4): 1038-1042.
LI JW, XU ZZ, ZENG T, et al., 2022a. Overexpression of TcCHS increases pyrethrin content when using a genotype-independent transformation system in pyrethrum (Tanacetum cinerariifolium)? [J]. Plants (Basel), 11(12): 1575.
LI JW, ZENG T, XU ZZ, et al., 2022b. Ribozyme-mediated CRISPR/Cas9 gene editing in pyrethrum (Tanacetum cinerariifolium) hairy roots using a RNA polymerase II-dependent promoter? [J]. Plant Methods, 18(1): 32.
LI JJ, HU H, MAO J, et al., 2019. Defense of pyrethrum flowers: repelling herbivores and recruiting carnivores by producing aphid alarm pheromone? [J]. New Phytol, 223(3): 1607-1620.
LI JJ, HU H, CHEN Y, et al., 2021. Tissue specificity of (E)-β-farnesene and germacrene D accumulation in pyrethrum flowers? [J]. Phytochemistry, 187: 112768.
LI W, ZHOU F, PICHERSKY E, 2018. Jasmone hydroxylase, a key enzyme in the synthesis of the alcohol moiety of pyrethrin insecticides? [J]. Plant Physiol, 177(4): 1498-1509.
LV ZY, ZHANG L, TANG KX, 2017. New insights into artemisinin regulation? [J]. Plant Signal Behav, 12(10): e1366398.
LYBRAND DB, XU HY, LAST RL, et al., 2020. How plants synthesize pyrethrins: safe and biodegradable insecticides? [J]. Trends Plant Sci, 25(12): 1240-1251.
MA R, YUAN HL, AN J, et al., 2018. A Gossypium hirsutum GDSL lipase/hydrolase gene (GhGLIP) appears to be involved in promoting seed growth in Arabidopsis? [J]. PLoS ONE, 13(4): e0195556.
MATSUDA K, KIKUTA Y, HABA A, et al., 2005. Biosynthesis of pyrethrin I in seedlings of Chrysanthemum cinerariaefolium? [J]. Phytochemistry, 66(13): 1529-1535.
MOSSA AH, MOHAFRASH SMM, CHANDRASEKARAN N, 2018. Safety of natural insecticides: toxic effects on experimental animals? [J]. Biomed Res Int, 2018(1): 1-17.
NELSON RH, 1974. Pyrethrum: The natural insecticide? [J]. Bull Esa, 20(3): 16.
OH IS, PARK AR, BAE MS, et al., 2005. Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola? [J]. Plant Cell, 17(10): 2832-2847.
RAMIREZ AM, STOOPEN G, MENZEL TR, et al., 2012. Bidirectional secretions from glandular trichomes of pyrethrum enable immunization of seedlings? [J]. Plant Cell, 24(10): 4252-4265.
STAUDINGER H, RUZICKA L, 1924. Insektenttende Stoffe IV. Konstitution des Tetrahydro-pyrethrons? [J]. Helvetica Chimica Acta, 7(1): 236-244.
SULTANA S, HU H, GAO L, et al., 2015. Molecular cloning and characterization of the trichome specific chrysanthemyl diphosphate/chrysanthemol synthase promoter from Tanacetum cinerariifolium? [J]. Sci Hortic, 185: 193-199.
SURAWEERA DD, GROOM T, TAYLOR PWJ, et al., 2017. Dynamics of flower, achene and trichome development governs the accumulation of pyrethrins in pyrethrum (Tanacetum cinerariifolium) under irrigated and dryland conditions? [J]. Indust Crops Prod, 109: 123-133.
WANG HY, 2016. Molecular cloning and characterization of the promoter of aldehyde dehydrogenase gene from Artemisia annua L.? [D]. Chongqing: Southwest University: 43. [王煥燕, 2016. 黃花蒿ALDH1啟動(dòng)子的克隆及其功能分析? [D]. 重慶: 西南大學(xué).]
WASTERNACK C, STRNAD M, 2019. Jasmonates are signals in the biosynthesis of secondary metabolites—Pathways, transcription factors and applied aspects—A brief review? [J]. New Biotechnol, 48: 1-11.
WANG Y, WEN J, LIU L, et al., 2022. Engineering of tomato type VI glandular trichomes for trans-chrysanthemic acid biosynthesis, the acid moiety of natural pyrethrin insecticides? [J]. Metab Eng, 72: 188-199.
WANG FJ, XU HY, YAN JB, et al., 2021. Biosynthesis and application of pyrethrins: a natural pesticide from plants? [J]. Synth Biol J, 2(5): 753-761. [王鳳姣, 徐海洋, 閆建斌, 等, 2021. 植物天然農(nóng)藥除蟲(chóng)菊酯的生物合成和應(yīng)用研究進(jìn)展? [J]. 合成生物學(xué), 2(5): 753-761.]
XU HY, MOGHE GD, WIEGERT-RININGER K, et al., 2018. Coexpression analysis identifies two oxidoreductases involved in the biosynthesis of the monoterpene acid moiety of natural pyrethrin insecticides in Tanacetum cinerariifolium? [J]. Plant Physiol, 176(1): 524-537.
YAMASHIRO T, SHIRAISHI A, SATAKE H, et al., 2019. Draft genome of Tanacetum cinerariifolium, the natural source of mosquito coil? [J]. Sci Rep, 9(1): 18249.
YANG Y, YU TF, MA J, et al., 2020. The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants? [J]. Int J Mol Sci, 21(2): 670.
YANG YN, KIM Y, KIM H, et al., 2021. The transcription factor ORA59 exhibits dual DNA binding specificity that differentially regulates ethylene- and jasmonic acid-induced genes in plant immunity? [J]. Plant Physiol, 187(4): 2763-2784.
ZENG T, LI JW, XU ZZ, et al., 2022. TcMYC2 regulates pyrethrin biosynthesis in Tanacetum cinerariifolium? [J]. Hortic Res, 9: uhac178.
ZENG T, LI JW, ZHOU L, et al., 2021. Transcriptional responses and GCMS analysis for the biosynthesis of pyrethrins and volatile terpenes in Tanacetum coccineum? [J]. Int J Mol Sci, 22(23): 13005.
ZENG T, LI JW, ZHOU L, et al., 2021. Advances in the mutualistic and antagonistic interactions between flower colors and the pollinators of ornamental plants? [J]. Acta Hortic Sin, 48(10): 2001-2017. [曾拓, 李伽文, 周黎, 等, 2021. 觀賞植物花色與授粉昆蟲(chóng)相互適應(yīng)關(guān)系的研究進(jìn)展? [J]. 園藝學(xué)報(bào), 48(10): 2001-2017.]
ZHOU L, LI JW, ZENG T, et al., 2022. TcMYB8, a R3-MYB transcription factor, positively regulates pyrethrin biosynthesis in Tanacetum cinerariifolium? [J]. Int J Mol Sci, 23(20): 12186.
ZHOU L, ZENG T, LI JJ, et al., 2022. The preliminary investigation on the interplanting patterns and agronomic effects of Tanacetum cinerariifolium and horticultural plants? [J]. J Guizhou Norm Univ (Nat Sci Ed), 40(3): 18-26. [周黎, 曾拓, 李進(jìn)進(jìn), 等, 2022. 除蟲(chóng)菊間作套種模式及其農(nóng)藝效應(yīng)初探? [J]. 貴州師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 40(3): 18-26.]
(責(zé)任編輯 周翠鳴)