商曉鈺 張騰元 謝俊霞 徐華敏
[摘要]目的探究投射到紋狀體(Str)的黑質(zhì)致密部(SNpc)多巴胺(DA)能神經(jīng)元的上游腦區(qū)。方法采用逆向病毒示蹤技術(shù)逆向追蹤SNpc-Str環(huán)路的上游腦區(qū)。應用立體定位技術(shù)在8周齡C57BL/6雄性小鼠Str區(qū)注射逆行追蹤病毒rAAV-hsyn-cre-wpre-pA(retro);同時在SNpc注射病毒AAV-DIO-EF1α-GFP-TVA和AAV-DIO-EF1α-RVG(1∶2混合);3周后在SNpc注射逆行跨突觸狂犬病毒RV-Enva-ΔG-dsRed。1周后取腦進行冷凍切片,應用Olympus VS120熒光顯微鏡觀察表達dsRed陽性細胞的腦區(qū)。結(jié)果應用熒光顯微鏡在SNpc可以觀察到GFP(綠色)和dsRed(紅色)陽性細胞,證明依賴Cre重組酶表達的AAV-DIO-EF1α-GFP-TVA病毒以及依賴TVA元件表達的狂犬病毒均在SNpc正常表達。同時在外側(cè)下丘腦(LH)、前連合后肢間質(zhì)核(IPAC)腦區(qū)觀察到dsRed(紅色)陽性細胞。結(jié)論LH和IPAC腦區(qū)可能是SNpc-Str環(huán)路DA能神經(jīng)元的上游腦區(qū)。
[關(guān)鍵詞]多巴胺能神經(jīng)元;密部;紋狀體;下丘腦區(qū),側(cè);前連合,大腦;神經(jīng)解剖束追蹤技術(shù)
[中圖分類號]R338.2[文獻標志碼]A[文章編號]2096-5532(2023)03-0349-04
doi:10.11712/jms.2096-5532.2023.59.099[開放科學(資源服務)標識碼(OSID)]
[網(wǎng)絡出版]https://link.cnki.net/urlid/37.1517.R.20230804.1521.001;2023-08-0715:34:53
A TRACING STUDY OF UPSTREAM BRAIN REGIONS OF DOPAMINERGIC PATHWAY PROJECTING FROM SUBSTANTIA NIGRA PARS COMPACTA TO STRIATUM? SHANG Xiaoyu, ZHANG Tengyuan, XIE Junxia, XU Huamin (Department of Physiology and Pathophysiology, School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the upstream brain regions of dopaminergic neurons projecting from the substantia nigra pars compacta (SNpc) to the striatum (Str). MethodsThe retrograde virus tracing technique was used to identify the upstream brain regions of the SNpc-Str circuit. Eight-week-old male C57BL/6 mice received stereotactic injection of the retrograde virus rAAV-hsyn-cre-wpre-pA (retro) into the Str and also a 1∶2 mixture of AAV-DIO-EF1α-GFP-TVA and AAV-DIO-EF1α-RVG into the SNpc. After three weeks, the retrograde transsynaptic rabies virus RV-Enva-ΔG-dsRed was injected into the SNpc. After another one week, the brain was taken to prepare slices to observe dsRed-positive brain regions using an Olympus VS120 fluorescence microscope. ResultsCells positive for GFP (green) and dsRed (red) were observed in the SNpc under the fluorescence microscope, demonstrating that both Cre recombinase-dependent AAV-DIO-EF1α-GFP-TVA virus and TVA-dependent ra-bies virus were normally expressed in the SNpc. At the same time, dsRed-positive cells were observed in the lateral hypothalamus (LH) and the interstitial nucleus of the posterior limb of the anterior commissure (IPAC). ConclusionLH and IPAC might be the upstream brain regions of dopaminergic neurons of the SNpc-Str circuit.
[KEY WORDS]dopaminergic neurons; pars compacta; corpus striatum; hypothalamic area, lateral; anterior commissure, brain; neuroanatomical tract-tracing techniques
帕金森?。≒D)是臨床較為常見的神經(jīng)退行性疾病,以靜止性震顫、肌強直、運動遲緩等運動癥狀和嗅覺障礙、睡眠障礙、心血管功能異常等非運動癥狀為主要臨床表現(xiàn)[1]。PD的主要病理變化為黑質(zhì)(SN)多巴胺(DA)能神經(jīng)元進行性退變[2],但其發(fā)病機制迄今尚不明確。目前有研究認為,SN區(qū)DA能神經(jīng)元所參與的繼發(fā)性神經(jīng)環(huán)路功能異常可能是導致PD的重要機制之一[3]。SN分為兩部分,即背側(cè)的黑質(zhì)致密部(SNpc)和腹側(cè)的黑質(zhì)網(wǎng)狀帶。其中DA能神經(jīng)元主要分布于SNpc并向紋狀體(Str)發(fā)出投射。此前關(guān)于SNpc所接受的腦區(qū)輸入已有報道[4-6],但由于受傳統(tǒng)技術(shù)的限制,無法區(qū)分DA和非DA能神經(jīng)元所涉及的神經(jīng)環(huán)路,阻礙了對DA能神經(jīng)元輸入的全面理解,且已有的研究也僅限于二級環(huán)路的研究[7-8]。因此,研究SNpc-Str環(huán)路DA能神經(jīng)元所接受的上游腦區(qū)投射,從而確定一個三級環(huán)路對于PD的神經(jīng)環(huán)路研究有重要意義。本實驗采用南加州大學張礪教授實驗室研發(fā)的逆向三級環(huán)路追蹤病毒[9],對SNpc-Str環(huán)路DA能神經(jīng)元的上游腦區(qū)進行了研究。
1材料與方法
1.1實驗材料
1.1.1實驗動物8周齡SPF級雄性C57BL/6小鼠,體質(zhì)量為(21±2)g,購于北京維通利華實驗動物有限公司。小鼠飼養(yǎng)于有適量食物和水的潔凈動物房內(nèi),可以自由飲食。動物房室溫(22±2)℃,濕度(50±2)%,12/12 h晝夜循環(huán)光照。小鼠適應性飼養(yǎng)1周后進行實驗。動物使用和管理經(jīng)青島大學動物倫理委員會批準。
1.1.2實驗病毒rAAV-hsyn-cre-wpre-pA(retro)(血清型2/9,滴度5.97E+15 vg/L),購于武漢樞密腦科學技術(shù)有限公司;AAV-DIO-EF1α-GFP-TVA(血清型9,滴度2.5E+15 vg/L)、AAV-DIO-EF1α-RVG(血清型9,滴度2.33E+15 vg/L)、RV-Enva-ΔG-dsRed(滴度2.0E+11 vg/L),購于布林凱斯(深圳)生物技術(shù)有限公司。
1.2實驗方法
1.2.1立體定位注射實驗小鼠用異氟烷麻醉后固定在腦立體定位儀上,麻醉后的小鼠放置在加熱墊上保持正常體溫。將玻璃電極中注滿液體石蠟后固定于微量注射泵(瑞沃德,中國)上,并吸取適量病毒。待小鼠深度麻醉后調(diào)整耳桿使小鼠頭部位于一平面上,用碘附消毒后剪開小鼠顱腦背側(cè)頭皮,用生理鹽水擦拭顱骨表面至顱縫和前后囟清晰可見,調(diào)整前后囟位置及旁開位置,將前囟點設為零點。根據(jù)小鼠腦定位圖譜定位注射點后利用顱骨鉆進行顱骨鉆孔(直徑為0.5 mm),將玻璃電極插入目標腦區(qū)后以20 nL/min的流量進行病毒注射,注射完畢縫合頭皮。
Str區(qū)病毒注射:將逆行追蹤病毒rAAV-cre-wpre-pA(retro)單側(cè)注射于C57BL/6成年雄性小鼠的Str腦區(qū),以前囟點作為原點,定位坐標為前后+1.18 mm、側(cè)偏-1.50 mm、深度-3.00 mm。SNpc病毒注射:將AAV-DIO-EF1α-GFP-TVA病毒和AAV-DIO-EF1α-RVG病毒以1∶2比例充分混合(簡稱混合病毒),單側(cè)注射于C57BL/6成年雄性小鼠的SNpc腦區(qū),以前囟點為原點,坐標為前后-3.16 mm、側(cè)偏-1.42 mm、深度-4.30 mm。3周后向小鼠同側(cè)SNpc原位置注射逆行跨突觸狂犬病毒RV-Enva-ΔG-dsRed。病毒注射完成7 d后進行心臟灌流取腦。
1.2.2小鼠腦組織切片樣本制備及觀察小鼠腹腔注射12.5 g/L阿佛丁進行全身麻醉(注射劑量0.02 mL/g),等待小鼠深度麻醉后剪開胸廓充分暴露心臟,使用生理鹽水(國藥,中國)和40 g/L多聚甲醛(索萊寶,中國)進行灌注并取腦。將鼠腦置于40 g/L多聚甲醛中固定12 h,再放入300 g/L蔗糖中沉糖48 h,待樣品沉入蔗糖溶液底部。取出腦組織,使用冷凍切片機制備30 μm厚腦切片。腦片在0.01 mol/L PBS中清洗3次,每次5 min,貼片,使用含DAPI封片液(碧云天,中國)封片,在Olympus VS120熒光顯微鏡20倍物鏡下觀察。
2結(jié)果
本實驗首先將表達Cre重組酶的腺相關(guān)病毒rAAV-cre-wpre-pA(retro)注射到小鼠單側(cè)背外側(cè)紋狀體,同時在同側(cè)SNpc注射依賴Cre的混合病毒,3周后在SNpc再次注射依賴混合病毒的逆行狂犬病毒RV-Enva-ΔG-dsRed,注射1周后通過熒光顯微鏡觀察熒光蛋白表達情況(圖1A)。結(jié)果顯示,在SNpc可見GFP陽性神經(jīng)元(綠色熒光)(圖1B),表明rAAV-cre-wpre-pA(retro)由Str逆行至SNpc胞體。同時,在SNpc還觀察到dsRed陽性神經(jīng)元(紅色熒光)(圖1C、D),說明TVA依賴的狂犬病毒在SNpc可正常表達。另外,在外側(cè)下丘腦(LH)和前連合后肢間質(zhì)核(IPAC)均可見明顯的dsRed陽性神經(jīng)元(圖1E、F),這表明狂犬病毒和RVG在SNpc共同表達并具有逆向跨突觸功能,可逆向追蹤上游腦區(qū)。上述結(jié)果提示LH和IPAC可能是調(diào)控投射至Str的SNpc DA能神經(jīng)元的上游腦區(qū)。
3討論
PD是繼阿爾茲海默病后的第二大神經(jīng)退行性疾病,多發(fā)生于中老年人。自1817年由PARKINSON[1]首次報道以來,PD的研究已經(jīng)取得了諸多重要進展。研究表明,PD的發(fā)病與年齡老化、氧化應激、炎癥反應、環(huán)境因素、遺傳因素等均有關(guān)[10]。PD主要臨床表現(xiàn)有運動遲緩、靜止性震顫、姿勢反射障礙等[11-12]。有研究認為,投射至Str的SNpc DA能神經(jīng)元退變和繼發(fā)性神經(jīng)環(huán)路功能異常,可能是導致PD癥狀發(fā)生發(fā)展的重要機制,也是腦深部電刺激(DBS)治療PD的干預靶點[13-15]。
目前治療PD最有效的方法依然是藥物治療,如左旋多巴類藥物和多巴胺受體激動劑等[16]。近年來DBS也成為臨床治療PD的有效手段。例如在蒼白球內(nèi)側(cè)[17]、丘腦底核[18]、腳橋核以及腹側(cè)中間核[19]等部位進行DBS均對PD病人起到了較為明顯的治療效果。雖然DBS治療已經(jīng)初步取得成效,但是仍有許多DBS治療靶點的作用機制尚待闡明。作為基底神經(jīng)核重要組成部分和主要負責DA傳輸?shù)腟Npc,由于與PD密不可分的聯(lián)系,更是許多研究的重點方向。而探究投射到Str的DA能神經(jīng)元的上游腦區(qū),對于進一步闡明PD在繼發(fā)性神經(jīng)環(huán)路方面的異常機制,以及提供新的PD治療靶點均有重要意義。
本實驗采用南加州大學張礪教授實驗室研發(fā)的用于神經(jīng)環(huán)路逆向追蹤的病毒,在技術(shù)層面上實現(xiàn)了較為精確的三級環(huán)路追蹤。首先在Str注射逆向追蹤病毒rAAV-hsyn-cre-wpre-pA(retro),該病毒能夠通過SNpc投射至Str的神經(jīng)軸突末梢逆行至SNpc的神經(jīng)元,使得SNpc神經(jīng)元胞體表達Cre重組酶。同時在SNpc區(qū)注射AAV-DIO-EF1α-GFP-TVA和AAV-DIO-EF1α-RVG混合病毒,該混合病毒的表達同時依賴于SNpc中表達的Cre重組酶,其中AAV-DIO-EF1α-GFP-TVA病毒帶有綠色熒光。最后在SNpc注射逆向跨突觸狂犬病毒RV-Enva-ΔG-dsRed,該病毒依賴于TVA元件表達后可與RVG共同發(fā)揮作用追蹤到相關(guān)神經(jīng)元的上游腦區(qū)。本研究所追蹤到的上游腦區(qū)中,LH為丘腦的外側(cè)區(qū)域,對攝食、飲水、性行為和情緒等方面的調(diào)控有重要作用[20],尤其在情緒方面,已有研究證實LH與小鼠的焦慮行為有關(guān)[21]。目前有研究發(fā)現(xiàn),LH與PD病人胃腸功能障礙有密切聯(lián)系[22],但暫未涉及運動方面的研究報道。而有實驗通過在LH注射逆行示蹤劑發(fā)現(xiàn),SNpc為LH其中一個上游腦區(qū)[4],這意味著LH和SNpc之間可能存在雙向的投射關(guān)系,并可能控制不同的行為。
IPAC為延展杏仁核的主要結(jié)構(gòu),主要在飲食選擇和協(xié)調(diào)影響代謝健康行為方面起著關(guān)鍵作用。目前對于該腦區(qū)的研究并不多見,有研究發(fā)現(xiàn)在IPAC注射順行標記病毒后,在SNpc、LH等腦區(qū)均發(fā)現(xiàn)有軸突末梢投射[23],這表明LH、IPAC以及SNpc三者之間可能存在著十分復雜的投射關(guān)系,也為我們的進一步研究提供了新思路。
總之,本實驗在先前研究的基礎(chǔ)上確定了LH和IPAC兩個可能調(diào)控SNpc-Str環(huán)路DA能神經(jīng)元的上游腦區(qū),這為進一步研究PD中可能的神經(jīng)環(huán)路發(fā)病機制提供了基礎(chǔ),也有助于為PD的治療提供新的靶點。
[參考文獻]
[1]PARKINSON J Mr. Parkinsons letter on the committee of?apothecaries[J]. The Medical and Physical Journal, 1813,29(168):132-133.
[2]ZHANG Z, ZHANG K K, DU X R, et al. Neuroprotection of desferrioxamine in lipopolysaccharide-induced nigrostriatal dopamine neuron degeneration[J]. Molecular Medicine Reports, 2012,5(2):562-566.
[3]MASINI D, KIEHN O. Targeted activation of midbrain neurons restores locomotor function in mouse models of Parkinsonism[J]. Nature Communications, 2022,13(1):504.
[4]YONEMOCHI N, ARDIANTO C, YANG L Z, et al. Dopaminergic mechanisms in the lateral hypothalamus regulate feeding behavior in association with neuropeptides[J]. Biochemical and Biophysical Research Communications, 2019,519(3):547-552.
[5]GEISLER S, ZAHM D S. Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions[J]. The Journal of Comparative Neurology, 2005,490(3):270-294.
[6]PHILLIPSON O T. Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: a horseradish peroxidase study in the rat[J]. The Journal of Comparative Neurology, 1979,187(1):117-143.
[7]CALLAWAY E M. Transneuronal circuit tracing with neurotropic viruses[J]. Current Opinion in Neurobiology, 2008,18(6):617-623.
[8]UGOLINI G. Rabies virus as a transneuronal tracer of neuronal connections[J]. Advances in Virus Research, 2011,79:165-202.
[9]ZINGG B, DONG H W, TAO H W, et al. Input-output organization of the mouse claustrum[J]. The Journal of Compa-rative Neurology, 2018,526(15):2428-2443.
[10]POSTUMA R B, BERG D, STERN M, et al. MDS clinical diagnostic criteria for Parkinsons disease[J]. Movement Di-sorders: Official Journal of the Movement Disorder Society, 2015,30(12):1591-1601.
[11]WIDNELL K. Pathophysiology of motor fluctuations in Parkinsons disease[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2005,20(Suppl 11):S17-S22.
[12]TOLOSA E, GARRIDO A, SCHOLZ S W, et al. Challenges in the diagnosis of Parkinsons disease[J].? The Lancet Neuro-logy, 2021,20(5):385-397.
[13]BEUDEL M, BROWN P. Adaptive deep brain stimulation in Parkinsons disease[J].? Parkinsonism & Related Disorders, 2016,22(Suppl 1):S123-S126.
[14]SWANN N C, HEMPTINNE C D, THOMPSON M C, et al. Adaptive deep brain stimulation for Parkinsons disease using motor cortex sensing[J]. Journal of Neural Engineering, 2018,15(4):046006.
[15]LERNER T N, SHILYANSKY C, DAVIDSON T J, et al. Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits[J].? Cell, 2015,162(3): 635-47.
[16]BORAUD T, BEZARD E, GUEHL D, et al. Effects of L-DOPA on neuronal activity of the globus pallidus externalis (GPe) and globus pallidus internalis (GPi) in the MPTP-treated monkey[J].? Brain Research, 1998,787(1):157-160.
[17]LILASCHAROEN V, WANG E H, DO N, et al. Divergent pallidal pathways underlying distinct Parkinsonian behavioral deficits[J].? Nature Neuroscience, 2021,24(4):504-515.
[18]OKUN M S. Deep-brain stimulation for Parkinsons disease[J]. The New England Journal of Medicine, 2012,367(16):1529-1538.
[19]LIN F B, WU D H, YU J, et al. Comparison of efficacy of deep brain stimulation and focused ultrasound in parkinsonian tremor: a systematic review and network meta-analysis[J]. Journal of Neurology, Neurosurgery, and Psychiatry, 2021,92(4):434-443.
[20]STAMATAKIS A M, VAN SWIETEN M, BASIRI M L, et al. Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula regulate feeding and reward[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2016,36(2):302-311.
[21]OWENS-FRENCH J, LI S B, FRANCOIS M, et al. Lateral hypothalamic galanin neurons are activated by stress and blunt anxiety-like behavior in mice[J]. Behavioural Brain Research, 2022,423:113773.
[22]YANG Y L, RAN X R, LI Y, et al. Expression of dopamine receptors in the lateral hypothalamic nucleus and their potential regulation of gastric motility in rats with lesions of bilateral substantia nigra[J]. Frontiers in Neuroscience, 2019,13:195.
[23]FURLAN A, CORONA A, BOYLE S, et al. Neurotensin neurons in the extended amygdala control dietary choice and energy homeostasis[J]. Nature Neuroscience, 2022,25(11):1470-1480.
(本文編輯馬偉平)