• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      選擇典型學習方式 構建素養(yǎng)為本課堂
      ——一道結構不良型題引發(fā)的教學探索

      2023-09-21 05:31:18華志遠
      數學通報 2023年7期
      關鍵詞:函數素養(yǎng)教學

      華志遠

      (無錫市第一中學 214031)

      課堂教學中,培養(yǎng)學生的關鍵能力,關鍵在于問題情境的創(chuàng)設能否指向素養(yǎng)為本的目標,并在分析、解決問題的過程中,獲得知識與技能,掌握數學思想方法,優(yōu)化思維品質,發(fā)展核心素養(yǎng).數學問題分為結構良好型和結構不良型兩類:結構良好型問題是指條件與結論的結構較為完整,解題的目標、過程和答案是相對穩(wěn)定的;結構不良型問題則是指條件或結論的信息不完整,導致問題結構和解決途徑不明確,從而使問題具有一定的選擇性、開放性和探索性.在平時教學中,師生大量接觸的是結構良好的題目,解決好這些是保證教學質量的前提;但當學生的心智水平發(fā)展到一定階段時,適時適度推出一些結構不良型問題,可以激發(fā)學生的問題意識和創(chuàng)新意識,提高學生的交流、表達和解決問題能力,同時倡導對話式、互動式、合作型與探究型的教學方式,可以推動學生學習方式的變革,提升學生的能力素養(yǎng).

      1 教學設計的背景和思路

      函數、方程與不等式是高中代數的主體內容,三者之間具有緊密的聯系.現行教材將不等式提前至必修第一冊的第二章,以體現它的工具作用,其中,不等式的概念及性質是研究的依據,基本不等式是實現兩個正數和與積不等轉化關系的重要模型,一元二次不等式的解法主要是強化二次函數圖象的應用,滲透數形結合、函數與方程、等價轉化等數學思想.不等式性質的多樣性及運用的靈活性,為學生多層次、多角度、多方位提出、分析和解決問題提供了較為廣闊的思維空間,而基本不等式和一元二次不等式應用的廣泛性,可以強化不等式的工具作用,溝通與函數、方程等知識的聯系.為此,筆者設計并嘗試了這樣一堂不等式的復習課.教學設計的總體思路是以兩道不等式經典題目為背景,先給出其公共條件,作為問題的初始狀態(tài);再讓學生選擇增加的條件,通過小組合作討論,提出各自不同的問題,作為中間狀態(tài);在此基礎上,經過分析和評議,篩選出相應的結論,作為問題的目標狀態(tài),并在實施解答的過程中,促進認識思路的結構化和系統(tǒng)化,以實現思維的進階,同時給不同層次的學生提供合作與探究的平臺,以展示學生思維的閃光點,共享探索的經驗和成果.

      2 教學設計的過程和分析

      教學背景:將全班48人分成12組,每組4人.

      問題1①a>b>c,②abc=1,在這兩個條件中任選一個,與條件“a,b,c∈R,a+b+c=0”共同構成一個問題的題設.通過小組討論,能得出哪些結論?并嘗試解決.

      從課堂情況來看,共有7組選擇的題設為a,b,c∈R,a+b+c=0,a>b>c;其余5組選擇題設為a,b,c∈R,a+b+c=0,abc=1.學生小組討論5分鐘后作匯總,教師巡視指導.

      選擇①的學生初探后得出以下結論及問題:

      (1)由a>b>c,得3a>a+b+c=0,故a>0,3c

      (3)二次函數y=ax2+bx+c開口向上,它有一個零點為1,另一個零點為負數;

      (4)求二次函數y=ax2+bx+c表示的拋物線截x軸所得弦長的取值范圍.

      選擇②的學生初探后得出以下結論及問題:

      (1)由a,b,c∈R,a+b+c=0,abc=1,結合加法與乘法的運算法則,得a,b,c中必有1個是正數,另外兩個是負數;

      (2)因a,b,c輪換對稱,受①的啟發(fā),不妨假設a>b≥c,則a>0,b<0,c<0;

      (3)若再增加一個條件,如ab+bc+ca=-1,則可以求出a,b,c;

      設計意圖題設包含了方程和不等式的性質,具有豐富的知識背景和價值;思考過程中,用到整體思想、轉化思想、消元法、構造方程等數學思想方法,并對邏輯推理、數學運算等素養(yǎng)提出了要求;由于條件簡潔明了,變量和諧對稱,難度合乎學情,因而能很好地調動學生探索的熱情.

      雖然學生開始提出的問題較為淺顯,甚至憑直覺就能看出,但隨著討論的深入,思維的碰撞,相互的啟發(fā),認識逐漸走向深刻,因此,教師對學生的任何想法,哪怕是錯誤的觀點,都要給予肯定和鼓勵,并加以引導和修正,使學生提出有價值的問題.

      在學生初探的基礎上,給出兩道數學經典題,供學生思考.

      例1設a,b,c∈R,a+b+c=0,a>b>c,函數f(x)=ax2+bx+c,g(x)=-bx.

      (1)證明:函數f(x)與g(x)的圖象有兩個相異的公共點A,B;

      (2)設A,B在x軸上的射影分別為A1,B1,求線段A1B1長的取值范圍.

      例2設a,b,c∈R,a+b+c=0,abc=1.

      (1)證明:ab+bc+ca<0;

      設計意圖在學生思考基礎上,教師的適時加入,一方面可產生心理學上所說的“同體觀效應”,提出的問題學生不感到突兀;另一方面可明確學生共同的學習目標,提高教學的實效.從課堂情況來看,12個組中有7組,采用了消元法求解;有3組利用基本不等式進行轉化;有2組出現了混合類解法.以下是其中四個組提供的典型解法(以下解法中,不妨假設a>0,b<0,c<0).

      思路1:從消元法入手,結合配方法求解.

      解法1:(1)由b=-(a+c),得

      ab+bc+ca=b(a+c)+ca

      =-(a+c)2+ca=-c2-ca-a2,

      思路2:從消元法入手,合理選擇主變元.

      解法2:(1)由b=-(a+c),得

      ab+bc+ca=b(a+c)+ca

      =-(a+c)2+ca=-c2-ac-a2,

      設f(c)= -c2-ca-a2,它是關于c的二次函數,其開口向下,判別式Δ=a2-4a2=-3a2,由a>0,得Δ<0,即f(c) <0, 故ab+bc+ca<0.

      思路3:從消元法入手,再構造函數方程.

      思路4:從整體法入手,利用基本不等式.

      解法4:(1)由條件,得(a+b+c)2=0,

      即a2+b2+c2+ 2ab+2bc+2ca=0,

      故ab+bc+ca<0.

      問題2同學們能否對上述解法作一些比較、分析和評價?

      學生1:本組用的是解法1,通過消元后,只要用配方法就能解決問題,但解法4利用整體變形證明更簡潔,而用基本不等式求解看似簡單,其實不易想到.

      教師:解法1把握了實數運算性質的特點,配方法是數學的重要方法;解法2具有主變元的意識,發(fā)現了函數與方程思想的精髓;解法3構造的函數與方程同樣令人耳目一新;解法4利用整體思想,找到了條件與結論的聯系,而利用基本不等式則實現了兩個正數和與積的不等轉化關系,使解題更為簡潔.

      因為思考角度的差異,學生解題的方法就不同,這正是認識和整合知識結構和體系的最佳時機,以使知識與技能在運用中激活,思想方法的統(tǒng)攝作用得到體現,同時,通過一題多解及分析比較,可以優(yōu)化學生的思維品質,從而為達成高階目標,提供良好的教學平臺.學生通過相互之間的交流、討論、總結和借鑒,能引發(fā)思維的共鳴,教師的適時介入,能進一步深化認識,提升學生的能力和素養(yǎng).

      作業(yè)設計:(1)完成例1的作答;(2)若a>0,b>0,且a+b=1,構造出三個以上的關于a,b輪換對稱的不等式,并加以證明;(3)以例2的求解為素材,寫一篇數學小論文.

      設計意圖課堂上的探索思考與討論交流,深深吸引著全班學生,但由于時間關系,眾多學生沒有機會發(fā)表自己的想法和觀點.作業(yè)(1)可以鞏固雙基,掌握通性通法;作業(yè)(2)可以培養(yǎng)學生提出、分析、解決新問題的能力;作業(yè)(3)主要是激發(fā)學生的探究性學習的意識,構建良好的認知結構.

      3 教學后的反思和感悟

      核心素養(yǎng)具有情境性和實踐性,這意味著課程改革不能僅停留在更換新的教材,更重要的是促進學習方式的轉變,因此,新教學必須要對傳統(tǒng)教學方式作出反思和改進,如課上以教師講學生聽為主,課后靠大量練習強化雙基,但隨著時間的推移,發(fā)現學生的學習越來越被動,兩極分化現象越來越嚴重,學生的能力和素養(yǎng)并沒有得到實質性的提升,尤其是在遇到一些新問題時,學生依然一籌莫展.為了體現課程改革的導向性,近幾年高考新課程卷推出了結構不良型試題、多項選擇題、探索性試題等多種能力素養(yǎng)類題型,以促進學生學習方式的變革.美國心理學家安德斯·艾利克森曾對高效學習的特點作出以下提煉:設立定義明確的特定目標;練習過程專注力強;練習后有反饋,并讓學生學會自我監(jiān)測,發(fā)現錯誤,并作出相應調整;引導學生走出學習舒適區(qū),不斷重塑自我的探索過程.這樣的高效學習能讓學生建立起良好的心理結構,這種專業(yè)化的心理結構,能夠提升學習者的能力素養(yǎng).

      基于上述背景,筆者在課堂教學中以結構不良型問題為載體,嘗試新的教學方式,以推動學生學習方式的變革.從課堂效果來看,學生在開始選擇條件時,小組成員分歧較大,隨著合作交流的深入,各種想法應運而生,提出了有一定質量的問題.出示兩個經典例題,可以讓發(fā)散的問題適當集中,以高質量的完成教學目標.有了前面合作學習的經歷和體驗,學生獨立思考后,在小組中的表現變得更積極主動,數學探究的熱情愈加高漲.

      以能力素養(yǎng)為本的教學設計,不但是數學任務的預設,而且需要在特定的教學環(huán)境中,選擇典型學習方式,通過對話、互動、合作和交流,動態(tài)地達成以素養(yǎng)為本的教學目標.因此,課堂更具有開放性和探索性,但由于教學過程中各種可變的因素較為復雜,教學意外隨時都可能發(fā)生,這對教師的專業(yè)素養(yǎng)、教學智慧和交流評價等提出了較高的要求.如在本節(jié)課的討論交流中,各小組的代表都會下意識地說出各自解法的優(yōu)點,因此,教師就要從專業(yè)的角度加以評價,這樣既總結提煉了思想方法體系,又能讓學生之間成果共享,互學互鑒.

      教與學的方式本應是多元的,因為只有這樣,課堂教學才會富有成效,充滿活力,因此,我們必須根據教學內容和學生學情,探尋與之相匹配的學習方式,從而使學生學得積極主動.通過本節(jié)課的實踐嘗試,筆者深深感到,合作探究型學習,對培養(yǎng)學生的交往能力和承受能力,增強學生的競爭意識和平等意識,發(fā)揚合作精神和創(chuàng)新精神,具有積極的教學意義和重要的育人價值,同時在小組中合作學習,學生的專注程度大大提高,有時會有一些獨特的見解,收到教學相長的效果.希望更多同行,在選擇典型學習方式上作思考探索,為構建素養(yǎng)為本的課堂付之行動.

      猜你喜歡
      函數素養(yǎng)教學
      二次函數
      第3講 “函數”復習精講
      必修上素養(yǎng)測評 第四測
      必修上素養(yǎng)測評 第三測
      二次函數
      函數備考精講
      微課讓高中數學教學更高效
      甘肅教育(2020年14期)2020-09-11 07:57:50
      必修上素養(yǎng)測評 第八測
      必修上素養(yǎng)測評 第七測
      “自我診斷表”在高中數學教學中的應用
      東方教育(2017年19期)2017-12-05 15:14:48
      左权县| 渑池县| 北票市| 龙山县| 泸水县| 张家口市| 佳木斯市| 五华县| 建宁县| 宁波市| 嘉义县| 通榆县| 丹凤县| 宁陵县| 达尔| 枝江市| 台南县| 沂水县| 琼中| 通山县| 葵青区| 全南县| 绥德县| 绥中县| 蕲春县| 玛曲县| 广饶县| 佛学| 武宁县| 台江县| 沙河市| 葫芦岛市| 淮阳县| 江川县| 紫云| 临汾市| 大庆市| 延吉市| 建宁县| 六枝特区| 军事|