陳伶俐 石悅婷 李紅茹 王新潮 張勝濤 高放
doi:?10.11835/j.issn.1000-582X.2021.114
收稿日期:2022-02-12
網(wǎng)絡(luò)出版日期:2022-04-25
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(21376282, 21676035, 21878029);重慶大學(xué)研究生創(chuàng)新項(xiàng)目(CYB18046);山東省自然科學(xué)基金(ZR2020QB180)。
Foundation:Supported by National Natural Science Foundation of China (21376282, 21676035, 21878029), Postgraduate Innovation Project of Chongqing University (CYB18046), and Natural Science Foundation of Shandong Province (ZR2020QB180).
作者簡(jiǎn)介:陳伶俐(1997—),女,碩士研究生,主要從事電化學(xué)及金屬緩蝕研究,(E-mail)202018021035@cqu.edu.cn。
通信作者:高放,男,教授,博士生導(dǎo)師,主要從事新型光電磁有機(jī)高分子材料與金屬腐蝕-緩蝕研究,(E-mail)fgao@cqu.edu.cn。
摘要:在侵略性介質(zhì)中,金屬如碳鋼、銅、鋁等的腐蝕不可避免并可能造成嚴(yán)重后果,因此防護(hù)金屬腐蝕非常必要且具有重要意義。與化學(xué)合成的有機(jī)緩蝕劑相比較,植物提取物基緩蝕劑具有許多獨(dú)特優(yōu)點(diǎn),例如高效率、低成本、可再生與可持續(xù),且符合低碳與綠色化工要求,有利于實(shí)現(xiàn)碳達(dá)峰與碳中和目標(biāo),得到人們極大關(guān)注。由于含有許多雜原子基團(tuán),植物提取物易與金屬發(fā)生物理或化學(xué)作用形成吸附膜,進(jìn)而阻礙侵略性物種與金屬表面的直接接觸,從而阻滯或抑制金屬表面的電化學(xué)反應(yīng),實(shí)現(xiàn)在多種侵略性介質(zhì)中對(duì)金屬的腐蝕防護(hù),阻止金屬溶解。本文重點(diǎn)綜述了近二十年植物提取物作為在侵略性介質(zhì)中抗金屬腐蝕材料的研究進(jìn)展,特別是關(guān)于抑制鋼腐蝕的研究進(jìn)展,探討了其作為有機(jī)綠色緩蝕劑的科學(xué)基礎(chǔ)與應(yīng)用潛能,并展望了本領(lǐng)域未來(lái)研究重點(diǎn)與研究目標(biāo),為人們利用探索天然產(chǎn)物基的有機(jī)緩蝕劑提供一定指導(dǎo)作用。
關(guān)鍵詞:植物提取物;金屬腐蝕;電化學(xué);復(fù)合材料;吸附作用;環(huán)境友好
中圖分類號(hào):O629 ?????????文獻(xiàn)標(biāo)志碼:A ?????文章編號(hào):1000-582X(2023)09-092-18
Research progress of plant extract-based green corrosion inhibitors in aggressive media
CHEN Lingli1, SHI Yueting1,2, LI Hongru1, WANG Xinchao1,3, ZHANG Shengtao1, GAO Fang1
(1. College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R.China; 2. College of Pharmacy, Heze University, Heze,?Shandong 274000, P. R. China)
Abstract: Metal corrosion occurs absolutely in aggressive media, which may cause serious consequences. Therefore, it is very important and significant to realize metal corrosion inhibition. As compared with chemically synthesized organic corrosion inhibitors, plant extract-based inhibitors have many unique advantages, such as low cost, environment-friendly, renewable and sustainable. Hence, the use of plant extract-based organic corrosion inhibitor meets the requirements of low-carbon and green chemical industry, which is conducive to achieving the goal of carbon peak and carbon neutralization in China. The use of plant extract-based organic corrosion inhibitors to prevent metal corrosion has attracted intensive attention. In this review, the research progress of natural plant extracts as metal corrosion inhibitors in recent two decades is analyzed, and the scientific basis and application of plant extracts-based organic green corrosion inhibitors are discussed. Plant extracts containing abundant heteroatomic groups are prone to process physical or chemical interaction with metal surface for the formation of adsorption films, which hinders the direct contact between metal surface and aggressive species. Thus, the electrochemical reaction on metal surface is blocked or inhibited. This helps us in realization of the protection of metal corrosion in different aggressive media and prevention of metal dissolution. This paper also gives perspective of research focus and objectives in this field, and guides us to explore organic corrosion inhibitors based on natural products.
Keywords: plant extract; metal corrosion; electrochemistry; composite material; adsorption effect; eco-friendly
金屬及其合金,如碳鋼、銅、鋁等在人類文明發(fā)展歷史起到重要作用,特別在現(xiàn)代工業(yè)、農(nóng)業(yè)、軍事、建筑與先進(jìn)機(jī)器設(shè)備中居于核心地位。在侵略性介質(zhì)應(yīng)用過(guò)程中,金屬及其合金極易受到離子攻擊而造成溶解,發(fā)生金屬腐蝕, 由此造成的工程災(zāi)害總數(shù)超過(guò)40%[1]。腐蝕不但使得金屬制品的各種力學(xué)和延展等性能受到嚴(yán)重影響,且會(huì)對(duì)行業(yè)產(chǎn)生巨大經(jīng)濟(jì)損失以及安全甚至生態(tài)災(zāi)難,因此實(shí)現(xiàn)金屬材料表面的腐蝕防護(hù)具有十分重要的意義。
采取適當(dāng)保護(hù)策略能夠減慢金屬腐蝕速度,抑制、延緩、甚至完全阻止陽(yáng)極或陰極反應(yīng)[2]。當(dāng)前基于緩蝕劑策略實(shí)現(xiàn)金屬防護(hù),提升金屬使用壽命;該策略具有操作簡(jiǎn)便、緩蝕效率較好、適應(yīng)性強(qiáng)以及對(duì)原體系傷害較小等優(yōu)點(diǎn),吸引人們較大的關(guān)注。與無(wú)機(jī)緩蝕劑相比,有機(jī)緩蝕劑在金屬表面具有更好的吸附性能從而提高緩蝕作用,成為人們的研究熱點(diǎn)。
通常有機(jī)緩蝕分子含有極性官能團(tuán)如?OH、?COOC2H5、?COOH、?C=O、?NH2、雜環(huán)與離域的π電子的不飽和共價(jià)鍵等,這些高電子密度雜原子作為吸附中心,使得有機(jī)分子與金屬之間產(chǎn)生強(qiáng)烈相互作用,從而在金屬表面形成有機(jī)吸附膜以阻斷電化學(xué)反應(yīng)的進(jìn)行[3]。
有機(jī)緩蝕分子能夠基于化學(xué)合成進(jìn)行工業(yè)水平上制備,具有極大的應(yīng)用潛能。另一方面,低碳與綠色化工要求發(fā)展低成本、低毒或無(wú)毒、環(huán)境友好型的金屬緩蝕劑[4]。很多化學(xué)合成的有機(jī)緩蝕分子可能無(wú)法完全達(dá)到綠色化工的要求,所以基于植物提取物的金屬緩蝕劑策略成為選擇。植物提取物含有豐富的天然有機(jī)分子,含有多種/多個(gè)雜原子或雜環(huán)片段,對(duì)金屬具有良好的吸附與緩蝕作用。近二十年來(lái),有關(guān)植物提取物基緩蝕劑研究層出不窮,卻少見相關(guān)的綜述。推測(cè)部分原因是植物提取物通常為粗提物,有關(guān)其材料模擬計(jì)算較為少見,難以在分子尺度上理解植物提取物的化學(xué)結(jié)構(gòu)與緩蝕效率之間的構(gòu)效關(guān)系,選擇植物提取物基緩蝕劑仍處于試錯(cuò)階段,所以不易總結(jié)與評(píng)價(jià)。也正因?yàn)槿绱?,關(guān)于植物提取物基緩蝕劑值得文獻(xiàn)回顧與評(píng)論。
在本文中,重點(diǎn)分析討論了近年來(lái)利用植物提取物作為環(huán)境友好的有機(jī)緩蝕劑在侵略性介質(zhì)中的防護(hù)金屬腐蝕研究,特別是抑制鋼的腐蝕研究,比較了緩蝕效率與可能的緩蝕機(jī)制,并提出了目前的研究難點(diǎn),展望了未來(lái)相關(guān)研究重點(diǎn)和方向,旨在為工業(yè)上有可能大規(guī)模利用植物提取物基有機(jī)緩蝕劑提供一定的指導(dǎo)作用。
1綠色緩蝕劑的緩蝕機(jī)制
有機(jī)緩蝕劑是指在腐蝕性介質(zhì)中能夠減少或防止金屬與介質(zhì)反應(yīng)的物質(zhì),它通過(guò)與金屬離子間的絡(luò)合作用吸附在金屬表面上,從而具備降低侵略性物種在金屬表面的擴(kuò)散速率,增加金屬表面電阻等作用。有機(jī)緩蝕劑在金屬/溶液界面上的吸附機(jī)理可能包括一步或多步過(guò)程,如公式(1)與公式(2)所示。第一步,有機(jī)分子在金屬表面的吸附通常包括替換已吸附在金屬表面的一個(gè)或多個(gè)水分子[5];由于金屬氧化或溶解過(guò)程,第二步中,有機(jī)緩蝕分子與表面新生成的金屬離子結(jié)合,形成有機(jī)金屬配合物[6],抑制金屬溶解。所以在有機(jī)緩蝕劑存在下,金屬表面多孔膜中的活性或暴露部位被吸附的緩蝕劑所覆蓋,從而產(chǎn)生屏障或保護(hù)層抑制腐蝕作用[7]。
2綠色緩蝕劑的吸附機(jī)理
有機(jī)緩蝕劑在金屬表面吸附能力決定其緩蝕性能。一般認(rèn)為,在侵略性溶液中,植物提取物基緩蝕劑在金屬表面的吸附依賴于金屬性質(zhì)和電荷、吸附模式、有機(jī)緩蝕劑分子化學(xué)結(jié)構(gòu)和電子特性、溫度、空間效應(yīng)、腐蝕性介質(zhì)等[8]。
不同的吸附等溫線如Langmuir、Temkin、Frumkin、Freundlich、Flory-Hugginsand和Bockris-Swinkels可用來(lái)分析吸附機(jī)制,通常植物提取物作為緩蝕劑主要遵循Langmuir吸附等溫線[9]。必須指出的是,在腐蝕表面的吸附從未達(dá)到真正的平衡,而是接近穩(wěn)態(tài)吸附。一般來(lái)說(shuō),植物提取物在金屬表面上的吸附機(jī)理可分為物理吸附、化學(xué)吸附或這兩類吸附的組合,亦稱為混合型吸附。
物理吸附通常由于有機(jī)分子的帶電中心與金屬表面之間的靜電相互作用,導(dǎo)致分子與分子之間以及分子與金屬表面的偶極子存在強(qiáng)非共價(jià)鍵作用力,如范德華力、氫鍵、π?π相互作用等;而化學(xué)吸附是指電子從有機(jī)緩蝕劑轉(zhuǎn)移到金屬表面的過(guò)程,在金屬和緩蝕劑之間形成了強(qiáng)烈的相互作用,其成鍵強(qiáng)度遠(yuǎn)遠(yuǎn)大于物理吸附;吸附模擬如圖1。吸附自由能的絕對(duì)值低于20 kJ?mol-1時(shí)被認(rèn)為是物理吸附,高于40 kJ?mol-1時(shí)則為化學(xué)吸附,若位于二者之間,則既有物理吸附又有化學(xué)吸附[10]。
植物提取物在金屬表面表現(xiàn)出化學(xué)吸附的有指甲花提取物[11]、甘草提取物[12]、山茶提取物[13]、棉籽水提取物[14]、含羞草提取物[15]、胡椒葉提取物[16]等,如圖2所示。指甲花醌分子和沒食子酸分子包含芳香環(huán)、苯環(huán)、羥基和羰基氧原子,可以作為富含電子的活性吸附中心。研究認(rèn)為,提取物中的O原子、C原子和苯環(huán)的π電子與Fe的空d軌道的孤電子對(duì)之間存在著電子轉(zhuǎn)移,有利于提取物與金屬之間發(fā)生化學(xué)作用,并通過(guò)共價(jià)配位鍵形成緩蝕劑?鐵絡(luò)合物(如Fe?O和Fe?C)。指甲花提取物中指甲花醌分子與沒食子酸在低碳鋼表面能夠發(fā)生強(qiáng)烈的化學(xué)吸附,形成致密吸附層,抑制陽(yáng)極和陰極反應(yīng),從而對(duì)低碳鋼在鹽酸溶液中起到緩蝕作用。
植物提取物在金屬表面發(fā)生物理吸附的有微藻提取物[17]、黃連提取物黃連素[18]、西葫蘆葉提取物[19]、天然蒿油[20]、天然薄荷油[21]、中國(guó)醋莓果殼[22]、西瓜皮提取物[23]、螺旋藻提取物[24]等。如圖3所示,微藻提取物中脂肪酸等分子在鹽酸介質(zhì)中,質(zhì)子化后的有機(jī)酸與碳鋼表面存在強(qiáng)的靜電相互作用,通過(guò)范德華力作用在碳鋼表面形成吸附層,使碳鋼表面的電荷轉(zhuǎn)移變慢,陽(yáng)極和陰極反應(yīng)減緩,從而抵抗鹽酸溶液對(duì)低碳鋼的腐蝕攻擊。
部分提取物緩蝕劑屬于混合型緩蝕劑(基于吸附機(jī)制)[25],包括忍冬草提取物[26]、象牙葉提取物[27]、卷蓮提取物[28]、椴樹花提取物[29]、三葉草提取物[30]、黃花葉的生物堿提取物[31]、金絲桃提取物[32]、紫茉莉葉提取物[33]、枳實(shí)葉提取物[34]、百合葉提取物[35]、華柑橘提取物[36]、香葉提取物[37]等。如圖4所示,香葉提取物含有的中性有機(jī)分子通過(guò)芳香環(huán)或不飽和鍵、雜原子中離域電子等,與低碳鋼原子空軌道發(fā)生強(qiáng)烈的鍵合作用,從而在低碳鋼表面進(jìn)行化學(xué)吸附。另一方面,酸溶液能夠質(zhì)子化提取物中的有機(jī)分子,故而攜帶正電荷的有機(jī)分子與碳鋼表面之間存在較強(qiáng)的范德華力,從而發(fā)生物理吸附。因此,通過(guò)混合型吸附,香葉提取物在碳鋼表面形成致密濃厚的吸附膜,可有效抑制低碳鋼在鹽酸溶液中被腐蝕。
綜上,可以通過(guò)植物提取物基緩蝕劑分子吸附在金屬底物的活性位點(diǎn)上,減少陽(yáng)極金屬溶解和陰極氫演化反應(yīng)來(lái)抑制電化學(xué)反應(yīng)[38]。此外,緩蝕劑分子吸附能夠減少金屬基底在腐蝕性介質(zhì)中的暴露的活性表面積,進(jìn)一步抑制金屬腐蝕。
3植物提取物的提取、分離與純化
植物提取物是指使用物理萃取或提取法、化學(xué)試劑浸泡法和生物發(fā)酵法處理植物性原料的全株或部分,從而得到有效成分結(jié)構(gòu)未發(fā)生改變的液體或固體物質(zhì);它包括有黃酮、多酚、萜類等幾百種,具有一定的極性,可溶于許多有機(jī)溶劑中。而對(duì)植物材料中生物活性化合物的定性和定量研究主要為對(duì)其進(jìn)行適當(dāng)?shù)奶崛?、分離及純化。
3.1植物提取物的提取工藝
常用的植物提取工藝有傳統(tǒng)的水提法、醇提法,此類方法具有操作簡(jiǎn)單且成本低的常見優(yōu)點(diǎn)。對(duì)水提法而言,它安全性高且可以最大程度保護(hù)多糖結(jié)構(gòu)[39-40];醇提法相較水提法而言更易于實(shí)現(xiàn)工業(yè)化生產(chǎn)[41]。這兩種方法具有共同缺陷,如較長(zhǎng)的萃取時(shí)間、較低的提取率,大量溶劑的蒸發(fā)、低萃取選擇性和熱不穩(wěn)定化合物的熱分解等。
在克服傳統(tǒng)提取方法的這些局限性同時(shí),一系列新的高效的提取工藝誕生,如微波輔助萃取、超聲輔助提取、超臨界CO2萃取、酶解法等,這些方法也各有所長(zhǎng)。微波輔助萃取能大大節(jié)省提取時(shí)間和能量,最大限度地提高提取物的回收率,提高提取物的供電子能力,適用于大樣本序列的快速提取[42];但該法具有對(duì)細(xì)胞結(jié)構(gòu)的破壞作用較大,易造成溶劑殘留以及導(dǎo)致多糖結(jié)構(gòu)變化等影響[43]。超聲輔助提取具有使用低溶劑體積、很少的儀器要求,以及經(jīng)濟(jì)友好且綠色環(huán)保等優(yōu)勢(shì)[44],但目前已有的超聲儀容量無(wú)法實(shí)現(xiàn)工業(yè)化生產(chǎn)[45]。超臨界?CO2萃取法同時(shí)具有微波法和超聲法的優(yōu)點(diǎn),在超臨界流體的減壓過(guò)程中,可以輕松地繞過(guò)常規(guī)提取過(guò)程中溶質(zhì)的分離,從而節(jié)省時(shí)間;且該法在室溫下工作,是提取熱不穩(wěn)定化合物的理想方法。但此法會(huì)因高壓使物性數(shù)據(jù)缺失,投資費(fèi)用極高,且對(duì)安全要求高[46]。酶解法提取條件最溫和,反應(yīng)速度極快,然而此法成本較高,對(duì)設(shè)備和技術(shù)要求也高,具有很大的局限性[47-48]。
3.2植物提取物的分離與純化
成功提取粗提物后,提取物的分離、純化也是獲取有效成分的關(guān)鍵。隨著分離、純化技術(shù)的不斷發(fā)展,常用于植物有效組分的分離純化新技術(shù)有:膜分離、吸附法、高速逆流色譜等。
膜分離通常在常溫下操作,是分離熱敏性物質(zhì)的一種有效的方法。目前膜分離技術(shù)已被廣泛應(yīng)用于植物有效成分如生物堿、黃酮、酚酸類、皂苷類、萜類、甙類、多糖、植物色素的分離[49],如Castro-Mu等[50]使用膜技術(shù)高效提取和純化甜葉菊的天然甜味劑甜菊糖苷。膜分離技術(shù)具有操作便捷、高效節(jié)能、綠色無(wú)污染等優(yōu)點(diǎn)。
吸附法主要利用具有吸附性能的材料對(duì)目的產(chǎn)物進(jìn)行吸附及洗脫,從而得到純度較高的分離物。目前為止,常見的吸附劑有大孔樹脂、分子印跡、炭材料、PVPP、介孔二氧化硅等[51]。Che Zain等[52]研究了大孔樹脂對(duì)油棕櫚葉提取物中定向素、異聯(lián)素、維聯(lián)素的吸附解吸特性及富集,結(jié)果顯示,樹脂對(duì)靶向類黃酮c-苷具有最佳的吸附能力;Alipour等[53]合成了均勻的球形分子印跡聚合物納米粒子,用于選擇性和高效地從丹參葉提取物中提取天然抗氧化劑迷迭香酸;Lee等[54]使用顆?;钚蕴刻幚淼牟煌袡C(jī)質(zhì)含量的土壤研究了生菜中全氟辛酸和全氟辛烷磺酸的吸附和吸收;Sun等[55]利用中孔炭純化葡萄葉中提取的白藜蘆醇;Jankowiak等[56]研究了PVPP 對(duì)豆渣提取物中異黃酮的吸附;Yang等[57]研究了鱷梨葉提取物負(fù)載在介孔二氧化硅上的吸附等。吸附法具有操作簡(jiǎn)單、高效節(jié)能,并且大多數(shù)情況吸附劑可再生循環(huán)利用等優(yōu)點(diǎn)。
高速逆流色譜(HSCCC)是一種現(xiàn)代色譜分離和制備技術(shù),由于其持續(xù)的高效率、高回收率和制備大量化合物的能力,HSCCC可以直接應(yīng)用于粗提取物,由其分離得到的化合物只依賴于不同的溶解度屬性,不會(huì)因?yàn)榱吮苊舛倘钡葮悠窊p失而造成不可逆吸附和分析物變性而引起表面化學(xué)反應(yīng)[58]。因此,HSCCC在植物純化分離領(lǐng)域被廣泛應(yīng)用,特別是植物活性成分的提取和分離,目前已成為一種新型的全球分離純化技術(shù)。如:Jiang等[59]研究了HSCCC從植物材料中獲取姜黃素,Liang等[60]使用HSCCC從植物種子油和乳酸菌培養(yǎng)物中純化抗真菌羥基不飽和脂肪酸等;此外它還廣泛應(yīng)用于黃酮類化合物的分離純化。
現(xiàn)有的一些方法仍然存在一定的應(yīng)用缺陷及缺乏足夠的實(shí)驗(yàn)數(shù)據(jù);隨著現(xiàn)代工業(yè)生產(chǎn)對(duì)提取植物活性化合物的需求不斷增長(zhǎng)以及富含這些活性化合物的商品的經(jīng)濟(jì)意義日益增加,可能會(huì)使得研究者們?cè)谖磥?lái)找到更精良更高效的植物提取物有效成分精確篩選方法。
4植物提取物的緩蝕性能
電化學(xué)分析用來(lái)測(cè)試植物提取物的緩蝕性能,主要基于動(dòng)電位極化法(potentiodynamic polarization, PDP)和電化學(xué)阻抗譜法(electrochemical impedance spectroscopy, EIS)。
4.1動(dòng)電位極化法
4.2電化學(xué)阻抗光譜
交流阻抗法(EIS)也是一種被廣泛使用的電化學(xué)研究方法。交流阻抗測(cè)試中的基本等效電路如圖6,其中Rs是工作電極和參比電極之間的溶液電阻,Rt是金屬基體/溶液兩相界面上腐蝕反應(yīng)的電荷傳遞電阻,Rct(Ω?cm2)?是電子或離子穿過(guò)吸附膜的傳輸電阻,Cdl和CPE分別是用來(lái)代替雙電層電容和吸附膜電容的常相位角元件[34]。
EIS的阻抗參數(shù)包括Rp、Cdl和IE%可以通過(guò)等效電路從Nyquist圖中獲得。從EIS曲線可以推測(cè)電荷轉(zhuǎn)移電阻和雙電層電容對(duì)金屬腐蝕-緩蝕的影響作用及陰極和陽(yáng)極反應(yīng)是否依賴于電荷轉(zhuǎn)移電阻和雙電層,因此可以進(jìn)一步推測(cè)緩蝕機(jī)制。如對(duì)3.5% NaCl空白溶液和含有豆蔻提取物3.5% NaCl溶液中進(jìn)行了303 K下的EIS測(cè)定[63],圖7顯示了空白和存在豆蔻提取物時(shí)的Nyquist圖,兩者比較發(fā)現(xiàn),豆蔻提取物存在下的半圓形直徑增加,這表明其對(duì)低碳鋼具有良好抗腐蝕性能。此外,發(fā)現(xiàn)豆蔻提取物存在時(shí)的Rct值較高,Cdl值較低,說(shuō)明豆蔻提取物吸附層使得低碳鋼表面的鈍化率提高。
5植物提取物在酸介質(zhì)中作為金屬緩蝕劑
鹽酸及硫酸溶液是酸洗過(guò)程中最常用的酸溶液之一,已被廣泛用于不同酸洗工藝中金屬和合金清洗的防垢劑[64]。研究發(fā)現(xiàn),許多植物提取物可作為酸洗過(guò)程中有效的緩蝕劑[65-66]。很早利用植物提取物如紅豆和蘆薈(葉)、橙、芒果和石榴(果皮)提取物對(duì)HCl中低碳鋼、鋁、鋅和銅等抑制腐蝕作用;也有研究了木瓜、辣椒、決明子、辣椒籽、油菜和蘿卜汁液提取物對(duì)HC1溶液中低碳鋼溶解的影響。而在H2SO4介質(zhì)里,咖啡酸、黑孜然和小檗堿(一種從菜豆中分離的生物堿)可作為低碳鋼緩蝕劑[67]。
結(jié)果發(fā)現(xiàn)這些植物提取物抑制金屬腐蝕與所使用的金屬、緩蝕劑濃度、酸(類型、濃度、溫度)等有關(guān),尤其與提取物的化學(xué)組成即吸附活性中心有重要依賴關(guān)系。
5.1吸附活性中心
白茶提取物可作為低碳鋼在1 mol/L HCl溶液中的緩蝕劑[68],最大緩蝕效率為96%;研究表明,提取物中的-OH、芳香環(huán)、C=C、C=O和C-O-C有助于在金屬表面形成吸附層。榕樹果實(shí)提取物中含有的雜原子和芳香環(huán)幫助其在低碳鋼表面發(fā)生吸附[69],并抑制H2SO4溶液對(duì)低碳鋼的腐蝕。最近發(fā)現(xiàn)含有大量黃酮類化合物的水葫蘆葉提取物[70],其含氧極性官能團(tuán)可與Fe的空d軌道形成配位鍵,進(jìn)而發(fā)生化學(xué)吸附,從而有效屏蔽了H2SO4介質(zhì)對(duì)鋼表面的腐蝕??ㄗ褮ぬ崛∥镏幸蚝醒醯s原子和芳香化合物環(huán),能夠與金屬離子發(fā)生有效的化學(xué)絡(luò)合,在碳鋼表面形成吸附保護(hù)膜,避免普通碳鋼在鹽酸中被腐蝕[71]。
類似例子還有:含有芳香和氧官能團(tuán)的活性成分芒果葉片提取物[72],含有許多基于氮和氧的電子供體原子的豆水種子提取物[73],含有蛋白質(zhì)大分子的綠藻葉提取物[74],以及存在大量官能團(tuán)和雜原子對(duì)的千里光植物[75]等,都可以在金屬表面發(fā)生吸附作用,并在侵略性酸溶液中起到緩蝕作用。
近年來(lái)所研究的大多數(shù)植物提取物中主要吸附成分含O的研究居多。如三聚白藻提取物中抗氧化黃酮和多酚化合物[76],如圖8所示,該有效成分吸附在銅表面能夠作為混合型緩蝕劑在HCl介質(zhì)中抑制銅被腐蝕。紫檀葉提取物在H2SO4中對(duì)銅能夠起到有效緩蝕[77],分子中緩蝕組分的分子示意圖如圖9所示,材料模擬計(jì)算結(jié)果表明分子(a)(b)(c)(d)都可能在銅表面具有吸附性質(zhì)。
圖10(a)顯示了銅在0.5 mol/L H2SO4環(huán)境下浸泡10 h的三維地形,整個(gè)銅表面已嚴(yán)重腐蝕,腐蝕孔與丘陵地貌相似。圖10(b)為整個(gè)銅表面的對(duì)角線二維地形和平均粗糙度值(Ra),可以發(fā)現(xiàn),腐蝕孔的波槽和峰可達(dá)到50 nm,Ra值接近20 nm。圖10(c)顯示了銅樣品在含有500 mg/L紫檀葉片提取物存在下的0.5 mol/L H2SO4環(huán)境下,在303 K下浸泡10 h的三維地形圖。10(d)表示整個(gè)銅表面的對(duì)角線二維形貌和Ra值,將銅樣品在含500 mg/L提取物H2SO4 環(huán)境中浸泡10 h后,得到整個(gè)銅表面的粗糙度是3.2 nm。結(jié)果表明,紫檀葉片提取物能有效吸附在銅表面,并抑制銅在H2SO4介質(zhì)中的腐蝕發(fā)生。
藜麥種子提取物能夠抑制碳鋼被HCl溶液侵蝕[78],分子模擬計(jì)算結(jié)果表明提取物中含氧官能團(tuán)是吸附在金屬表面的位點(diǎn)。圖11為藜麥種子提取物的吸附行為示意圖,圖11(a)顯示在沒有緩蝕劑存在時(shí),腐蝕性氫離子吸附在鋼基板上,水和氯離子也吸附在表面。然而當(dāng)藜麥種子提取物加入到侵略性溶液中時(shí),表現(xiàn)出兩個(gè)緩蝕作用途徑:競(jìng)爭(zhēng)和協(xié)同,如圖11(b)和11(c)所示。圖11(b)顯示了競(jìng)爭(zhēng)途徑,吸附的主要是含雜原子的緩蝕劑分子、氯離子和H3O+。圖11(c)則顯示了在協(xié)同機(jī)制中,水分子和一個(gè)大體系(含有氯離子、氫離子和緩蝕劑分子)吸附在表面,氯離子作為配體,在緩蝕劑分子和金屬表面之間建立橋梁。
強(qiáng)玉杰[79]提取了銀杏葉提取物,并在不同溫度下用電化學(xué)方法對(duì)其在1 mol/L HCl溶液中對(duì)X70鋼的緩蝕性能做了系統(tǒng)研究。結(jié)果表明,銀杏葉提取劑屬于混合抑制機(jī)制的緩蝕劑,并在一個(gè)較寬的溫度范圍內(nèi)都保持了優(yōu)良的緩蝕效果,這歸因于提取劑的主要組分在X70鋼表面形成的致密且穩(wěn)定的吸附膜可以有效阻礙腐蝕性物種對(duì)鋼基底的攻擊。提取物的主要化學(xué)組成如圖12(a)~(d)所示,它們都含有共軛S結(jié)構(gòu),如苯環(huán)和各種官能團(tuán)(O?H、N?H、C=O、C=C、C=N、C?N、C?O),且以O(shè)原子為主要吸附成分。
圖13顯示了298 K時(shí)X70鋼在含200 mg/L銀杏葉提取劑的1 mol/L HCl溶液中的零電荷電勢(shì)圖,變化規(guī)律為拋物線形式,其最小值即EPZC值為-0.501 V。在相同條件下鋼的EOCP值(-0.471 V)高于其EPZC值,表明X70鋼表面帶正電,Cl-會(huì)首先吸附在帶正電的X70鋼表面上,導(dǎo)致鋼表面帶負(fù)電;而后,銀杏葉提取物中主要有機(jī)分子以質(zhì)子化形式通過(guò)靜電相互作用吸附在帶負(fù)電的鋼表面上,這些分子形成緊湊致密的吸附層,起到防止鋼腐蝕的作用。除了這種物理吸附模式外,中性和陽(yáng)離子形式的有機(jī)分子可以通過(guò)雜原子向Fe的空d軌道提供電子對(duì)而形成共價(jià)鍵,產(chǎn)生化學(xué)吸附。這也表明銀杏提取物可做混合抑制劑對(duì)碳鋼發(fā)生緩蝕作用。
與此類似,很多植物提取物基緩蝕劑是以O(shè)原子為主要吸附位點(diǎn),如石竹葉提取物[80]、南瓜皮提取物[81]、葡萄籽原花青素提取物[82]、香菇葉提取物[83]等。
在目前對(duì)植物提取物的研究中,以S、P等雜原子為主要吸附成分的提取物較為少見。但有研究已經(jīng)證實(shí),在分子結(jié)構(gòu)上同時(shí)具有N和S的化合物與僅含N或S的化合物相比具有更好的抗腐蝕性質(zhì),而且含S化合物一般具有較優(yōu)秀的緩蝕能力,通常認(rèn)為S提高電子供體能力并產(chǎn)生較強(qiáng)的吸附作用[84];Chakravarthy等[85]研究了煙酰胺(廣泛存在于動(dòng)植物中,植物中以豆類、花生的含量較豐富,其次存在于蘑菇、堅(jiān)果之中)衍生物。如圖14所示,對(duì)鹽酸溶液的腐蝕作用及吸附性能研究中發(fā)現(xiàn),含硫化合物(c)和(d)的緩蝕性能高于(a)和(b)。
5.2協(xié)同作用
植物提取物基有機(jī)緩蝕劑具有一個(gè)普遍的缺點(diǎn),在低濃度下不易實(shí)現(xiàn)高的緩蝕效率;特別是在環(huán)境溫度和酸介質(zhì)濃度增加后緩蝕效率會(huì)急劇下降,嚴(yán)重制約了其大規(guī)模應(yīng)用。將植物緩蝕劑復(fù)配是提高其緩蝕性能的一個(gè)有效策略,如將植物提取物與鹵素陰離子、其他陰離子或與金屬陽(yáng)離子之間發(fā)生協(xié)同反應(yīng),此法可以減少緩蝕劑使用量,并使緩蝕劑應(yīng)用環(huán)境多樣化。
研究發(fā)現(xiàn)稀土鈰(IV)離子對(duì)香蘭素(香莢蘭的種子提取物)在1 mol/L H2SO4溶液中冷軋鋼(CRS)具有協(xié)同緩蝕作用[86]。雖然鈰(IV)離子的緩蝕效果幾乎可以忽略不計(jì),與香蘭素復(fù)配后卻顯著提高了抑制腐蝕性能,遠(yuǎn)高于二者單獨(dú)緩蝕效率的總和;FT-IR和XPS光譜研究發(fā)現(xiàn),在Ce4+的存在下,香蘭素形成的保護(hù)膜是由氧化鈰和Ce4+-香蘭素復(fù)合物組成。二價(jià)陽(yáng)離子?(Ba2+、Sr2+、Ca2+和Zn2+)?與香蘭素協(xié)同作用也能大大提高金屬的緩蝕性能[87],如Ba2+、Sr2+、Ca2+可以阻礙陽(yáng)極離子的溶解,而Zn2+則影響了陽(yáng)極和陰極鐵的溶解過(guò)程。
鹵化物作為復(fù)配陰離子應(yīng)用于提高綠色植物基的緩蝕效率。研究認(rèn)為,鹵化物陰離子優(yōu)先吸附在金屬表面,并通過(guò)在金屬表面和緩蝕劑的正端之間形成中間橋來(lái)提高緩蝕效率[88]。在鹵化物離子存在時(shí),有機(jī)物質(zhì)的腐蝕抑制機(jī)制通常歸因于鹵化物離子在金屬表面的強(qiáng)吸附,其中化學(xué)吸附離子進(jìn)入金屬表面電荷的金屬部分;鹵化物離子的協(xié)同效應(yīng)一般遵循I->Br->Cl-,可能的原因是由于碘離子比其他鹵化物離子半徑大、疏水性高、電負(fù)性低。
已有報(bào)道一些植物提取物和鹵化物之間的協(xié)同作用,如研究了在楓葉提取物中添加碘化鉀(KI)作為HCl溶液中碳鋼的緩蝕[89]。研究發(fā)現(xiàn),KI與提取物之間存在明顯協(xié)同效應(yīng)。如前所述,從實(shí)驗(yàn)結(jié)果推斷出來(lái)主要是由于I-將金屬表面離子其電荷轉(zhuǎn)化為負(fù)電荷或更少的正電荷,從而通過(guò)庫(kù)侖引力在鋼表面上更快地吸附質(zhì)子化緩蝕劑,因此,緩蝕劑不是直接吸附在金屬表面。這種離子對(duì)的相互作用增加了金屬表面的覆蓋范圍,從而減少了金屬的溶解。緩蝕劑通過(guò)與吸附的碘離子靜電作用拖入雙層,在金屬表面形成離子對(duì)。協(xié)調(diào)作用使得該緩蝕劑的保護(hù)金屬能力增強(qiáng),且碘離子在金屬表面的吸附導(dǎo)致了電雙極管的充電,緩蝕效率更高。KI對(duì)1 mol/L HCl溶液中鋼表面的緩蝕劑的吸附機(jī)理的影響示意圖如圖15所示。
此外,添加KI可協(xié)同提高椰子殼提取物作為0.5 mol/L H2SO4溶液中低碳鋼緩蝕劑的緩蝕性能[90]。鹵化物添加劑KCl、KBr、KI與綠藻葉提取物[74]協(xié)同作用提高了碳鋼在鹽酸和硫酸體系中的抑制效率。類似的研究還有山茱萸提取物[91]、中國(guó)龍竹竹葉提取物[92]、刺五加葉和莖提取物[93]等。也有利用其他陰離子,如十二烷基硫酸鈉與馬齒莧提取物[94]協(xié)同作用,也能提高St37鋼在鹽酸中的緩蝕效率。
其次,還有將植物提取物與納米材料協(xié)同發(fā)揮緩蝕作用。Ituen 等利用核桃殼合成了一種用來(lái)處理石油廢水的新型納米級(jí)生物基納米復(fù)合材料-核桃殼提取物-銀納米顆粒(WHE-AgNPs)[95],并且研究了WHE-AgNPs對(duì)管道鋼防腐作用的程度和機(jī)理,結(jié)果也表明該復(fù)合物的協(xié)同作用對(duì)管道鋼起到了很好的緩蝕作用。
6其他腐蝕介質(zhì)
相對(duì)不常見的酸性介質(zhì)中的腐蝕,有草酸、硝酸等。有研究者利用橄欖葉提取物作為10%磺胺酸(NH2SO3H)溶液中碳鋼的緩蝕劑緩解碳鋼腐蝕[50]。電位動(dòng)力學(xué)極化曲線證明,橄欖葉提取物在10%NH2SO3H溶液中作為鋼腐蝕的混合緩蝕劑,添加橄欖葉提取物可增加電荷轉(zhuǎn)移電阻和降低雙層電容,該提取物在鋼表面發(fā)生物理吸附。也有基于稻草提取物緩蝕劑[96]抑制銅在2 mol/L HNO3中腐蝕,番紅花水提取物[97]在0.5 mol/L H2C2O4中抑制罐子材料(錫板)的腐蝕等,使用掃描電子顯微鏡和能量色散x射線對(duì)線板表面進(jìn)行分析,證實(shí)了含氧分子有助于緩蝕劑在金屬表面形成吸附層。
許多鹽類介質(zhì)中金屬緩蝕也有報(bào)道??嗳~斑鳩菊提取物對(duì)3.5% NaCl溶液中混凝土中碳鋼腐蝕[98],通過(guò)物理作用形成吸附層;桃渣水醇提取液在0.5 mol/L NaCl溶液的中在鋼表面形成吸附保護(hù)層[99]。一些報(bào)告證實(shí)指甲花莖提取物[100]、芹菜種子的水提取物[101]、大麻、黃花、香豆、番荔枝提取物[102]、梅葉提取物[103]等可用于堿類介質(zhì)中作為緩蝕劑,但相關(guān)研究極少。也有在兩種不同介質(zhì)如酸與鹽或鹽與堿介質(zhì)同時(shí)起到緩蝕作用的植物提取物,如在NaCl(質(zhì)量分?jǐn)?shù)2%)與HCOOH(質(zhì)量分?jǐn)?shù)1%)共存的介質(zhì)中采用番茄皮廢棄物中的果膠作為錫緩蝕劑[104]。
由圖16可以看出,近70%的植物提取物的緩蝕介質(zhì)為酸體系,堿體系的極少。植物提取物基緩蝕劑大多歸于混合緩蝕作用機(jī)制,可以同時(shí)減少陽(yáng)極金屬溶解和陰極氫演化反應(yīng)來(lái)抑制電化學(xué)反應(yīng);而作為純粹的陽(yáng)極抑制劑及陰極抑制劑用于抑制金屬緩蝕的植物提取物則較為少見。其次,緩蝕劑通過(guò)吸附在金屬表面形成單層或雙層及多層保護(hù)層以延緩及抑制金屬的腐蝕,植物提取物在金屬表面上的吸附機(jī)理多為物理吸附,化學(xué)吸附其次,而既有化學(xué)吸附又有物理吸附的緩蝕劑則較為稀少。大多數(shù)植物提取物的緩蝕效率達(dá)到或超過(guò)90%,這表明植物提取物基緩蝕劑用來(lái)防護(hù)或者延緩金屬腐蝕具有較好的應(yīng)用潛能。
7結(jié)論與展望
植物提取物具有易獲得、成本低、對(duì)環(huán)境友好、可再生等優(yōu)點(diǎn),并含有極性官能團(tuán)如?OH、?CH3、?COOH、?OCH3、?COOC2H5、?NH2、雜環(huán)和共軛鍵等作為活性吸附中心,與金屬發(fā)生相互作用,在金屬表面形成吸附保護(hù)膜,為它們成為廣泛應(yīng)用的綠色緩蝕劑提供可能。
另一方面,植物提取物作為有機(jī)緩蝕劑,與化學(xué)合成的有機(jī)緩蝕劑比較,仍然面臨幾個(gè)重要的問題:1)通常植物提取物是粗提物,因此在與金屬發(fā)生作用過(guò)程中,提取物中多個(gè)組分可能存在過(guò)度競(jìng)爭(zhēng),使得無(wú)論物理相互作用或是化學(xué)相互作用都會(huì)受到影響,所以在金屬表面形成的吸附層的質(zhì)量難以達(dá)到理想狀態(tài),在較低濃度下的緩蝕效率無(wú)法得到最優(yōu);2)由于多種組分的存在,使得在分子尺度上理解和構(gòu)建植物提取物的化學(xué)結(jié)構(gòu)與緩蝕效率之間的構(gòu)效關(guān)系難以實(shí)現(xiàn)。因此,選擇何種植物提取物作為緩蝕劑很難得到理論上深入指導(dǎo),存在著很大盲目性,不得不依靠試錯(cuò)策略;3)由于植物生長(zhǎng)易受到環(huán)境、溫度等各種因素影響,植物提取物的緩蝕性能的重復(fù)性需要提高。
因此,針對(duì)植物提取物基緩蝕劑面臨的這些問題,可能未來(lái)相關(guān)幾個(gè)方面研究需要得到重視:1)精細(xì)提取植物中的主要成分,特別是主要組分的化學(xué)結(jié)構(gòu)確定成為必須;2)基于植物提取物的不同組分的緩蝕作用,使得人們?cè)诓煌g介質(zhì)和金屬基質(zhì)方面實(shí)現(xiàn)有效的金屬抗腐蝕成為可能;3)在實(shí)驗(yàn)研究和分子模擬上建立系統(tǒng)的分子結(jié)構(gòu)-緩蝕性能之間的構(gòu)效關(guān)系,為確定吸附機(jī)制和金屬腐蝕-緩蝕機(jī)制成為可能,有望指導(dǎo)人們選擇何種植物提取物作為高效有機(jī)緩蝕劑;4)某些含量較少的但是攜帶多個(gè)雜環(huán)或者不飽和鍵或者芳香環(huán)的單一組分要給予關(guān)注,有可能使得我們發(fā)現(xiàn)高效環(huán)境友好的新型緩蝕劑;5)植物提取物的主要組分的簡(jiǎn)便化學(xué)改性值得關(guān)注與研究,有可能為發(fā)展新的綠色緩蝕劑開辟路徑;6)植物提取物作為有機(jī)緩蝕劑的同時(shí),其化學(xué)結(jié)構(gòu)特點(diǎn)可以嘗試進(jìn)行與藥物之間的偶聯(lián),有可能實(shí)現(xiàn)對(duì)金屬的生物抗污作用;7)將植物提取物與其他化合物進(jìn)行緩蝕協(xié)同研究,可能使其在較低的濃度下實(shí)現(xiàn)高的緩蝕效率。
基于綠色化工和綠色環(huán)境工程要求,植物提取物由于其生物降解、易于獲得、廉價(jià)、無(wú)毒、可再生和可持續(xù)性,作為有機(jī)緩蝕劑具有極大優(yōu)勢(shì)。綜合所有研究來(lái)看,在該領(lǐng)域的未來(lái)研究可以在更廣泛的循環(huán)經(jīng)濟(jì)背景的方向上展開,建議增加對(duì)植物提取物及其生物質(zhì)廢物的研究數(shù)量,且可以適當(dāng)降低緩蝕劑的價(jià)格和運(yùn)營(yíng)成本,在工業(yè)規(guī)模上增加其產(chǎn)量。最后,盡管目前由于分子提純與鑒定上存在挑戰(zhàn),使得人們?cè)谠?分子水平上理解植物提取物基作為有機(jī)緩蝕劑存在較大困難,并且難于實(shí)現(xiàn)在低濃度下的高緩蝕性能;但相信隨著植物提取的精細(xì)化、明確化與工業(yè)化水平的發(fā)展,使得大規(guī)模應(yīng)用植物提取物作為高效環(huán)境友好的有機(jī)緩蝕劑成為可能。
參考文獻(xiàn)
[1]??Petrovic Z. Catastrophes caused by corrosion[J]. Vojnotehnicki Glasnik, 2016, 64(4): 1048-1064.
[2]??Ikeuba A I, Okafor P C. Green corrosion protection for mild steel in acidic media: saponins and crude extracts of Gongronema latifolium[J]. Pigment & Resin Technology, 2019, 48(1): 57-64.
[3]??Cotting F, Aoki I V. Smart protection provided by epoxy clear coating doped with polystyrene microcapsules containing silanol and Ce (III) ions as corrosion inhibitors[J]. Surface and Coatings Technology, 2016, 303: 310-318.
[4]??Khan G, Newaz K M S, Basirun W J, et al. Application of natural product extracts as green corrosion inhibitors for metals and alloys in acid pickling processes-A review[J]. International Journal of Electrochemical Science, 2015, 10(8): 6120-6134.
[5]??Bastidas J M, Polo J L, Cano E, et al. Tributylamine as corrosion inhibitor for mild steel in hydrochloric acid[J]. Journal of Materials Science, 2000, 35(11): 2637-2642.
[6]??Oguzie E E, Li Y, Wang F H. Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion[J]. Journal of Colloid and Interface Science, 2007, 310(1): 90-98.
[7]??El-Etre A Y. Natural honey as corrosion inhibitor for metals and alloys. I. copper in neutral aqueous solution[J]. Corrosion Science, 1998, 40(11): 1845-1850.
[8]??Umoren S A, Banera M J, Alonso-Garcia T, et al. Inhibition of mild steel corrosion in HCl solution using chitosan[J]. Cellulose, 2013, 20(5): 2529-2545.
[9]??Maayta A K, Al-Rawashdeh N A F. Inhibition of acidic corrosion of pure aluminum by some organic compounds[J]. Corrosion Science, 2004, 46(5): 1129-1140.
[10]??Martinez S, Stern I. Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/mimosa tannin/sulfuric acid system[J]. Applied Surface Science, 2002, 199(1/2/3/4): 83-89.
[11]??Brixi N K, Cherif R, Bezzar A, et al. Effectiveness of henna leaves extract and its derivatives as green corrosion inhibitors of reinforcement steel exposed to chlorides[J]. European Journal of Environmental and Civil Engineering, 2021: 1-19.
[12]??Alibakhshi E, Ramezanzadeh M, Bahlakeh G, et al. Glycyrrhiza glabra leaves extract as a green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution: experimental, molecular dynamics, Monte Carlo and quantum mechanics study[J]. Journal of Molecular Liquids, 2018, 255: 185-198.
[13]??Hassan N, Ali S M, Ebrahim A, et al. Performance evaluation and optimization of camellia sinensis extract as green corrosion inhibitor for mild steel in acidic medium[J]. Materials Research Express, 2019, 6(8): 0865c7.
[14]??Hernandes S I D, Cunha D J N, Santana C A, et al. Application of an aqueous extract of cotton seed as a corrosion inhibitor for mild steel in HCl media[J]. Materials Research, 2021, 24(1): 1-10.
[15]??Martinez S, ?tern I. Inhibitory mechanism of low-carbon steel corrosion by mimosa tannin in sulphuric acid solutions[J]. Journal of Applied Electrochemistry, 2001, 31(9): 973-978.
[16]??Oguzie E E, Adindu C B, Enenebeaku C K, et al. Natural products for materials protection: mechanism of corrosion inhibition of mild steel by acid extracts of piper guineense[J]. The Journal of Physical Chemistry C, 2012, 116(25): 13603-13615.
[17]??Khanra A, Srivastava M, Rai M P, et al. Application of unsaturated fatty acid molecules derived from microalgae toward mild steel corrosion inhibition in HCl solution: a novel approach for metal-inhibitor association[J]. ACS Omega, 2018, 3(10): 12369-12382.
[18]??Li Y, Zhao P, Liang Q, et al. Berberine as a natural source inhibitor for mild steel in 1 M H2SO4[J]. Applied Surface Science, 2005, 252(5): 1245-1253.
[19]??Iroha N B, Maduelosi N J. Corrosion inhibitive action and adsorption behaviour of justicia secunda leaves extract as an eco-friendly inhibitor for aluminium in acidic media[J]. Biointerface Research in Applied Chemistry, 2021, 11(5): 13019-13030.
[20]??Bouyanzer A, Hammouti B. A study of anti-corrosive effects of Artemisia oil on steel[J]. Pigment & Resin Technology, 2004, 33(5): 287-292.
[21]??Bouyanzer A, Hammouti B, Majidi L. Pennyroyal oil from Mentha pulegium as corrosion inhibitor for steel in 1 M HCl[J]. Materials Letters, 2006, 60(23): 2840-2843.
[22]??Dehghani A, Bahlakeh G, Ramezanzadeh B. A detailed electrochemical/theoretical exploration of the aqueous Chinese gooseberry fruit shell extract as a green and cheap corrosion inhibitor for mild steel in acidic solution[J]. Journal of Molecular Liquids, 2019, 282: 366-384.
[23]??Odewunmi N A, Umoren S A, Gasem Z M. Watermelon waste products as green corrosion inhibitors for mild steel in HCl solution[J]. Journal of Environmental Chemical Engineering, 2015, 3(1): 286-296.
[24]??Kamal C, Sethuraman M G. Spirulina platensis - a novel green inhibitor for acid corrosion of mild steel[J]. Arabian Journal of Chemistry, 2012, 5(2): 155-161.
[25]??Marzorati S, Verotta L, Trasatti S. Green corrosion inhibitors from natural sources and biomass wastes[J]. Molecules, 2018, 24(1): 48.
[26]??Gerengi H, Sahin H I. Schinopsis lorentzii extract as a green corrosion inhibitor for low carbon steel in 1 M HCl solution[J]. Industrial & Engineering Chemistry Research, 2012, 51(2): 780-787.
[27]??Muthukrishnan P, Prakash P, Ilayaraja M, et al. Effect of acidified feronia elephantum leaf extract on the corrosion behavior of mild steel[J]. Metallurgical and Materials Transactions B, 2015, 46(3): 1448-1460.
[28]??Alvarez P E, Fiori-Bimbi M V, Neske A, et al. Rollinia occidentalis extract as green corrosion inhibitor for carbon steel in HCl solution[J]. Journal of Industrial and Engineering Chemistry, 2018, 58: 92-99.
[29]??Fouda A S, Abousalem A S, El-Ewady G Y. Mitigation of corrosion of carbon steel in acidic solutions using an aqueous extract of Tilia cordata as green corrosion inhibitor[J]. International Journal of Industrial Chemistry, 2017, 8(1): 61-73.
[30]??Fouda A E A S, Shahba R M A, El-Shenawy A E, et al. Evaluation of cleome droserifolia (samwah) as green corrosion inhibitor for mild steel in 1 M HCl solution[J]. International Journal of Electrochemical Science, 2018: 7057-7075.
[31]??Raja P B, Fadaeinasab M, Qureshi A K, et al. Evaluation of green corrosion inhibition by alkaloid extracts of ochrosia oppositifolia and isoreserpiline against mild steel in 1 M HCl medium[J]. Industrial & Engineering Chemistry Research, 2013, 52(31): 10582-10593.
[32]??Satapathy A K, Gunasekaran G, Sahoo S C, et al. Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution[J]. Corrosion Science, 2009, 51(12): 2848-2856.
[33]??Prabakaran M, Kim S H, Hemapriya V, et al. Evaluation of polyphenol composition and anti-corrosion properties of Cryptostegia grandiflora plant extract on mild steel in acidic medium[J]. Journal of Industrial and Engineering Chemistry, 2016, 37: 47-56.
[34]??Haldhar R, Prasad D, Bhardwaj N. Extraction and experimental studies of Citrus aurantifolia as an economical and green corrosion inhibitor for mild steel in acidic media[J]. Journal of Adhesion Science and Technology, 2019, 33(11): 1169-1183.
[35]??Zuo X L, Li W P, Luo W, et al. Research of Lilium brownii leaves extract as a commendable and green inhibitor for X70 steel corrosion in hydrochloric acid[J]. Journal of Molecular Liquids, 2021, 321: 114914.
[36]??Ali A E, Badr G E, Fouda A. Citrus sinensis extract as a green inhibitor for the corrosion of carbon steel in sulphuric acid solution[J]. Biointerface Research in Applied Chemistry, 2021, 11(6): 14007-14020.
[37]??Dehghani A, Bahlakeh G, Ramezanzadeh B, et al. Aloysia citrodora leaves extract corrosion retardation effect on mild-steel in acidic solution: molecular/atomic scales and electrochemical explorations[J]. Journal of Molecular Liquids, 2020, 310: 113221.
[38]??Umoren S A, Solomon M M, Obot I B, et al. A critical review on the recent studies on plant biomaterials as corrosion inhibitors for industrial metals[J]. Journal of Industrial and Engineering Chemistry, 2019, 76: 91-115.
[39]??常春, 趙亞南, 曾愛國(guó). 環(huán)糊精水提法提取積雪草中的三萜類化合物[J]. 西北藥學(xué)雜志, 2018, 33(4): 432-435.
Chang C, Zhao Y N, Zeng A G. Extraction of triterpenoids from centella asiatica by cyclodextrin aqueous extraction[J]. Northwest Pharmaceutical Journal, 2018, 33(4): 432-435. (in Chinese)
[40]??葉榮棣. 一種葛根植物提取物的萃取工藝: CN111686149A[P]. 2020-09-22
Ye R D. Extraction technology of radix pueraiae plant extract: CN111686149A[P]. 2020-09-22. (in Chinese)
[41]??韓高偉, 高子怡, 趙二勞. 苦參中生物堿的提取及純化工藝研究進(jìn)展[J]. 現(xiàn)代食品, 2018(15): 163-166.
Han G W, Gao Z Y, Zhao E L. Research progress on extraction and purification technology of the Sophora flavescens alkaloid[J]. Modern Food, 2018(15): 163-166. (in Chinese)
[42]??Ganzler K, Salgó A, Valkó K. Microwave extraction: a novel sample preparation method for chromatography[J]. Journal of Chromatography A, 1986, 371: 299-306.
[43]??Alara O R, Abdurahman N H, Olalere O A. Ethanolic extraction of bioactive compounds from Vernonia amygdalina leaf using response surface methodology as an optimization tool[J]. Journal of Food Measurement and Characterization, 2018, 12(2): 1107-1122.
[44]??Carreira-Casais A, Otero P, Garcia-Perez P, et al. Benefits and drawbacks of ultrasound-assisted extraction for the recovery of bioactive compounds from marine algae[J]. International Journal of Environmental Research and Public Health, 2021, 18(17): 9153.
[45]??楊開, 徐夢(mèng)婷, 王玏縈, 等. 牛樟芝總?cè)瞥曁崛〖绑w外活性研究[J]. 核農(nóng)學(xué)報(bào), 2018, 32(1): 112-122.
Yang K, Xu M T, Wang L Y, et al. Ultrasonic-assisted extraction andin vitroactivity evaluation of total triterpenoids from antrodia camphorata[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(1): 112-122. (in Chinese)
[46]??陳祥云, 彭財(cái)英, 盧健, 等. 含小檗堿類中草藥總生物堿的提取工藝及其藥理研究進(jìn)展[J]. 江西中醫(yī)藥, 2018, 49(9): 68-72.
Chen X Y, Peng C Y, Lu J, et al. Research progress on extraction technology and pharmacology of total alkaloids from Chinese herbal medicine containing berberine [J]. Jiangxi Journal of Traditional Chinese Medicine, 2018, 49(9): 68-72. (in Chinese)
[47]??杜萌, 李曉花. 秦艽多糖的提取工藝研究進(jìn)展[J]. 中外企業(yè)家, 2019(11): 133.
Du M, Li X H. Research progress on extraction technology of Polysaccharides from Gentiana officinalis [J]. Chinese & Foreign Entrepreneurs, 2019(11): 133. (in Chinese)
[48]??張晶, 邢媛媛, 徐元慶, 等. 植物提取物活性成分的提取工藝及抑菌活性研究進(jìn)展[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2019, 31(12): 5461-5467.
Zhang J, Xing Y Y, Xu Y Q, et al. Research progress on extraction technology and bacteriostatic activity of active ingredients in plant extracts[J]. Chinese Journal of Animal Nutrition, 2019, 31(12): 5461-5467. (in Chinese)
[49]??胡偉, 李湘洲, 孟維, 等. 膜分離技術(shù)在植物有效成分分離與純化中的應(yīng)用進(jìn)展[J]. 化學(xué)工程與裝備, 2009(6): 95-97.
Hu W, Li X Z, Meng W, et al. Application progress of membrane separation technology in the separation and purification of plant active ingredients [J]. Chemical Engineering & Equipment, 2009(6): 95-97. (in Chinese)
[50]??Castro-Mu?oz R, Díaz-Montes E, Cassano A, et al. Membrane separation processes for the extraction and purification of steviol glycosides: an overview[J]. Critical Reviews in Food Science and Nutrition, 2021, 61(13): 2152-2174.
[51]??王聰慧, 任娜, 魏微, 等. 天然產(chǎn)物分離純化新技術(shù)[J]. 應(yīng)用化工, 2019, 48(8): 1940-1943.
Wang C H, Ren N, Wei W, et al. New technology for separation and purification of natural products[J]. Applied Chemical Industry, 2019, 48(8): 1940-1943. (in Chinese)
[52]??Che Zain M S, Lee S Y, Teo C Y, et al. Adsorption/desorption characteristics and simultaneous enrichment of orientin, isoorientin, vitexin and isovitexin from hydrolyzed oil palm leaf extract using macroporous resins[J]. Processes, 2021, 9(4): 659.
[53]??Alipour S, Azar P A, Husain S W, et al. Synthesis, characterization and application of spherical and uniform molecularly imprinted polymeric nanobeads as efficient sorbent for selective extraction of rosmarinic acid from plant matrix[J]. Journal of Materials Research and Technology, 2021, 12: 2298-2306.
[54]??Lee D Y, Choi G H, Megson D, et al. Effect of soil organic matter on the plant uptake of perfluorooctanoic acid (PFOA) and perfluorooctanesulphonic acid (PFOS) in lettuce on granular activated carbon-applied soil[J]. Environmental Geochemistry and Health, 2021, 43(5): 2193-2202.
[55]??Sun H, Lin Q, Wei W, et al. Ultrasound-assisted extraction of resveratrol from grape leaves and its purification on mesoporous carbon[J]. Food Science and Biotechnology, 2018, 27(5): 1353-1359.
[56]??Jankowiak L, van Avermaete I, Boom R, et al. Adsorption of isoflavones onto PVPP in the presence of a soy matrix[J]. Separation and Purification Technology, 2015, 149: 479-487.
[57]??Yang D, Fan R, Luo F, et al. Facile and green fabrication of efficient Au nanoparticles catalysts using plant extract via a mesoporous silica-assisted strategy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621: 126580.
[58]??Di D L, Zheng Y Y, Chen X F, et al. Advances in application of high-speed countercurrent chromatography in separation and purification of flavonoids[J]. Chinese Journal of Analytical Chemistry, 2011, 39(2): 269-275.
[59]??Jiang T, Ghosh R, ExtractionCharcosset C. Extraction, purification and applications of curcumin from plant materials-a comprehensive review[J]. Trends in Food Science & Technology, 2021, 112: 419-430.
[60]??Liang N Y, Cai P F, Wu D T, et al. High-speed counter-current chromatography (HSCCC) purification of antifungal hydroxy unsaturated fatty acids from plant-seed oil and lactobacillus cultures[J]. Journal of Agricultural and Food Chemistry, 2017, 65(51): 11229-11236.
[61]??Elabbasy H M, Fouda A S. Olive leaf as green corrosion inhibitor for C-steel in Sulfamic acid solution[J]. Green Chemistry Letters and Reviews, 2019, 12(3): 332-342.
[62]??Dehghani A, Bahlakeh G, Ramezanzadeh B, et al. Potential role of a novel green eco-friendly inhibitor in corrosion inhibition of mild steel in HCl solution: detailed macro/micro-scale experimental and computational explorations[J]. Construction and Building Materials, 2020, 245: 118464.
[63]??Shyamvarnan B, Shanmugapriya S, Selvi J A, et al. Corrosion inhibition effect of Elettaria cardamomum extract on mild steel in 3.5% NaCl medium[J]. Materials Today: Proceedings, 2021, 40: S192-S197.
[64]??Solomon M M, Umoren S A, Udosoro I I, et al. Inhibitive and adsorption behaviour of carboxymethyl cellulose on mild steel corrosion in sulphuric acid solution[J]. Corrosion Science, 2010, 52(4): 1317-1325.
[65]??Dehghani A, Bahlakeh G, Ramezanzadeh B, et al. Potential role of a novel green eco-friendly inhibitor in corrosion inhibition of mild steel in HCl solution: detailed macro/micro-scale experimental and computational explorations[J]. Construction and Building Materials, 2020, 245: 118464.
[66]??馬志國(guó), 李敏. 一種植物提取物復(fù)合阻垢緩蝕劑及其制備方法: CN109437416A[P]. 20190308.
Ma Z G, Li M. Plant extract composite scale and corrosion inhibitor and preparation method thereof: CN109437416A[P]. 20190308. (in Chinese)
[67]??Shyamvarnan B, Shanmugapriya S, Selvi J A, et al. Corrosion inhibition effect of Elettaria cardamomum extract on mild steel in 3.5% NaCl medium[J]. Materials Today: Proceedings, 2021, 40: S192-S197.
[68]??Kaban A P S, Ridhova A, Priyotomo G, et al. Development of white tea extract as green corrosion inhibitor in mild steel under 1 M hydrochloric acid solution[J]. Eastern-European Journal of Enterprise Technologies, 2021, 2(6 (110)): 6-20.
[69]??Haldhar R, Prasad D, Saxena A, et al. Experimental and theoretical studies of Ficus religiosa as green corrosion inhibitor for mild steel in 0.5 M H2SO4solution[J]. Sustainable Chemistry and Pharmacy, 2018, 9: 95-105.
[70]??馬瑞, 鄭紅豆, 汪艷, 等. 水葫蘆葉提取物對(duì)冷軋鋼在H2SO4溶液中的緩蝕作用[J]. 清洗世界, 2018, 34(6): 22-27.
Ma R, Zheng H D, Wang Y, et al. Inhibition effects of Eichhornia Crassipes leaves extracts on cold rolled steel in H2SO4solution[J]. Cleaning World, 2018, 34(6): 22-27. (in Chinese)
[71]??Hassannejad H, Nouri A. Sunflower seed hull extract as a novel green corrosion inhibitor for mild steel in HCl solution[J]. Journal of Molecular Liquids, 2018, 254: 377-382.
[72]??Ramezanzadeh M, Bahlakeh G, Sanaei Z, et al. Corrosion inhibition of mild steel in 1 M HCl solution by ethanolic extract of eco-friendly Mangifera indica (mango) leaves: electrochemical, molecular dynamics, Monte Carlo andab initiostudy[J]. Applied Surface Science, 2019, 463: 1058-1077.
[73]??Bahlakeh G, Ramezanzadeh B, Dehghani A, et al. Novel cost-effective and high-performance green inhibitor based on aqueous Peganum harmala seed extract for mild steel corrosion in HCl solution: detailed experimental and electronic/atomic level computational explorations[J]. Journal of Molecular Liquids, 2019, 283: 174-195.
[74]??Oguzie E E. Studies on the inhibitive effect of Occimum viridis extract on the acid corrosion of mild steel[J]. Materials Chemistry and Physics, 2006, 99(2/3): 441-446.
[75]??Haldhar R, Prasad D, Nguyen L T D, et al. Corrosion inhibition, surface adsorption and computational studies of Swertia chirata extract: a sustainable and green approach[J]. Materials Chemistry and Physics, 2021, 267: 124613.
[76]??Ahmed R K, Zhang S T. Atriplex leucoclada extract: a promising eco-friendly anticorrosive agent for copper in aqueous media[J]. Journal of Industrial and Engineering Chemistry, 2021, 99: 334-343.
[77]??He J H, Xu Q, Li G Q, et al. Insight into the corrosion inhibition property of Artocarpus heterophyllus Lam leaves extract[J]. Journal of Industrial and Engineering Chemistry, 2021, 102: 260-270.
[78]??Mobtaker H, Azadi M, Hassani N, et al. The inhibition performance of quinoa seed on corrosion behavior of carbon steel in the HCl solution; theoretical and experimental evaluations[J]. Journal of Molecular Liquids, 2021, 335: 116183.
[79]??強(qiáng)玉杰. 新型含氮類有機(jī)分子緩蝕行為的電化學(xué)與分子模擬研究[D]. 重慶: 重慶大學(xué), 2019.
Qiang Y J. Electrochemical and molecular simulation study on corrosion inhibition behavior of novel nitrogen-containing organic molecules[D]. Chongqing: Chongqing University, 2019. (in Chinese)
[80]??Zhou Y, Zhu C, Xu S Y, et al. Combining electrochemical, surface topography analysis, and theoretical calculation methods to insight into the anti-corrosion property of Syzygium samarangense leaf extract[J]. Journal of Industrial and Engineering Chemistry, 2021, 102: 302-311.
[81]??Radi M, Melian R, Galai M, et al. Pumpkin seeds as an eco-friendly corrosion inhibitor for 7075-T6 alloy in 3.5% NaCl solution: electrochemical, surface and computational studies[J]. Journal of Molecular Liquids, 2021, 337: 116547.
[82]??Wang D Y, Nie B L, Li H J, et al. Anticorrosion performance of grape seed proanthocyanidins extract and Tween-80 for mild steel in hydrochloric acid medium[J]. Journal of Molecular Liquids, 2021, 331: 115799.
[83]??Xu S Y, Qiang Y J, Fu A Q, et al. Luffa cylindrica roem leaves extract as the environment-friendly inhibitor for copper in sulfuric acid environment[J]. Journal of Molecular Liquids, 2021, 343: 117619.
[84]??Kardas G, Solmaz R. Electrochemical investigation of barbiturates as green corrosion inhibitors for mild steel protection[J]. Corrosion Reviews, 2006, 24(3/4): 151-172.
[85]??Chakravarthy M P, Mohana K N, Pradeep Kumar C B. Corrosion inhibition effect and adsorption behaviour of nicotinamide derivatives on mild steel in hydrochloric acid solution[J]. International Journal of Industrial Chemistry, 2014, 5(2): 1-21.
[86]??Li X H, Deng S D, Fu H, et al. Synergism between rare earth cerium(IV) ion and vanillin on the corrosion of steel in H2SO4solution: weight loss, electrochemical, UV-vis, FTIR, XPS, and AFM approaches[J]. Applied Surface Science, 2008, 254(17): 5574-5586.
[87]??Telegdi J, Shaglouf M M, Shaban A, et al. Influence of cations on the corrosion inhibition efficiency of aminophosphonic acid[J]. Electrochimica Acta, 2001, 46(24/25): 3791-3799.
[88]??Larabi L, Harek Y, Traisnel M, et al. Synergistic influence of poly(4-vinylpyridine) and potassium iodide on inhibition of corrosion of mild steel in 1M HCl[J]. Journal of Applied Electrochemistry, 2004, 34(8): 833-839.
[89]??Jokar M, Farahani T S, Ramezanzadeh B. Electrochemical and surface characterizations of morus alba pendula leaves extract (MAPLE) as a green corrosion inhibitor for steel in 1 M HCl[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63: 436-452.
[90]??Umoren S A, Solomon M M, Eduok U M, et al. Inhibition of mild steel corrosion in H2SO4solution by coconut coir dust extract obtained from different solvent systems and synergistic effect of iodide ions: ethanol and acetone extracts[J]. Journal of Environmental Chemical Engineering, 2014, 2(2): 1048-1060.
[91]??Obi-Egbedi N O, Obot I B, Umoren S A. Spondias mombin L. as a green corrosion inhibitor for aluminium in sulphuric acid: correlation between inhibitive effect and electronic properties of extracts major constituents using density functional theory[J]. Arabian Journal of Chemistry, 2012, 5(3): 361-373.
[92]??Li X H, Deng S D, Fu H, et al. Synergistic inhibition effects of bamboo leaf extract/major components and iodide ion on the corrosion of steel in H3PO4solution[J]. Corrosion Science, 2014, 78: 29-42.
[93]??Eduok U M, Umoren S A, Udoh A P. Synergistic inhibition effects between leaves and stem extracts of Sida acuta and iodide ion for mild steel corrosion in 1 M H2SO4solutions[J]. Arabian Journal of Chemistry, 2012, 5(3): 325-337.
[94]??Heragh M F, Tavakoli H. Synergetic effect of the combination of Prosopis Farcta extract with sodium dodecyl sulfate on corrosion inhibition of St37 steel in 1M HCl medium[J]. Journal of Molecular Structure, 2021, 1245: 131086.
[95]??Ituen E, Lin Y H, Verma C, et al. Synthesis and characterization of walnut husk extract-silver nanocomposites for removal of heavy metals from petroleum wastewater and its consequences on pipework steel corrosion[J]. Journal of Molecular Liquids, 2021, 335: 116132.
[96]??El-Tantawy M I, Gadow H S, Rashed I G, et al.. Inhibition of copper corrosion by rice straw extract in 2M solution of nitric acid[J]. Biointerface Research in Applied Chemistry, 2021, 12(1): 83-104.
[97]??Boumezzourh A, Ouknin M, Chibane E, et al. Crocus sativus L. flower aqueous extract as corrosion inhibitor of tinplate (cans material) in 0.5M H2C2O4medium[J]. Biointerface Research in Applied Chemistry, 2021, 12(2): 1749-1761.
[98]??Shi S H. Electrochemical corrosion resistance of carbon steel rebar in concrete structures exposed to 3.5wt% NaCl solution: effect of green inhibitors and micro-silica as partial replacement[J]. International Journal of Electrochemical Science, 2021: ArticleID: 210527.
[99]??Vorobyova V, Skiba M. Peach pomace extract as novel cost-effective and high-performance green inhibitor for mild steel corrosion in NaCl solution: experimental and theoretical research[J]. Waste and Biomass Valorization, 2021, 12(8): 4623-4641.
[100]??Al Hasan N H J, Alaradi H J, Al Mansor Z A K, et al. The dual effect of stem extract of Brahmi(Bacopamonnieri) and Henna as a green corrosion inhibitor for low carbon steel in 0.5 M NaOH solution[J]. Case Studies in Construction Materials, 2019, 11: e00300.
[101]??Al-Moubaraki A H, Al-Howiti A A, Al-Dailami M M, et al. Role of aqueous extract of celery (Apium graveolens L.) seeds against the corrosion of aluminium/sodium hydroxide systems[J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 4194-4205.
[102]??Chaubey N, Yadav D K, Singh V K, et al. A comparative study of leaves extracts for corrosion inhibition effect on aluminium alloy in alkaline medium[J]. Ain Shams Engineering Journal, 2017, 8(4): 673-682.
[103]??Chaubey N, Singh V K, Quraishi M A. Electrochemical approach of Kalmegh leaf extract on the corrosion behavior of aluminium alloy in alkaline solution[J]. International Journal of Industrial Chemistry, 2017, 8(1): 75-82.
[104]??Halambek J, Cindri? I, Nin?evi? Grassino A. Evaluation of pectin isolated from tomato peel waste as natural tin corrosion inhibitor in sodium chloride/acetic acid solution[J]. Carbohydrate Polymers, 2020, 234: 115940.
(編輯??呂建斌)