• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topological states switching and group velocity control in two-dimensional non-reciprocal Hermitian photonic lattice

    2023-12-02 09:29:14YuLin林宇YuandanWang王元旦JunhaoYang楊俊豪YixuanFu符藝萱andXinyuanQi齊新元
    Chinese Physics B 2023年11期
    關(guān)鍵詞:楊俊新元

    Yu Lin(林宇), Yuandan Wang(王元旦), Junhao Yang(楊俊豪), Yixuan Fu(符藝萱), and Xinyuan Qi(齊新元)

    School of Physics,Northwest University,Xi’an 710127,China

    Keywords: Dirac point,imaginary coupling,Chern number,group velocity

    1.Introduction

    In recent years, topological photonic systems have attracted much attention from researchers,who have performed extensive studies on different topological photonic systems and achieved rich research results.[1]The study of topological photonic systems started in 1979, with the one-dimensional(1D) Su–Schrieffer–Heeger (SSH) model proposed by Suet al.[2]as a representative example, which realized topological phase transition through staggered coupling in the lattice.[3,4]Based on this,topological photonic devices have gradually attracted attention.[5–7]The SSH model has chiral and particle–hole symmetries,[8,9]and many novel phenomena have been discovered by studying the SSH model, such as topological invariants, topological phase transitions, edge states, etc.[10]With the progress of research,two-dimensional(2D)topological photonic systems have aroused great interest.[11]Quantum spin Hall effect (QSHE) and quantum valley Hall effect (QVHE) with time reversal symmetry can be realized in 2D photonic crystals.[12]QSHE can be realized in photonic crystals with strong spin–orbit coupling,[13]where spinup and spin-down bands are inverted and separated by a band gap,[14]each spin sector having a nonzero Chern number with opposite signs.Therefore, there exist topologically protected edge states propagating along the system boundary, with opposite spins and directions.These edge states are immune to disorder-induced backscattering.QVHE can be realized in photonic crystals with honeycomb or hexagonal lattices,[15]where valleys correspond to two inequivalent Dirac cones atKandK′points.By introducing a staggered potential or breaking the sublattice symmetry,[16–18]a band gap can be opened at the Dirac points (DPs), and valleys acquire opposite Chern numbers.[19]Therefore,there exist topologically protected edge states propagating along the system boundary,[20,21]with opposite pseudospins and opposite group velocities.Both QVHE and QSHE based photonic topological insulators(PTIs)preserve time-reversal symmetry,and moreover,these PTIs can also host higher-order topological phases, such as second-order PTIs with corner states or third-order PTIs with hinge states.[22–26]In 2008,Haldane and Raghu proposed a method of breaking time reversal symmetry using magneto-optical materials,[27,28]which can realize oneway transmission of chiral edge states of light.[29,30]Wanget al.,successfully observed the robust one-way transmission of edge states in a 2D magnetic photonic crystal experiment.[31]However, most of the aforementioned 2D photonic systems require the time reversal symmetry breaking,[32]and are non Hermitian.[33–38]The studies in 2D non-reciprocal Hermitian photonic systems are still rarely reported.

    In this paper,we constructed a 2D non-reciprocal Hermitian photonic lattice and studied theoretically and numerically the system’s topological states and group velocity control.By changing the coupling coefficients,we analyzed the movement of DPs in the energy band structure,and the transformation between any topological states corresponding to different Chern numbers.Finally,we studied the impact of the topology on the group velocity.

    2.Topological state and dispersion curve

    This section presents a 2D non-reciprocal coupled Hermitian photonic lattice and its unique properties.Figure 1 illustrates the structure of this lattice, which consists of two straight waveguides,An(blue) andBn(red), forming a unit cell (red dashed box).Each unit cell has an imaginary coupling coefficient±iγbetween the two sublattices.The system can be modeled by coupled mode equations for the amplitudesanandbnof the sublatticesAandB,respectively:

    wherenis the number of cells;?is the intralayer coupling coefficient;the interlayer coupling within a cell is non-reciprocal coupling with different imaginary coupling coefficientst±iγ;the interlayer coupling between cells isδandσ.zrepresents the propagation distance of the wave packet,an,bnare the field amplitudes of waveguidesAn,Bn.

    Fig.1.(a)Schematic diagram of a 2D non-reciprocal Hermitian photonic lattice with two sites per cell.(b)The effective 1D chain structure of the model in(a).

    For reduction of calculation, we simplify the Bloch Hamiltonian of the system to a 1D narrow-band chain model that is periodic alongxand confined alongy.Applying Bloch’s theorem:an+1=aneik,bn+1=bneik.In the momentum space,the equation can be written as

    wherem= 2?coskx;s=t-2σcoskx;u±=u±iγandu=t+2δcoskx.For a givenkx, wheng/=0 andu-/=u+,equation (4) describes a 1D narrow-band chain model with non-reciprocal intra-cell coupling,as shown in Fig.2(b).Analyzing the Bloch Hamiltonian reveals that it satisfiesH?=H,indicating that the system is a Hermitian system with real energy spectra.

    The dispersion relation can characterize and predict light transmission behavior in periodic photonic crystals.The Bloch Hamiltonian is given by Eq.(4), and a solution of the equation gave the dispersion relation, which was the expression of the system’s energy band structure

    The dispersion relation can characterize and predict a 2D Brillouin zone (BZ).We divide it into several small squares and calculate each square’s Berry curvature.We use the Chern number efficient method to simplify the calculation to solve whether the system has topological properties and transform the Berry curvature integral into a linear algebra problem.[49]This method is based on the Haldane model,[39–41]which assumes that the Hamiltonian can be expressed as

    whereσiis the Pauli matrix anddi(k)is the real function.For such Hamiltonian quantities, the Berry curvature can be expressed as

    whereεijkis the Levi–Civita notation.The Berry curvature can be transformed into a linear problem by fittingdi(k)with a cubic function

    whered(k)=[d1(k),d2(k),d3(k)]andCis a constant.This linear problem can be solved by computing the dot product of[d(k)×?kd(k)]·CandC, and then integrating the result to obtain the Berry curvature.Finally,the Chern number can be calculated by substituting the Berry curvature into the integral formula for the Chern number.

    The 2D non-reciprocal Hermitian system can be solved for whether it has topological properties by the above stale efficient method.We solve the topological states of the system separately whenδ=σandδ/=σ.Whenδ=σ,the coupling coefficient?=0,t=0.5 are fixed,and the Chern number of the system is calculated.The state is determined numerically,and the calculation results show that when the coupling coefficientδ=0.5 andγ=0,C=-2, corresponding to a topological non-trivial state;when the coupling coefficientδ<0.5 andγ>0.3,C=-1, corresponding to another topological non-trivial state; when the coupling coefficientδ>0.5 andγ>0.3,C=0, corresponding to a trivial topological state.The robustness of the topological state is further calculated,and it is found that the topological state remains unchanged when?∈[0,0.1].

    Whenδ/=σ, the coupling coefficient?=0.5,δ=-1,t=2,σ=1 is fixed, and the Chern number of the system is calculated.It is found thatC=0, regardless of the value of the imaginary coupling coefficientγ, implies that the system is in a topologically trivial state.For a fixed coupling constant?=0,δ=-1,t=2,σ=1,the band structure of the Bloch HamiltonianH(k)is shown in Figs.2(a)–2(c),where we plot the dispersion relation as a function of the wave vectorskxandky.

    When the intralayer coupling constant?=0,the system is chiral symmetric and preservesCH(k)C-1=-H(k).The band structure of the Bloch Hamiltonianγ=0 is shown in Fig.2(a);due to the chiral symmetry of the system,the upper and lower bands are symmetric,and there are two band inversion points at(kx,ky)=(π/2,π/2),(kx,ky)=(-π/2,-π/2).Because of the imaginary coupling constantγ=0, the bands are also symmetric about the origin,and there are three DPs located at the edge(A2,A3)and center(A1)of the BZ,with the edge DPs being symmetric about the origin (kx,ky)=(0,0).The 2D Dirac states reported to date are distributed only at high symmetry points in the BZ,and the low-energy dispersion of these Dirac states is isotropic due to symmetry constraints.Ref.[42] reported in 2022 that the Dirac states in antimony films are located at general momentum points.

    A DP at a non-high-symmetry point of an optical system can be realized by adjusting the imaginary coupling coefficient in a 2D photonic crystal,as shown in Fig.2.When the imaginary coupling coefficient increases gradually toγ=0.3, the DP shifts from the edge of the BZ to the center of the BZ,and the DP at the center breaks.Under this condition,there is only one non-high symmetry DP,The imaginary coupling coefficient can be interpreted as a phase factor that modifies the hopping amplitude between neighboring sites in the photonic crystal.This phase factor violates the time-reversal symmetry and leads to a non-reciprocal propagation of light.Consequently, the dispersion relation is distorted and shifted by the imaginary coupling coefficient.The DP,which is a degenerate point of two bands with opposite parity, is sensitive to the phase factor and can be manipulated or split by tuning the imaginary coupling coefficient.The band gap,which is determined by the band inversion between the two bands, is also influenced by the imaginary coupling coefficient.When the imaginary coupling coefficient is sufficiently large, the band inversion can be reversed and the band gap can be opened.as shown in Fig.2(b).When the imaginary coupling coefficientγincreases further,we find that the DP moves wholly and again breaks.The band gap widens with the rise of the imaginary coupling coefficient.By adjusting the coupling coefficient,we provide a simple model and method to locate the 2D DP at a general momentum point.

    Figure 2(d)shows the band structure forδ=σ=t=0.5.Due to the chiral symmetry of the system,the upper and lower bands are symmetric, and there is no degenerate point in the design,only two band sharp points.When the intralayer coupling coefficient?=0.1, the chiral symmetry of the system is broken.In Fig.2(e), due to the breaking of chiral symmetry,the balance of the upper and lower bands is destroyed,but the two band abrupt points at(kx,ky)=(π/2,π/2),(kx,ky)=(-π/2,-π/2)are not broken due to the breaking of symmetry,and as?increases,the maximum value of the band in the range ofkx=-π/2 tokx=π/2 andky=-π/2 toky=π/2 increases,and the maximum value of the band in the range ofkx=|π/2|tokx=|π|andky=|π/2|toky=|π|decreases.By adjusting the coupling coefficient,we provide a simple model and method to make the 2D DP at a general momentum point.

    When the system is in the topologically non-trivial state corresponding toC=-1,the band structure shows that,compared with the topological state corresponding toC=-2,the overall dispersion relation decreases inward, and the maximum value of the dispersion relation is lower.Nevertheless,the broadband sharp points do not disappear, as shown in Fig.2(f).

    A comparison of the six band diagrams reveals that there are always two sharp points in each band and that their positions do not depend on the imaginary coupling coefficientγ.The analytical solution indicates that the strong points are located at(kx,ky)=(π/2,π/2)and(kx,ky)=(-π/2,-π/2).

    3.Research on topological states

    However, not all topological systems exhibit consistent boundary state behavior under open boundary conditions.[43,44]Therefore, in specific studies, the system structure and boundary conditions must be considered to determine the energy spectrum of topological systems under open boundary conditions.

    When the intralayer coupling coefficient?=0 and the other coupling coefficients areγ= 0,δ= 0.5,t= 0.5 andσ=0.5, the system is in the topological state when Chern numberC=-2.Figure 3(a)shows the energy spectrum structure of the system with an open boundary in theydirection and an even number of lattice points, assumingny=40 andNy=80.There are zero energy degenerate bands in the energy spectrum of the system and several particular degenerate points in the bulk state.The numerical solution indicates that the positions of these points arekx=±1.04,±2.08,where there are four-fold degeneracies ofnyand the intracell couplingu±vanishes,that is,t+2δcoskx±iγ=0,as shown by the blue dashed line and the intersection point with the bulk state.If an odd number of lattice pointsNy=81 is chosen in theydirection, a flat band appears in the open boundary energy spectrum throughout the BZ,as shown in Fig.3(d).

    When the intralayer coupling coefficient?= 0.1, figures 3(b) and 3(e) show the change of the energy spectrum structure of the open boundary in theydirection when the intralayer coupling coefficient?/=0.Figure 3(b) is the energy band diagram when the number of lattice points is even(Ny=80),indicating that when the intralayer coupling coefficient?changes within a small range,it has a particular impact on the energy spectrum of the whole system.First,it changes the edge state of the system, making it from a topologically protected zero mode to a topologically protected near-zero way; second, it changes the symmetry of the system, making the upper and lower energy spectra no longer symmetrical but does not affect the position of the degenerate points in the bulk state.The bulk state is still decayed atkx=±1.04,±2.08.For the energy band diagram with an odd number of lattice points(Ny=81), the change of the energy spectrum diagram is consistent with Fig.3(d), and a zero-energy flat band appears throughout the BZ.The appearance of these states is closely related to the specific shape and topological properties of the lattice.However,increasing the number of lattice points does not change the existence and position of bulk degenerate points and topological edge states because the appearance of these states depends on the specific shape and topological characteristics of the lattice rather than just the increase in the number of lattice points.

    In general, the intralayer coupling coefficient?affects the edge state of the system: when the intralayer coupling coefficient?=0,the edge state of the system is a topologically protected zero mode;when the intralayer coupling coefficient?/=0,the edge state of the system is a topologically protected near-zero mode.

    The number of lattice points in theydirection affects the appearance of the zero-energy flat band in the open boundary energy spectrum,regardless of whether the system is topologically trivial or non-trivial.No flat band appears in the whole space when the number of lattice points in theydirection is even.When the number of lattice points in theydirection is odd,the zero-energy flat band always exists,regardless of how the coupling coefficients change.[45,46]In summary, we propose a method to realize a flat band at a single lattice point without considering the amplitude and phase of the lattice points.

    Figure 3 has simplified the 2D photonic crystal into a 1D non-reciprocal narrow-band chain model along theydirection.This narrow-band chain model simulates the light wave transmission behavior.

    Figure 4 illustrates the light wave transmission process at the boundary of a finite system under the topologically nontrivial condition.Assumingy=25, the number of lattices isNy=2ny=50,the wave vectork0=π,and a Gaussian wave packet is used for excitation.Figures 4(a) and 4(c) show the evolution of the edge states under topological non-trivial condition when the system’s Chern numberC=-2,with the coupling coefficients?=0,δ=0.5,t=0.5,σ=0.5,γ=0.We observe topological edge states at the upper and lower waveguide edges, and the waveguide is localized on the outermost waveguide.Figures 4(b) and 4(d) show the evolution of the edge states under topological non-trivial condition when the system’s Chern numberC=-1,with the coupling coefficients?=0,δ=0.3,t=0.5,σ=0.3,γ=0.1.We observe that the light wave oscillates and couples with other waveguides, but due to the topological property of the system, the light wave eventually localizes on the edge waveguide,which is the topological edge state.

    4.Study on group velocity control

    This section investigates how to control the photonic crystal’s group velocity by tuning the system’s coupling coefficients.The group velocitieskxandkyof the wave packet along thexandydirections,respectively,are obtained by solving the first-order derivatives of Eq.(8)concerningvkxandvky.

    The formula for the group velocityvkxis derived as follows:

    whereA=(-2?±(1+eiky)2t(δ-σ)-(-1+e2iky)iγσ ?4(eikyδ-σ)(-δ+ eikyσ)coskx)),B= e2iky(t+ iγ+2δcoskx)(t-2σcoskx),C= eiky(2t2+γ2+2(δ2+σ2)),D=4t(δ-σ)+4t(δ-σ)coskx+2(δ2+σ2)cos2kx),E=t2-iγt-2δσ+2tδcoskx+2iγσcoskx.

    Figure 5 shows how tuningγ,an imaginary coupling coefficient in our system, affects group velocities alongx.Figures 5(a)–5(c) illustrate howvkxvaries withkxfor different values ofγ.Whenγ=0,there are three points wherevkx=0,corresponding to the edge and center of the BZ.The band jump point in the band structure remains a discontinuity invkxregardless ofγ.Whenγ=0.3,vkxchanges slightly: it becomes flatter around the center point and reaches higher maxima and lower minima.Asγincreases further, these trends continue:vkxbecomes more gentle at the center and more extreme at other points.Increasingγdoes not affect the zero group velocity points.Still, it causesvkxto increase or decrease continuously depending onkxand become flatter at the center.Figure 5(d) showsvkxunder topological conditions.There are still three points wherevkx= 0, as in the non-topological case, but there is no abrupt change at the band jump point; instead, two group velocity bands intersect at(kx,ky,vkx)=(±π/2,±π/2,0).The overall variation ofvkxis also significantly reduced due to topological suppression.

    Fig.5.Group velocity control in the x direction.(a)–(c) The group velocity variation curves for the topologically trivial state, with the same parameters as Figs.2(a)–2(c).(d)The group velocity variation curve for the topologically non-trivial state,with the same parameters as Fig.2(d).

    The formula for the group velocityvkyis derived as follows:

    Figure 6 shows the group velocity variation curve in theydirection.Figures 6(a)–6(c) illustrate how increasingγaffectsvky.Unlikevkx,vkyis not zero at the edge of the BZ; it has a value of 50 whenγ=0.Asγincreases,vkydecreases at most points except for the center point, where it remains zero.The slope around this point is also tiny and close to zero,which may result in localized or dispersion-less transmission of light waves.In addition,vkyis negative for most values ofkyin in the range of 0 toπ,indicating group velocity deceleration.Thus,we observe group velocity acceleration,deceleration,and zero group velocity within one period.Increasingγdoes not change these phenomena significantly;it only causesvkyto decrease further.Figure 6(d)showsvkyunder topological conditions.The variation ofvkyis tiny under this condition;only near(0,0)is there a noticeable curvature that may cause light wave diffraction due to topological suppression of group velocity variation.

    5.Conclusion

    As one of the most attractive optical systems for light manipulation, non-reciprocal photonic lattices provide abundant means to realize the topological edge states and regulate the group velocity.This paper presents a theoretical design of the non-reciprocal Hermite 2D photonic lattice, and the topological phase transition, topological edge state, optical transport behavior,and group velocity change in the non-reciprocal coupling photonic lattice are studied.The research results show that when the imaginary coupling coefficientγ<0.3 and interlayer coupling coefficientδ<0.5,the system has a topologically non-trivial state ofC=-1;when the imaginary coupling coefficientγ=0 and the interlayerδ=0.5,the system has a topologically non-trivial state ofC=-2.When the imaginary coupling coefficientγ=0,the system energy band is symmetric relative to the wave vector (kx,ky)=(0,0).In a finitely large system,the system has a zero-energy flat-top band when the lattice number in the directionyis odd.The study of group velocity shows that zero group velocity points exist regardless of the topological property of the system.However,the topological state can suppress the amplitude of the group velocity profile.To sum up, this work realizes different topological states of system and localized states of light waves in 2D photonic lattices,enriches the connotation of optical transmission and group velocity regulation in 2D non-reciprocal Hermitic photonic lattices, and has particular theoretical guiding significance in the fields of optical communication and photonic device fabrication.[47,48]

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant No.1217040857).

    猜你喜歡
    楊俊新元
    Topological resonators based on hexagonal-star valley photonic crystals
    舊歲千重錦,新元百尺竿
    楊俊德:農(nóng)業(yè)豐收的“守護(hù)神”
    DYNAMICS ANALYSIS OF A DELAYED HIV INFECTION MODEL WITH CTL IMMUNE RESPONSE AND ANTIBODY IMMUNE RESPONSE?
    李泊城 隋邦平 楊俊顯 王綠竹 作品
    大眾文藝(2019年3期)2019-01-24 13:39:44
    《紅蜻蜓》教案
    《新元史·高防傳》勘補(bǔ)
    Eあects of Correlation between Network Structure and Dynamics of Oscillators on Synchronization Transition in a Kuramoto Model on Scale-Free Networks?
    王新元與“萬(wàn)家美”聯(lián)手推出“面子”針織時(shí)尚秀
    流行色(2005年5期)2005-04-29 18:26:58
    美女大奶头黄色视频| 亚洲精品国产成人久久av| 精品少妇内射三级| 如何舔出高潮| 男人添女人高潮全过程视频| 制服丝袜香蕉在线| 一级片'在线观看视频| 亚洲综合精品二区| 午夜影院在线不卡| 国产免费福利视频在线观看| 中文精品一卡2卡3卡4更新| 91精品国产国语对白视频| 在线观看www视频免费| 久久狼人影院| 三级国产精品欧美在线观看| 啦啦啦在线观看免费高清www| 91精品伊人久久大香线蕉| 国产精品伦人一区二区| av黄色大香蕉| 亚洲国产日韩一区二区| 在线看a的网站| 91aial.com中文字幕在线观看| 欧美少妇被猛烈插入视频| 国产精品久久久久成人av| av线在线观看网站| 性高湖久久久久久久久免费观看| 日韩制服骚丝袜av| 日韩免费高清中文字幕av| 老熟女久久久| av.在线天堂| 99热国产这里只有精品6| 嫩草影院新地址| 最近的中文字幕免费完整| 青春草视频在线免费观看| 亚洲电影在线观看av| 亚洲国产精品专区欧美| 中文字幕精品免费在线观看视频 | 中文乱码字字幕精品一区二区三区| 高清在线视频一区二区三区| 精品熟女少妇av免费看| 国产国拍精品亚洲av在线观看| 亚洲精品国产av成人精品| av黄色大香蕉| 成人毛片60女人毛片免费| 亚洲精品乱久久久久久| 乱系列少妇在线播放| 精品视频人人做人人爽| 欧美精品人与动牲交sv欧美| 搡老乐熟女国产| 99热全是精品| 99re6热这里在线精品视频| 国产精品成人在线| 亚洲欧美日韩卡通动漫| 又爽又黄a免费视频| 亚洲经典国产精华液单| 亚洲国产av新网站| 亚洲高清免费不卡视频| 国产色爽女视频免费观看| 国产av码专区亚洲av| 99热网站在线观看| 中文字幕精品免费在线观看视频 | 国产爽快片一区二区三区| 欧美激情极品国产一区二区三区 | 亚洲av国产av综合av卡| 日本av手机在线免费观看| 一级av片app| 亚洲欧美日韩东京热| 少妇丰满av| 卡戴珊不雅视频在线播放| 久久久久久久精品精品| 国产在线一区二区三区精| 久久久久久久久久久免费av| 国产一区二区在线观看av| 18禁在线无遮挡免费观看视频| 欧美成人午夜免费资源| 人体艺术视频欧美日本| 国产精品国产三级国产av玫瑰| 日韩免费高清中文字幕av| 久久久久久久亚洲中文字幕| 插逼视频在线观看| 九色成人免费人妻av| 国产精品一区www在线观看| 国产在线男女| 美女主播在线视频| 亚洲高清免费不卡视频| 欧美精品高潮呻吟av久久| 大陆偷拍与自拍| 中文欧美无线码| 亚洲欧洲日产国产| 一区二区三区免费毛片| 欧美3d第一页| 亚洲三级黄色毛片| 99re6热这里在线精品视频| 精品熟女少妇av免费看| 99热国产这里只有精品6| av一本久久久久| 中文字幕精品免费在线观看视频 | 国产成人精品婷婷| 中文字幕av电影在线播放| 简卡轻食公司| videos熟女内射| 尾随美女入室| 久久99一区二区三区| 国产精品秋霞免费鲁丝片| 青青草视频在线视频观看| 婷婷色综合www| 在线观看www视频免费| 亚洲三级黄色毛片| 十八禁网站网址无遮挡 | 人妻人人澡人人爽人人| 在线观看www视频免费| 久久精品熟女亚洲av麻豆精品| 少妇高潮的动态图| 亚洲精品视频女| 亚洲av成人精品一二三区| 成人漫画全彩无遮挡| 中文乱码字字幕精品一区二区三区| 中文字幕免费在线视频6| 亚洲精品一二三| 国产成人精品无人区| 国产精品秋霞免费鲁丝片| 啦啦啦中文免费视频观看日本| 九九爱精品视频在线观看| 人体艺术视频欧美日本| 国产视频首页在线观看| 亚洲av不卡在线观看| 久久女婷五月综合色啪小说| 激情五月婷婷亚洲| 久久精品国产a三级三级三级| 成年美女黄网站色视频大全免费 | 最近2019中文字幕mv第一页| 久久av网站| 精品国产乱码久久久久久小说| 国产免费一区二区三区四区乱码| 久久久精品免费免费高清| 免费人妻精品一区二区三区视频| 一本久久精品| kizo精华| 免费观看a级毛片全部| 国产精品久久久久久av不卡| 极品少妇高潮喷水抽搐| 国产极品天堂在线| 插阴视频在线观看视频| 欧美老熟妇乱子伦牲交| 99久久中文字幕三级久久日本| 亚洲国产色片| 大香蕉久久网| a级毛片免费高清观看在线播放| 另类精品久久| 高清黄色对白视频在线免费看 | 久久久国产精品麻豆| 亚洲自偷自拍三级| 欧美丝袜亚洲另类| 亚洲国产精品一区二区三区在线| 国产综合精华液| 黑人巨大精品欧美一区二区蜜桃 | 国产精品一区二区在线观看99| 各种免费的搞黄视频| 少妇 在线观看| 久久鲁丝午夜福利片| 中国三级夫妇交换| 国产一级毛片在线| 中文天堂在线官网| 久久午夜福利片| 久久狼人影院| 亚洲国产av新网站| 久久99热6这里只有精品| 岛国毛片在线播放| 欧美国产精品一级二级三级 | 99久久中文字幕三级久久日本| 国产美女午夜福利| av天堂中文字幕网| 免费大片18禁| 97在线人人人人妻| 一区二区三区精品91| 热re99久久国产66热| 黄色欧美视频在线观看| 成人国产麻豆网| 国产老妇伦熟女老妇高清| 亚洲国产精品999| 日本wwww免费看| 麻豆成人午夜福利视频| 一个人看视频在线观看www免费| www.色视频.com| 欧美xxxx性猛交bbbb| 免费大片黄手机在线观看| 免费不卡的大黄色大毛片视频在线观看| 少妇 在线观看| 久久久国产精品麻豆| 免费久久久久久久精品成人欧美视频 | 欧美xxⅹ黑人| 久久韩国三级中文字幕| 99久久精品一区二区三区| 欧美日韩精品成人综合77777| 免费观看的影片在线观看| 蜜桃在线观看..| 亚洲av成人精品一二三区| 欧美日韩av久久| 成年人免费黄色播放视频 | 亚洲精品乱码久久久v下载方式| 中文天堂在线官网| 性色avwww在线观看| 少妇人妻精品综合一区二区| 美女脱内裤让男人舔精品视频| 激情五月婷婷亚洲| 亚洲国产毛片av蜜桃av| 国产一区二区在线观看日韩| 国产日韩欧美视频二区| 国产熟女欧美一区二区| 嫩草影院新地址| 成人综合一区亚洲| 亚洲国产av新网站| 国产一级毛片在线| 亚洲精品日韩在线中文字幕| 一级毛片电影观看| 91精品国产国语对白视频| 久久国产乱子免费精品| 亚洲自偷自拍三级| 日韩免费高清中文字幕av| 亚洲精品456在线播放app| 两个人免费观看高清视频 | 国产精品一区二区在线不卡| 午夜激情福利司机影院| 久久婷婷青草| 欧美精品一区二区大全| 美女xxoo啪啪120秒动态图| 天堂俺去俺来也www色官网| 91精品一卡2卡3卡4卡| av播播在线观看一区| 欧美性感艳星| 免费在线观看成人毛片| 18+在线观看网站| 国产精品国产三级专区第一集| 成人18禁高潮啪啪吃奶动态图 | 2021少妇久久久久久久久久久| 成人综合一区亚洲| 日韩一本色道免费dvd| 一级二级三级毛片免费看| 亚洲精品国产av蜜桃| www.av在线官网国产| 一级毛片 在线播放| 国内精品宾馆在线| 久热这里只有精品99| 插逼视频在线观看| 日日撸夜夜添| 婷婷色综合www| 大又大粗又爽又黄少妇毛片口| 中文天堂在线官网| 亚洲欧洲精品一区二区精品久久久 | 国产成人精品福利久久| 99热国产这里只有精品6| 午夜老司机福利剧场| av在线老鸭窝| 欧美精品一区二区大全| 搡老乐熟女国产| 美女视频免费永久观看网站| 成人免费观看视频高清| av免费在线看不卡| 春色校园在线视频观看| 又爽又黄a免费视频| 两个人的视频大全免费| a级毛片免费高清观看在线播放| 三级国产精品片| 伊人久久精品亚洲午夜| 亚洲av成人精品一二三区| 最后的刺客免费高清国语| 国产色婷婷99| 婷婷色麻豆天堂久久| 人人澡人人妻人| 久久久久久久国产电影| 久久女婷五月综合色啪小说| 国产一区亚洲一区在线观看| 欧美精品亚洲一区二区| 久久亚洲国产成人精品v| 成人黄色视频免费在线看| 亚洲精品日本国产第一区| 三级经典国产精品| 精品一区在线观看国产| 国产欧美日韩精品一区二区| 亚洲自偷自拍三级| 丝袜喷水一区| 国产欧美日韩综合在线一区二区 | 寂寞人妻少妇视频99o| 日日摸夜夜添夜夜爱| 亚洲精华国产精华液的使用体验| 免费久久久久久久精品成人欧美视频 | xxx大片免费视频| 蜜桃久久精品国产亚洲av| 美女大奶头黄色视频| 一本久久精品| 99视频精品全部免费 在线| 色视频在线一区二区三区| 欧美变态另类bdsm刘玥| 国产成人精品婷婷| 黄色欧美视频在线观看| 日本wwww免费看| 特大巨黑吊av在线直播| 日本av免费视频播放| 狂野欧美激情性bbbbbb| 91久久精品电影网| 99久国产av精品国产电影| 亚洲成色77777| 久久97久久精品| 在线播放无遮挡| 一边亲一边摸免费视频| 久久久久久久亚洲中文字幕| 久久久久视频综合| 国产成人精品一,二区| 日韩不卡一区二区三区视频在线| 久久久久久人妻| 黄片无遮挡物在线观看| 另类精品久久| 亚洲精品自拍成人| 王馨瑶露胸无遮挡在线观看| 人妻 亚洲 视频| 深夜a级毛片| 毛片一级片免费看久久久久| 日韩电影二区| 中文欧美无线码| 国产免费一区二区三区四区乱码| 亚洲三级黄色毛片| 深夜a级毛片| 一本大道久久a久久精品| 国产伦精品一区二区三区四那| 一区在线观看完整版| 婷婷色综合www| 色5月婷婷丁香| 国产一区二区在线观看av| 简卡轻食公司| 黄色配什么色好看| 国产一区亚洲一区在线观看| 国产精品一二三区在线看| 国产精品一区二区三区四区免费观看| 久久久久视频综合| 超碰97精品在线观看| 国产av精品麻豆| 亚洲欧洲精品一区二区精品久久久 | av福利片在线| 亚洲国产精品国产精品| 少妇人妻久久综合中文| 亚洲av在线观看美女高潮| 视频区图区小说| 久久久久久久大尺度免费视频| 少妇人妻一区二区三区视频| 女的被弄到高潮叫床怎么办| 少妇丰满av| 中文字幕亚洲精品专区| 日韩精品有码人妻一区| 久久精品国产亚洲av天美| 国产一区二区在线观看日韩| 自线自在国产av| 国产极品粉嫩免费观看在线 | av在线老鸭窝| 国产亚洲91精品色在线| 精品一区二区三卡| 一级毛片电影观看| 熟女av电影| 搡老乐熟女国产| 亚洲精华国产精华液的使用体验| 国产日韩一区二区三区精品不卡 | 三级经典国产精品| 午夜老司机福利剧场| 欧美日韩综合久久久久久| 男男h啪啪无遮挡| 欧美激情极品国产一区二区三区 | 亚洲欧洲日产国产| 黑人巨大精品欧美一区二区蜜桃 | 国产亚洲精品久久久com| 一级爰片在线观看| 美女大奶头黄色视频| 午夜免费鲁丝| 国产深夜福利视频在线观看| 91午夜精品亚洲一区二区三区| 99久久综合免费| 国产精品国产av在线观看| 五月伊人婷婷丁香| av女优亚洲男人天堂| 五月开心婷婷网| 久久久精品94久久精品| 丁香六月天网| 日本av免费视频播放| 在线 av 中文字幕| 久久久国产精品麻豆| 成人18禁高潮啪啪吃奶动态图 | 国产乱来视频区| 久久人妻熟女aⅴ| 高清不卡的av网站| 国产午夜精品一二区理论片| 七月丁香在线播放| av在线老鸭窝| 色哟哟·www| 国产成人精品一,二区| 又粗又硬又长又爽又黄的视频| 成人综合一区亚洲| 国产亚洲最大av| 亚洲国产精品999| 午夜免费鲁丝| 人人妻人人澡人人爽人人夜夜| 六月丁香七月| 肉色欧美久久久久久久蜜桃| 国产片特级美女逼逼视频| 国产永久视频网站| 妹子高潮喷水视频| 又大又黄又爽视频免费| 丝袜喷水一区| 一级毛片电影观看| 少妇被粗大的猛进出69影院 | 熟妇人妻不卡中文字幕| freevideosex欧美| 观看美女的网站| 亚洲美女搞黄在线观看| 亚洲欧美精品自产自拍| 欧美精品国产亚洲| 嘟嘟电影网在线观看| 成人毛片60女人毛片免费| 国产免费一区二区三区四区乱码| 欧美人与善性xxx| 精品久久国产蜜桃| 国产色爽女视频免费观看| 免费播放大片免费观看视频在线观看| 三级国产精品片| 91久久精品电影网| 亚洲精品国产av成人精品| 国产精品.久久久| 18禁在线播放成人免费| 在线观看免费视频网站a站| 亚洲一级一片aⅴ在线观看| 中文字幕免费在线视频6| 日本av免费视频播放| 久久久久国产精品人妻一区二区| av播播在线观看一区| 三上悠亚av全集在线观看 | 青春草视频在线免费观看| 成人特级av手机在线观看| 国产成人一区二区在线| 亚洲成人手机| 免费观看av网站的网址| 亚洲精品第二区| 国产 一区精品| 成年av动漫网址| 国产精品国产三级国产av玫瑰| 免费人成在线观看视频色| 91久久精品国产一区二区三区| 午夜福利,免费看| 少妇猛男粗大的猛烈进出视频| 最近中文字幕2019免费版| 国产老妇伦熟女老妇高清| 亚洲精品日韩在线中文字幕| 纯流量卡能插随身wifi吗| 国产成人91sexporn| 免费少妇av软件| 狂野欧美激情性xxxx在线观看| 国产精品99久久久久久久久| 大片免费播放器 马上看| 大话2 男鬼变身卡| 韩国高清视频一区二区三区| 九九久久精品国产亚洲av麻豆| av在线老鸭窝| 在线观看国产h片| 国产成人freesex在线| 成人无遮挡网站| 成人毛片60女人毛片免费| 99热这里只有是精品在线观看| 精品久久久久久久久亚洲| 新久久久久国产一级毛片| 亚洲内射少妇av| 国产伦理片在线播放av一区| 亚洲婷婷狠狠爱综合网| 欧美精品人与动牲交sv欧美| 欧美3d第一页| 我的女老师完整版在线观看| 久久午夜综合久久蜜桃| 免费大片黄手机在线观看| 婷婷色综合www| 亚洲精品自拍成人| 久久久久久人妻| 国产男人的电影天堂91| 熟女av电影| 国产精品久久久久久av不卡| 人妻夜夜爽99麻豆av| 人妻系列 视频| 久久精品国产自在天天线| 国产一区有黄有色的免费视频| 亚洲欧洲精品一区二区精品久久久 | 午夜视频国产福利| 啦啦啦视频在线资源免费观看| 精品熟女少妇av免费看| 久久99热6这里只有精品| 草草在线视频免费看| 国产一区有黄有色的免费视频| 狂野欧美激情性xxxx在线观看| 伦理电影大哥的女人| 亚洲av免费高清在线观看| 亚洲精品久久久久久婷婷小说| 国产欧美日韩一区二区三区在线 | 成年人午夜在线观看视频| 亚洲美女黄色视频免费看| 久久精品国产鲁丝片午夜精品| 日本猛色少妇xxxxx猛交久久| 不卡视频在线观看欧美| 婷婷色综合www| 蜜臀久久99精品久久宅男| 欧美成人午夜免费资源| 国产亚洲午夜精品一区二区久久| 免费大片黄手机在线观看| 老司机亚洲免费影院| 免费人妻精品一区二区三区视频| av黄色大香蕉| 精品亚洲成国产av| 丰满迷人的少妇在线观看| 国产精品一区二区在线观看99| 乱系列少妇在线播放| av福利片在线| 久久婷婷青草| 91精品国产国语对白视频| 永久免费av网站大全| 久热久热在线精品观看| 大码成人一级视频| 国产探花极品一区二区| 我要看黄色一级片免费的| 久久久久久久久久久久大奶| 欧美日韩亚洲高清精品| 五月玫瑰六月丁香| 久久精品国产亚洲av涩爱| 久久国内精品自在自线图片| 免费人妻精品一区二区三区视频| 老女人水多毛片| av天堂久久9| 欧美最新免费一区二区三区| 最近的中文字幕免费完整| 亚洲美女视频黄频| 国产午夜精品一二区理论片| av国产久精品久网站免费入址| 91久久精品电影网| 女的被弄到高潮叫床怎么办| 免费久久久久久久精品成人欧美视频 | 啦啦啦中文免费视频观看日本| 日本黄大片高清| 国产一级毛片在线| 久久久国产一区二区| 亚洲国产精品999| 我要看黄色一级片免费的| 日本av免费视频播放| 国产日韩欧美在线精品| 免费观看性生交大片5| 国产成人精品无人区| 三上悠亚av全集在线观看 | www.av在线官网国产| 欧美日韩av久久| 搡女人真爽免费视频火全软件| 欧美变态另类bdsm刘玥| 丰满少妇做爰视频| 在线观看免费日韩欧美大片 | 日本黄大片高清| 特大巨黑吊av在线直播| 夫妻午夜视频| av福利片在线观看| 日韩一区二区三区影片| 97超视频在线观看视频| 精品人妻熟女毛片av久久网站| 中文乱码字字幕精品一区二区三区| 久久精品国产自在天天线| 两个人免费观看高清视频 | 男女边摸边吃奶| av黄色大香蕉| 视频中文字幕在线观看| 亚洲精品aⅴ在线观看| 中文字幕免费在线视频6| 黑人猛操日本美女一级片| 大陆偷拍与自拍| 欧美3d第一页| 国产男女内射视频| 一个人看视频在线观看www免费| av国产久精品久网站免费入址| 三级国产精品欧美在线观看| 国产精品国产三级国产专区5o| 亚洲精华国产精华液的使用体验| 亚洲精品色激情综合| 免费人成在线观看视频色| 日本av手机在线免费观看| 熟女电影av网| 青春草国产在线视频| www.色视频.com| 中文字幕人妻熟人妻熟丝袜美| 日韩av免费高清视频| 国产av一区二区精品久久| 日本av手机在线免费观看| h日本视频在线播放| 男人和女人高潮做爰伦理| 亚洲精品日韩在线中文字幕| 免费黄网站久久成人精品| 免费不卡的大黄色大毛片视频在线观看| av专区在线播放| 高清不卡的av网站| 亚洲av日韩在线播放| 三级国产精品片| 色婷婷av一区二区三区视频| 午夜视频国产福利| 毛片一级片免费看久久久久| 在线看a的网站| 欧美 日韩 精品 国产| 国产成人精品婷婷| 日本黄色日本黄色录像| 热99国产精品久久久久久7| 国产 一区精品| 丝袜喷水一区| 少妇裸体淫交视频免费看高清| 欧美日韩一区二区视频在线观看视频在线| 97精品久久久久久久久久精品| 深夜a级毛片| av黄色大香蕉| 国产亚洲最大av| 欧美激情极品国产一区二区三区 | 人人妻人人澡人人爽人人夜夜| av女优亚洲男人天堂|