• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Disorder effects in NbTiN superconducting resonators

    2024-02-29 09:19:30WeiTaoLyu呂偉濤QiangZhi支強(qiáng)JieHu胡潔JingLi李婧andShengCaiShi史生才
    Chinese Physics B 2024年2期
    關(guān)鍵詞:李婧

    Wei-Tao Lyu(呂偉濤), Qiang Zhi(支強(qiáng)), Jie Hu(胡潔),Jing Li(李婧), and Sheng-Cai Shi(史生才),?

    1Purple Mountain Observatory,Chinese Academy of Sciences,Nanjing 210034,China

    2GEPI,Observatoire de Paris,PSL Universite,CNRS,Paris 75014,France

    Keywords: effects of disorder, NbTiN,superconducting film, Usadel equation, complex conductivity, superconducting resonator

    1.Introduction

    Low-temperature superconducting materials such as NbTiN,as well as its parent compounds NbN and TiN,have attracted significant attention due to their potential applications in low-temperature detectors and circuit quantum electrodynamics.NbTiN and NbN possess a high?andTc, making them ideal for implementation in superconductor–insulator–superconductor (SIS) mixers and hot-electron bolometer(HEB) mixers.[1–3]NbTiN and TiN are also promising candidates for microwave kinetic inductance detectors (MKIDs)because of an adjustableTcand large kinetic inductance fractions.[4,5]Moreover, NbTiN and NbN are well suited for applications in circuit quantum electrodynamics due to a highTcand?, particularly in environments with strong magnetic fields.[6]These superconducting materials, however, are not immune to disorder effects on their basic parameters, such as the?,Tc, and QDOS distribution.[7–10]One kind of disorder effect, named magnetic impurities, in materials is reported to lead to the transformation of superconductors into insulators,[11]the appearance of pseudo-energy gaps, and the enhancement of pair-breaking effects in materials.[12,13]The generalized Usadel equation, which takes account of elastic scattering,non-elastic scattering,and electro–phonon coupling, is often introduced to solve diffusion, interface, and pair-breaking effects.[14]Here,we introduce the Usadel equation to simulate and describe the disorder effects in superconducting materials.

    In this paper,we firstly introduce the Usadel equation and the related complex conductivity formulas.Then, we present numerical simulations by taking into consideration the Usadel equation to investigate the disorder effects on the?,Tc,QDOS,and complex conductivity of NbTiN superconducting film.Finally, we describe the experimental methodology by characterizing the disorder effects in NbTiN superconducting resonators.

    2.Complex conductivity based on Usadel equation

    The Usadel equation—a simplified version of the Eilenberger equation[15]— offers a more general and non-linear approach to describe superconductivity under the diffusion limit.[16]The superconducting state is described by the pairing angleθ(x,E), which is a complex function depending on space(x)and excited energy(E),in the Usadel equation.The variableθranges in magnitude from 0 toπ/2, whileθ=0 corresponds to the normal state.The QDOS of superconducting materials isNqp=N0Re(cosθ),whereN0is the QDOS in the normal state at the Fermi energy.The Usadel equation in one dimension and equilibrium can be expressed as[14]

    whereVeffis the BCS-like interaction potential,ˉhωDis the Debye energy,DSis the diffusivity constant,τsfis the spin-flip time,?is the usual superconducting phase,Axis the vector potential, and?is the energy gap.The first term in Eq.(1)describes the diffusion in superconductors, which is often included in interface problems.[17]The second and fourth terms describe respective energies of excitation and pairing interactions, the same as the BCS description.The third term in Eq.(1) describes the pair-breaking effects, which can lead to the smearing of coherence peaks in the QDOS and the reduction of the?.As we focus on the study of the pair-breaking effects of superconducting materials,i.e.,no diffusion and interface issues, Eq.(1) can be simplified withDS=0 as follows:

    whereαis the pair-breaking parameter.

    The complex conductivityσ=σ1+iσ2is a crucial parameter for calculating the surface impedance of a superconducting film and characterizing electromagnetic responses of superconducting detectors.The classical superconductors’complex conductivity was originally derived by Mattis and Bardeen,[18]and later extended by Nam to the Green’s function form of the pairing angle.[19]The extended version is written as

    whereE′=E+ˉhω,f(E) is the Fermi distribution function,g1(E,E′) = Re[cosθ(E)]·Re[cosθ(E′)]+Re[i sinθ(E)]×Re[i sinθ(E′)],andg2(E,E′)=Im[cosθ(E)]·Re[cosθ(E′)]+Im[i sinθ(E)]·Re[i sinθ(E′)].In the absence of pair-breaking effects(α=0),Eqs.(4)and(5)can be simplified to the classical complex conductivity formulas.

    3.Numerical simulations for disorder effects

    To understand the disorder effects on the characteristics of superconducting films, it is essential to simulate their effects on key parameters, such as the?,Tc, QDOS, and complex conductivity.Disordered superconductors exhibit a phenomenon known as the smearing of the coherence peak in the QDOS distribution, described by the function of cosθ.The pair-breaking parameterαis introduced in the Usadel equation to account for the disorder effects in superconducting films.The largerαis, the lower and broader the coherence peak (E=?) in the QDOS distribution becomes.To obtain the QDOS distribution of disordered superconducting materials,cosθneeds to be solved from Eq.(3),which is essentially a quartic function about cosθ.By solving equations with the numerical solutions and considering the physical meaning of cosθ,we can calculate the complex functions cosθand sinθaboutEat a certainα.

    Figure 1(a)illustrates the simulated results of QDOS distribution with respect toEfor different values ofα.Smearing of coherence peaks in the QDOS can be clearly seen, just as observed by reported results.[11]Figure 1(b)presents the distributions of cosθand sinθaboutEwhenα/?=0.05.Our numerical simulation results,obtained by solving Eq.(3),further confirm that the pair-breaking effects in superconducting materials do result in a minimum excitation energy (Eg) that is smaller than, rather than equal to, the?.According to the Abrikosov and Gor’kov model, the relationship between the pair-breaking parameterαand the minimum excitation energyEgisEg/?=(1-(α/?)2/3)3/2.[20]

    Fig.1.(a) Simulated results of the distribution of the QDOS distribution with respect to E for different values of α.(b)An example of the real and imaginary parts of cosθ and sinθ distributions about E when α/?=0.05.

    As mentioned before, the?of superconducting materials also needs to be reevaluated in numerical simulations due to the pair-breaking effects.According to Eq.(2),?is related to the complex function sinθ.To solve?, we adopted iterative approaches in simulations.Using the Matsubara representation,we rewrite the formulas of?andαin disordered superconducting materials as follows:[21,22]

    whereωn=(2n+1)πkBTare the Matsubara frequencies withn={0,1,2,...}.To solve?, we begin by guessing an initial value for?(here,we choose 1.76·kBTc).Next,we solve sinθ(ωn) under all Matsubara frequencies using Eq.(6).We then substitute the solved sinθ(ωn) into Eq.(7) to obtain an updated value of?until its convergence is achieved.the superconducting materials gradually decreases.Whenαexceeds 0.4?P(0), the?of superconducting materials decreases rapidly and drops to zero at 0.5?P(0),as predicted by Skalski.[11]

    The simulated results indicate that pair-breaking effects have a negative correlation with theTcof the superconducting materials.The results are in accordance with the pair-breaking theory introduced by Abrikosov and Gor’kov for magnetic impurities in a superconductor.[24,25]According to the theory,theTcof the superconducting materials is written as

    whereψis the digamma function.We solveTcvia numerical iterations.The simulated results are shown in Fig.3.

    Fig.2.(a)The simulated normalized energy gap ?/?P(0)with respect to the normalized temperature T/TPc under different α.(b)Simulated results of the normalized energy gap ?/?P(0)with respect to α when T =TPc /14.

    Fig.3.Simulated results of the normalized temperature T/TPc with respect to α.

    Figure 2(a)shows the dependence of the normalized energy gap?/?P(0)upon the normalized temperatureT/TPcunder differentα.Here,?PandTPcdenote the?andTcof superconducting materials in the absence of the pair-breaking effects(i.e., a pure system).In this figure, the dependence of?andTbased on the BCS theory is also plotted for comparison.It can be seen clearly from Fig.2(a)that asαincreases,theTcof superconducting materials decreases at a much faster rate than?at 0 K(?(0)).Furthermore,the ratio?(0)/(kBTPc)is no longer a constant withαincreasing,as confirmed by reported scanning tunneling spectroscopy experiments.[23]Figure 2(b) shows the?of the superconducting materials as a function ofαwhenT=TPc/14.Asαincreases, the?of

    Fig.4.Simulated results of σ1 and σ2 with respect to the normalized temperature T/TPc for different α, assuming f = 5 GHz and TPc =14.1 K.For reference, the dotted black line represents the simulated results using the BCS theory.

    Once theTc,?,and complex functions cosθand sinθare determined via numerical simulations,we can utilize Eqs.(4)and(5)to calculate the complex conductivity of the superconducting materials.This, in turn, enables us to derive various other electrical properties.Figure 4 presents the simulated complex conductivity of the superconducting materials at a frequency of 5 GHz and theTcin a pure state of 14.1 K under differentα.The dotted line represents the simulated results based on the BCS theory for comparison.From Fig.4(a),we can see that as the temperature approaches theTc,the real part of the complex conductivity approaches one.The degradation of superconductivity with the increasing pair-breaking level is also expected,as shown in Fig.4(b).

    4.Experimental characterization on NbTiN resonators

    To validate our numerical simulations of superconducting materials in accounting for disorder effects, we chose NbTiN superconducting films as our subjects.To prepare our samples,we deposited a 130 nm thick NbTiN film on a 330 μm thick silicon wafer using reactive DC magnetron sputtering in a mixture of Ar and N2.Using e-beam lithography and reactive ion etching techniques,we fabricated a set of 10 planar CPW resonators that were capacitively coupled to a straight feed line on the NbTiN film.The dimensions of the CPW resonators were carefully designed,with the center conductor and gap set at 3μm and 2μm,respectively.Similarly,the center conductor and gap of the CPW feed line were designed at 10μm and 6μm,respectively.The normal state sheet resistanceRs,measured at 15 K andTc, is measured at 53.2μ?·cm and 14.1 K with our fridge,respectively.

    The experimental sample,after cutting and cleaning,was mounted within a sealed gold-plated brass block connected to printed circuit boards(PCBs)with transition structures using aluminum wire bonding.The PCBs were then soldered to coaxial connectors for cable readouts.Beryllium copper pressure pads were employed to ensure an optimal thermal contact.The sample block was subsequently connected to an external vector network analyzer(VNA)through coaxial cables.Figure 5(a)provides a visual representation of the completed structures.Figure 5(b)depicts the installation of the sample on the 300 mK cold head of our adsorption refrigerator, as well as the setup and a diagram used during testing.

    Fig.5.(a)A photograph depicting the connection and assembly of the sample chip within the block.(b)Visual representation of the sample block’s installation within the absorption refrigerator, together with a schematic diagram outlining the testing methodology.(c)Typical characteristics of one of the resonators,the absorption dip for different temperatures.(d)The relationship between the normalized resonant frequency of the resonator and the temperature.

    The transmission coefficientS21of the feed line of the NbTiN sample at different temperatures was obtained using a heating device.Figure 5(c) illustrates the typical characteristics of one of the resonators, the absorption dip for different ambient temperatures.The temperature-dependent resonance characteristic is essentially induced by changes in complex conductivity,which can be expressed asδ f0/f0=αkiδσ2/(2σ2),whereαkiis the kinetic inductance fraction.[26]Consequently, the numerical simulations and the parameters of the superconducting film enable the prediction of the temperature-dependent variation of the resonant frequency of a superconducting resonator made of disordered materials.Figure 5(d) illustrates our experimental and numerical simulated results for the temperature-dependent relations of resonance frequencies.The experimental results are shown in blue stars,while the numerical simulated results are shown in pink dotted lines.In contrast, the black dotted line indicates the numerical simulated results using BCS theory.It can be seen that for our NbTiN sample with disorder effects,our numerical simulations that take the Usadel equation into consideration are more consistent with the experimental results.Based on our simulations and fitting results, the pair-breaking parameterαof our NbTiN sample is determined at 0.02831 meV,also corresponding to 0.013·?P(0)in our film,and the kinetic inductance fraction is 0.22.The inside figure in Fig.5(d)gives the QDOS distribution of our NbTiN sample.Note that the measuredTcof 14.1 K reflects theTcunder disorder effects.Thus,by incorporating the value ofαobtained for the NbTiN sample and by examining the relationship between theTcandα, the critical temperature in a pure stateTPcof our NbTiN sample is characterized at 14.359 K.

    5.Conclusion

    We have presented numerical simulations and discussions of the disorder effects on the basic parameters of the superconducting thin film, such as QDOS, the?,Tc, and complex conductivity.To validate our theoretical study and numerical simulations,we have fabricated and characterized a superconducting planar resonator composed of the NbTiN film.The disorder-induced pair-breaking parameterα=0.02831 meV and the critical temperature in the pure stateTPc=14.359 K of our NbTiN sample are successfully characterized via numerical simulations and experimental results.This study should be applicable for the characterization and optimization of superconducting resonators in the presence of disorder effects.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.11925304 and 12020101002)and the Chinese Academy of Sciences Program (Grant No.GJJSTD20210002).

    猜你喜歡
    李婧
    刺絡(luò)拔罐配合中藥面膜治療痤瘡療效觀察
    基于有限元的Q345E鋼補(bǔ)焊焊接殘余應(yīng)力的數(shù)值模擬
    藝術(shù)照走光,攝影館須擔(dān)責(zé)
    法院:攝影館侵害了客戶的人格權(quán)
    婦女生活(2021年9期)2021-09-17 21:21:13
    空間望遠(yuǎn)掃描控制系統(tǒng)的電流環(huán)設(shè)計(jì)與仿真
    Transport properties of topological nodal-line semimetal candidate CaAs3under hydrostatic pressure?
    李婧 想要的恰好都在身邊
    媽媽寶寶(2017年2期)2017-02-21 01:21:08
    李婧康淑琴?gòu)垍栐O(shè)計(jì)作品
    李婧:花樣美人魚
    體制外的冠軍
    民生周刊(2012年24期)2012-06-30 05:40:56
    午夜视频精品福利| 亚洲 欧美 日韩 在线 免费| 精品国产超薄肉色丝袜足j| 色哟哟哟哟哟哟| 欧美日本亚洲视频在线播放| 午夜a级毛片| 国产一区二区激情短视频| 亚洲七黄色美女视频| 1024视频免费在线观看| 真人一进一出gif抽搐免费| 亚洲五月婷婷丁香| 成人亚洲精品一区在线观看| 欧美老熟妇乱子伦牲交| 色综合婷婷激情| АⅤ资源中文在线天堂| 午夜福利高清视频| 啦啦啦观看免费观看视频高清 | 亚洲精品一卡2卡三卡4卡5卡| 男人操女人黄网站| 91国产中文字幕| 国产精品久久久人人做人人爽| av中文乱码字幕在线| 亚洲一区中文字幕在线| 狂野欧美激情性xxxx| 亚洲人成电影免费在线| 久久亚洲真实| 日本免费a在线| 欧美日本中文国产一区发布| 免费高清视频大片| 亚洲av成人av| 久久久国产欧美日韩av| 91精品国产国语对白视频| 国产欧美日韩一区二区精品| 极品教师在线免费播放| 在线永久观看黄色视频| 精品人妻1区二区| 久久精品91蜜桃| 精品福利观看| 国产精品亚洲美女久久久| 看免费av毛片| √禁漫天堂资源中文www| 最近最新免费中文字幕在线| av视频在线观看入口| 十八禁人妻一区二区| 首页视频小说图片口味搜索| 免费观看精品视频网站| 成年版毛片免费区| 免费看a级黄色片| 在线免费观看的www视频| 性色av乱码一区二区三区2| 久久久国产成人免费| 怎么达到女性高潮| 免费在线观看影片大全网站| 国产一区二区三区综合在线观看| 色精品久久人妻99蜜桃| 老司机午夜福利在线观看视频| 亚洲色图综合在线观看| 成年版毛片免费区| 美女大奶头视频| 日本a在线网址| 一区在线观看完整版| 多毛熟女@视频| 又大又爽又粗| 免费不卡黄色视频| 啦啦啦韩国在线观看视频| 免费无遮挡裸体视频| 日韩欧美国产一区二区入口| 久久人人97超碰香蕉20202| 成人三级黄色视频| 嫩草影院精品99| 日韩av在线大香蕉| 亚洲一区高清亚洲精品| 真人做人爱边吃奶动态| 一边摸一边做爽爽视频免费| 中文字幕人成人乱码亚洲影| 午夜亚洲福利在线播放| 在线观看免费午夜福利视频| 中文字幕最新亚洲高清| 91九色精品人成在线观看| 老熟妇仑乱视频hdxx| av视频免费观看在线观看| 性色av乱码一区二区三区2| 久久久久国产一级毛片高清牌| avwww免费| 日本五十路高清| 成在线人永久免费视频| 国产精品亚洲av一区麻豆| 无限看片的www在线观看| 色在线成人网| 免费看美女性在线毛片视频| 亚洲成国产人片在线观看| 国产免费男女视频| 99re在线观看精品视频| 电影成人av| 级片在线观看| 欧美国产精品va在线观看不卡| 999精品在线视频| 午夜福利,免费看| 90打野战视频偷拍视频| 桃色一区二区三区在线观看| 亚洲自偷自拍图片 自拍| 免费少妇av软件| 母亲3免费完整高清在线观看| 欧美中文综合在线视频| 亚洲中文字幕日韩| 十八禁网站免费在线| 在线观看免费午夜福利视频| 香蕉久久夜色| 亚洲国产看品久久| 99riav亚洲国产免费| 久久人妻av系列| 国产午夜福利久久久久久| 欧美激情极品国产一区二区三区| 97超级碰碰碰精品色视频在线观看| 91老司机精品| 又紧又爽又黄一区二区| 天堂动漫精品| 非洲黑人性xxxx精品又粗又长| av电影中文网址| 精品国产一区二区三区四区第35| 亚洲黑人精品在线| 国产日韩一区二区三区精品不卡| 身体一侧抽搐| 黑丝袜美女国产一区| 少妇的丰满在线观看| 精品福利观看| 亚洲熟妇中文字幕五十中出| 亚洲欧美激情综合另类| 久久精品国产亚洲av香蕉五月| 亚洲无线在线观看| 很黄的视频免费| 国产免费男女视频| 国产91精品成人一区二区三区| 99在线视频只有这里精品首页| 午夜日韩欧美国产| 美女午夜性视频免费| 日本 欧美在线| 人人澡人人妻人| 亚洲全国av大片| 俄罗斯特黄特色一大片| 国产成人啪精品午夜网站| 亚洲成人免费电影在线观看| videosex国产| 中文字幕色久视频| 又紧又爽又黄一区二区| 女性生殖器流出的白浆| 少妇的丰满在线观看| 侵犯人妻中文字幕一二三四区| 一二三四社区在线视频社区8| 国产麻豆69| 亚洲一区中文字幕在线| 国产精品一区二区三区四区久久 | 亚洲aⅴ乱码一区二区在线播放 | 亚洲国产中文字幕在线视频| 亚洲精品中文字幕在线视频| 黑丝袜美女国产一区| 亚洲男人的天堂狠狠| 成人特级黄色片久久久久久久| 女生性感内裤真人,穿戴方法视频| 日韩有码中文字幕| 欧美绝顶高潮抽搐喷水| 亚洲第一青青草原| 久99久视频精品免费| 国产成+人综合+亚洲专区| 日韩 欧美 亚洲 中文字幕| 最近最新中文字幕大全免费视频| 亚洲精品国产色婷婷电影| 午夜精品国产一区二区电影| 最近最新中文字幕大全免费视频| 夜夜躁狠狠躁天天躁| 国产野战对白在线观看| 一本久久中文字幕| 香蕉久久夜色| 日韩欧美三级三区| 老司机午夜十八禁免费视频| 国产精品98久久久久久宅男小说| 日韩三级视频一区二区三区| 精品久久蜜臀av无| 精品国产超薄肉色丝袜足j| 黑丝袜美女国产一区| 日本在线视频免费播放| 欧美+亚洲+日韩+国产| 大型av网站在线播放| 50天的宝宝边吃奶边哭怎么回事| 久久人人精品亚洲av| 1024视频免费在线观看| netflix在线观看网站| 久久精品国产亚洲av香蕉五月| 在线观看免费午夜福利视频| 精品福利观看| 久久久久久大精品| 欧美国产日韩亚洲一区| 好男人电影高清在线观看| 欧美在线一区亚洲| 可以在线观看毛片的网站| 成人三级黄色视频| 一区在线观看完整版| 天天一区二区日本电影三级 | 黑人操中国人逼视频| 久久亚洲精品不卡| 午夜精品久久久久久毛片777| 国产成+人综合+亚洲专区| 18禁国产床啪视频网站| 欧美色欧美亚洲另类二区 | 欧美日韩福利视频一区二区| 又黄又爽又免费观看的视频| 女性生殖器流出的白浆| 正在播放国产对白刺激| 亚洲少妇的诱惑av| a在线观看视频网站| 亚洲中文日韩欧美视频| 久久精品国产清高在天天线| 国产单亲对白刺激| 国产精品综合久久久久久久免费 | 色综合婷婷激情| 久久精品国产亚洲av香蕉五月| 亚洲色图 男人天堂 中文字幕| 中文字幕精品免费在线观看视频| 岛国视频午夜一区免费看| 国产精品亚洲av一区麻豆| 精品国产亚洲在线| 亚洲精品中文字幕一二三四区| 人妻丰满熟妇av一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产成人免费| 手机成人av网站| 亚洲精品粉嫩美女一区| 伦理电影免费视频| 久久久国产欧美日韩av| 中文字幕人妻熟女乱码| 欧美精品亚洲一区二区| 国产一区二区三区在线臀色熟女| 国产aⅴ精品一区二区三区波| 最好的美女福利视频网| 如日韩欧美国产精品一区二区三区| 超碰成人久久| videosex国产| 精品第一国产精品| 国产xxxxx性猛交| 午夜精品久久久久久毛片777| 又黄又爽又免费观看的视频| 精品久久久久久久毛片微露脸| 午夜久久久久精精品| 国产男靠女视频免费网站| 成人手机av| 757午夜福利合集在线观看| 国产三级黄色录像| 天堂影院成人在线观看| 亚洲国产精品999在线| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看66精品国产| 成在线人永久免费视频| 99精品在免费线老司机午夜| 两个人免费观看高清视频| 热99re8久久精品国产| 九色亚洲精品在线播放| 欧美日韩亚洲综合一区二区三区_| 精品第一国产精品| 久久精品aⅴ一区二区三区四区| 操出白浆在线播放| 亚洲人成网站在线播放欧美日韩| 满18在线观看网站| 精品高清国产在线一区| 国产欧美日韩精品亚洲av| 最新在线观看一区二区三区| 美国免费a级毛片| 亚洲欧美精品综合一区二区三区| 精品一品国产午夜福利视频| 一个人观看的视频www高清免费观看 | 欧美另类亚洲清纯唯美| 熟妇人妻久久中文字幕3abv| 男女午夜视频在线观看| 国产一区二区三区在线臀色熟女| 成人国语在线视频| 久久精品亚洲精品国产色婷小说| 天天躁夜夜躁狠狠躁躁| 亚洲性夜色夜夜综合| 别揉我奶头~嗯~啊~动态视频| 国内精品久久久久精免费| 黑人巨大精品欧美一区二区mp4| 国产私拍福利视频在线观看| 精品国产乱码久久久久久男人| 亚洲成a人片在线一区二区| 美国免费a级毛片| 精品一区二区三区视频在线观看免费| 久久精品国产清高在天天线| 免费看十八禁软件| 人人澡人人妻人| 国产一级毛片七仙女欲春2 | 久久精品aⅴ一区二区三区四区| 免费看十八禁软件| 午夜久久久久精精品| 国产99白浆流出| 在线免费观看的www视频| 国产熟女午夜一区二区三区| 国产精品一区二区免费欧美| 日韩精品青青久久久久久| 亚洲狠狠婷婷综合久久图片| 91麻豆av在线| 怎么达到女性高潮| 午夜福利,免费看| 亚洲国产精品久久男人天堂| 美女午夜性视频免费| aaaaa片日本免费| 黄色 视频免费看| 欧美成人一区二区免费高清观看 | 国产精品久久久久久人妻精品电影| 亚洲中文日韩欧美视频| 亚洲精品粉嫩美女一区| 50天的宝宝边吃奶边哭怎么回事| 99热只有精品国产| 亚洲第一电影网av| 国产精品香港三级国产av潘金莲| 精品欧美一区二区三区在线| 国产三级在线视频| 很黄的视频免费| 悠悠久久av| 18禁裸乳无遮挡免费网站照片 | 免费无遮挡裸体视频| 久久人妻熟女aⅴ| 精品久久久久久久人妻蜜臀av | √禁漫天堂资源中文www| 丁香欧美五月| 国产97色在线日韩免费| 国产野战对白在线观看| 久久久久久亚洲精品国产蜜桃av| 久久久久亚洲av毛片大全| 操出白浆在线播放| 男人舔女人的私密视频| 中文字幕人妻熟女乱码| 成人av一区二区三区在线看| 香蕉国产在线看| 少妇 在线观看| 夜夜爽天天搞| 老熟妇乱子伦视频在线观看| 两个人视频免费观看高清| 亚洲专区字幕在线| 久久人妻福利社区极品人妻图片| 91在线观看av| 叶爱在线成人免费视频播放| 国产成+人综合+亚洲专区| 久久久精品欧美日韩精品| 国产精品电影一区二区三区| 久久香蕉国产精品| 男男h啪啪无遮挡| 老汉色av国产亚洲站长工具| 欧美一级a爱片免费观看看 | 国产不卡一卡二| 中出人妻视频一区二区| 亚洲国产精品999在线| 十分钟在线观看高清视频www| 国产av在哪里看| 非洲黑人性xxxx精品又粗又长| 纯流量卡能插随身wifi吗| 99在线视频只有这里精品首页| 亚洲一区二区三区色噜噜| 黄片大片在线免费观看| 精品国产超薄肉色丝袜足j| 国产成人影院久久av| 黄色成人免费大全| 日本 欧美在线| 国产精品国产高清国产av| 18禁美女被吸乳视频| 一本综合久久免费| 国产伦人伦偷精品视频| 欧美激情久久久久久爽电影 | 亚洲国产高清在线一区二区三 | 极品人妻少妇av视频| 亚洲av成人不卡在线观看播放网| 午夜老司机福利片| 国产野战对白在线观看| 成年女人毛片免费观看观看9| 欧美日本亚洲视频在线播放| 欧美一级毛片孕妇| 99re在线观看精品视频| 丰满人妻熟妇乱又伦精品不卡| 国产蜜桃级精品一区二区三区| 免费久久久久久久精品成人欧美视频| 精品人妻在线不人妻| 欧美中文综合在线视频| 国产一卡二卡三卡精品| 精品一区二区三区av网在线观看| 亚洲精品美女久久av网站| 日日夜夜操网爽| 亚洲精品美女久久av网站| 日日夜夜操网爽| 美女高潮到喷水免费观看| 91精品国产国语对白视频| 亚洲精品国产精品久久久不卡| www.熟女人妻精品国产| 亚洲精品一区av在线观看| av福利片在线| 亚洲熟女毛片儿| 69av精品久久久久久| 91九色精品人成在线观看| 女生性感内裤真人,穿戴方法视频| 久久热在线av| av在线播放免费不卡| 最新在线观看一区二区三区| 黑人巨大精品欧美一区二区蜜桃| av福利片在线| 欧美亚洲日本最大视频资源| 日韩大码丰满熟妇| 亚洲国产精品合色在线| 欧美日韩中文字幕国产精品一区二区三区 | 精品午夜福利视频在线观看一区| 悠悠久久av| 国产色视频综合| 一级黄色大片毛片| 国产高清有码在线观看视频 | 国产精品日韩av在线免费观看 | 啦啦啦 在线观看视频| av天堂久久9| 亚洲少妇的诱惑av| 精品熟女少妇八av免费久了| 国产精品亚洲一级av第二区| 免费观看人在逋| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美一区视频在线观看| 久久香蕉激情| 亚洲五月婷婷丁香| 欧美绝顶高潮抽搐喷水| 国产一区二区激情短视频| 丰满人妻熟妇乱又伦精品不卡| 欧美+亚洲+日韩+国产| 大香蕉久久成人网| 亚洲自偷自拍图片 自拍| 19禁男女啪啪无遮挡网站| 熟女少妇亚洲综合色aaa.| 欧美+亚洲+日韩+国产| 99riav亚洲国产免费| 日韩国内少妇激情av| 国产精品日韩av在线免费观看 | 精品乱码久久久久久99久播| 亚洲第一欧美日韩一区二区三区| 精品电影一区二区在线| 桃红色精品国产亚洲av| 久久久久国内视频| 亚洲午夜理论影院| 亚洲精品美女久久久久99蜜臀| 国产激情久久老熟女| 精品人妻1区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品亚洲一级av第二区| 满18在线观看网站| 国产熟女xx| 国产一区二区激情短视频| 最新美女视频免费是黄的| av欧美777| 国产97色在线日韩免费| 一a级毛片在线观看| av天堂久久9| 欧美激情极品国产一区二区三区| 国产成+人综合+亚洲专区| 久久亚洲真实| 悠悠久久av| 夜夜夜夜夜久久久久| 国产不卡一卡二| 久久人妻av系列| 色综合站精品国产| 又黄又爽又免费观看的视频| a在线观看视频网站| 纯流量卡能插随身wifi吗| 两人在一起打扑克的视频| 美女大奶头视频| 校园春色视频在线观看| 欧美黄色片欧美黄色片| 亚洲午夜理论影院| a级毛片在线看网站| 国产成人欧美| 亚洲成国产人片在线观看| 色综合亚洲欧美另类图片| 亚洲 欧美一区二区三区| 欧美日韩亚洲综合一区二区三区_| 精品福利观看| 久久久国产成人免费| 91成人精品电影| 日本三级黄在线观看| 日本精品一区二区三区蜜桃| 香蕉久久夜色| 日韩高清综合在线| 国产精品久久久久久亚洲av鲁大| 亚洲国产中文字幕在线视频| АⅤ资源中文在线天堂| 99国产精品一区二区三区| 99riav亚洲国产免费| 成人国产一区最新在线观看| 亚洲av电影不卡..在线观看| 亚洲av成人av| 99国产精品一区二区三区| 亚洲精品久久国产高清桃花| 一进一出抽搐gif免费好疼| 久久精品国产99精品国产亚洲性色 | 成在线人永久免费视频| 久热爱精品视频在线9| 制服诱惑二区| 亚洲国产毛片av蜜桃av| 久久久久久久久免费视频了| 亚洲狠狠婷婷综合久久图片| 一二三四在线观看免费中文在| 在线观看免费午夜福利视频| 国产不卡一卡二| 国内精品久久久久精免费| 香蕉丝袜av| 一级黄色大片毛片| 很黄的视频免费| 国产免费av片在线观看野外av| 50天的宝宝边吃奶边哭怎么回事| 日本免费a在线| 亚洲 欧美 日韩 在线 免费| 欧美丝袜亚洲另类 | 久久青草综合色| 搡老妇女老女人老熟妇| 不卡一级毛片| 欧美黄色淫秽网站| 18禁国产床啪视频网站| 好看av亚洲va欧美ⅴa在| www.www免费av| 婷婷精品国产亚洲av在线| 黄色丝袜av网址大全| 久久久久久大精品| 又紧又爽又黄一区二区| 很黄的视频免费| 精品国产美女av久久久久小说| 亚洲在线自拍视频| 香蕉丝袜av| 久久精品91蜜桃| 国产区一区二久久| 美女高潮喷水抽搐中文字幕| 欧美绝顶高潮抽搐喷水| 久久九九热精品免费| 女人高潮潮喷娇喘18禁视频| 国产片内射在线| 露出奶头的视频| 侵犯人妻中文字幕一二三四区| x7x7x7水蜜桃| 精品国产美女av久久久久小说| 久久国产亚洲av麻豆专区| 日本a在线网址| 亚洲成人久久性| 国产亚洲欧美精品永久| 亚洲中文av在线| 美女国产高潮福利片在线看| 日本一区二区免费在线视频| 一区福利在线观看| 热re99久久国产66热| 一边摸一边抽搐一进一小说| 涩涩av久久男人的天堂| 久久久久久久久免费视频了| 性色av乱码一区二区三区2| 精品国产超薄肉色丝袜足j| 少妇的丰满在线观看| 一二三四社区在线视频社区8| 亚洲国产精品合色在线| 亚洲人成电影免费在线| 久久精品aⅴ一区二区三区四区| 99国产精品99久久久久| 日本 欧美在线| 亚洲伊人色综图| 久久国产精品人妻蜜桃| 欧美激情高清一区二区三区| 激情视频va一区二区三区| 久久草成人影院| 免费高清视频大片| 老司机在亚洲福利影院| 日韩一卡2卡3卡4卡2021年| 国产私拍福利视频在线观看| 搞女人的毛片| 欧美日韩福利视频一区二区| 国产蜜桃级精品一区二区三区| 在线国产一区二区在线| 黄片大片在线免费观看| 久久国产精品男人的天堂亚洲| 可以在线观看毛片的网站| 中亚洲国语对白在线视频| 韩国精品一区二区三区| 久久人妻av系列| 亚洲七黄色美女视频| 18禁观看日本| 成人18禁在线播放| 香蕉丝袜av| 国产高清视频在线播放一区| 在线播放国产精品三级| 制服丝袜大香蕉在线| 黄色 视频免费看| 国产精品 欧美亚洲| 丝袜美腿诱惑在线| 欧美亚洲日本最大视频资源| 国产成人啪精品午夜网站| 国产精品精品国产色婷婷| 国产一区二区三区视频了| 国产精品久久电影中文字幕| 久久久久久久午夜电影| 黄网站色视频无遮挡免费观看| 精品午夜福利视频在线观看一区| 欧美日韩中文字幕国产精品一区二区三区 | 精品人妻在线不人妻| 国产熟女xx| 午夜精品久久久久久毛片777| av视频免费观看在线观看| 欧美乱色亚洲激情| 久久久国产成人免费| 国产蜜桃级精品一区二区三区| 成人永久免费在线观看视频| 真人一进一出gif抽搐免费| 久热这里只有精品99| av电影中文网址| 在线观看免费午夜福利视频| 国产91精品成人一区二区三区| 757午夜福利合集在线观看| 国产精品秋霞免费鲁丝片| 中文字幕人妻丝袜一区二区| 97人妻天天添夜夜摸| 性欧美人与动物交配| 黄色视频不卡|