• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal and robust control of population transfer in asymmetric quantum-dot molecules

    2024-02-29 09:18:40YuGuo郭裕SongshanMa馬松山andChuanCunShu束傳存
    Chinese Physics B 2024年2期
    關(guān)鍵詞:松山

    Yu Guo(郭裕), Songshan Ma(馬松山), and Chuan-Cun Shu(束傳存)

    1Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering,School of Physics and Electronic Science,Changsha University of Science and Technology,Changsha 410114,China

    2Hunan Key Laboratory of Nanophotonics and Devices,School of Physics,Central South University,Changsha 410083,China

    Keywords: population transfer,quantum optimal control theory,quantum-dot molecules

    1.Introduction

    Population transfer is a fundamental concept in various domains of quantum physics, including quantum information processing, quantum computing, and quantum optics.[1–5]Its primary objective is manipulating a quantum system from its initial state to a desired target state, which can be achieved by applying external control fields,such as laser pulses,electromagnetic fields,or magnetic fields.By carefully designing these control fields, it becomes possible to efficiently control the dynamics of the quantum system, ultimately enabling the transfer of population between different states.[6–12]

    Several coherent quantum control techniques have been widely used to achieve population transfer, such as stimulated Raman adiabatic passage (STIRAP),[13,14]shortcuts to adiabaticity,[15–17]and composite pulses.[18,19]By formulating the population transfer problem within an optimal control framework, quantum optimal control theory offers a powerful tool for finding optimal control strategies that maximize transfer efficiency while including constraints on the control fields.[20–29]In practical applications,it is vital to develop robust quantum control strategies that account for uncertainties and disturbances arising from fluctuations in control field parameters or environmental noise sources.However, ensuring the effectiveness and reliability of population transfer in quantum systems remains challenging,as it requires designing optimal control fields capable of overcoming such uncertainties.

    To demonstrate robust optimal control,we take the semiconductor quantum dots (SQDs) as an example, which possess discrete energy levels,high nonlinear optical susceptibility,and exceptional controllability and adjustability.[30–34]By arranging two or more coupled quantum dots separated by a tunnel barrier,a fascinating system known as a“quantum-dot molecule” can be formed, showcasing molecular-like structures and captivating quantum phenomena arising from the coherent tunneling of charge carriers between the individual quantum dots.These phenomena can be effectively harnessed for various practical applications.[35–43]We concentrate on achieving optimal and robust population transfer in an asymmetric double quantum-dot molecule (ADQDM).[44–48]The present system consists of two SQDs with distinct band structures connected through tunneling.Extensive research has been conducted on such systems, revealing intriguing optical phenomena such as tunneling-induced transparency,[49–51]tunneling-induced optical limiting,[52]tunneling-induced Talbot effect,[53]and tunneling-induced phase grating.[54–56]

    In this work, we show how to apply analytical methods[57–60]for achieving optimal control of population transfer by manipulating the spectral amplitude of a narrow bandwidth pulse.However, this method suffers from long pulse durations and high sensitivity to control field parameter fluctuations.To overcome these limitations, we utilize a frequency domain quantum optimal control theory (FDQOCT)method[27–29]to find optimal control fields in the broad bandwidth regime.Unlike time-domain methods[24]that shape the temporal field directly, FDQOCT optimizes complex spectral fields in the frequency domain.By optimizing the spectral phase while preserving the spectral amplitude,we can achieve spectral-phase-only optimization, reducing the search space,conserving laser energy,and emphasizing quantum coherence effects.Our results demonstrate efficient population transfer to the target state while suppressing undesired state populations,even in the presence of fluctuations in control field parameters.This work presents a valuable approach for finding robust optimal control schemes to mitigate uncertainties and fluctuations in practical applications.

    The paper is organized as follows.In Section 2,we briefly describe the model and the solution approach for the asymmetric double quantum-dot molecule,and the overview of the FDQOCT algorithm employed.In Section 3, we present numerical simulations and discussions on the population transfer in two distinct regions: narrow bandwidth and broad bandwidth of the laser pulse.Finally,we conclude our findings in Section 4.

    2.Theoretical model and optimization methods

    We consider an ADQDM composed of two single SQDs:the left SQD and the right SQD.These two SQDs have different band structures and are connected through electron tunneling.ADQDMs can be fabricated using self-assembled dot growth technology.For example, they can be grown on GaAs(001) substrates utilizing molecular beam epitaxy and precise atomic layer etching techniques.[45]As shown in Fig.1(a), this system consists of three levels denoted by|1〉,|2〉,and|3〉.The ground state|1〉defines a level in which two SQDs are not excited.The direct exciton state|2〉 stands for the level at which an electron is excited to the conduction band in the left SQD to form an electron–hole pair,and the indirect exciton state|3〉has one hole in the left SQD and one electron in the right SQD.[44]A laser pulse?(t)is introduced to couple the ground state|1〉and the direct exciton state|2〉,which can be further coupled with the indirect exciton state|3〉 through electron tunneling.

    Fig.1.Schematic illustration of energy level configuration of the asymmetric double quantum-dot molecule in (a) the bare energy basis(|1〉,|2〉,and|3〉),and(b)the dressed energy basis(|A〉,|B〉,and|C〉).

    The total time-dependent Hamiltonian can be written asH(t)=H0+Hint(t) (ˉh=1) in the energy basis (|1〉,|2〉,|3〉)with

    with the corresponding eigenvaluesωA=E1,ωB=E2-Te,andωC=E3+Te,considering the degeneracy of the two exciton states.In the above basis, the total HamiltonianH(t)can be expressed as

    in terms of a complex function?(ω)in the frequency domain,where?(ω)=A(ω)exp[iφ(ω)]is a product of a spectral amplitudeA(ω)and a spectral phaseφ(ω).In this work,we explore how to find optimal time-dependent control fields [i.e.,?(t)]by analytical designing the spectral amplitudeA(ω)in Subsection 2.1 and by optimizing the spctral phaseφ(ω) in Subsection 2.2.

    2.1.Population transfer by controlling the spectral amplitude

    To obtain an analytical solution,we transform the Hamiltonian given in Eq.(4) into the interaction picture without utilizing the rotating-wave approximation.The transformed Hamiltonian,denoted asHdI(t),is expressed as

    whereωij=ωj-ωirepresents the frequency difference between states|i〉and|j〉,withi,j=A,B,C.

    To achieve high-efficiency population transfer from|A〉to|B〉 or|C〉, we can derive an analytical time-dependent wave function for the V-type three-level system.The system is coupled with a time-dependent coupling?(t),which is turned on at the initial timet0and turned off at the end timetf.The time-dependent unitary operatorU(t,t0)of the system can be expanded using the Magnus expansion.[61–64]Considering the first leading termU(1)(t,t0)=exp[-it t0dt′HdI(t′)], the timedependent wave function of the system can be given by

    wherek ∈N, and the final timetfcorresponds to the instant when the coupling is switched off.

    By performing the frequency-domain analysis,we can design the time-dependent coupling’s spectral amplitudeA(ω)to achieve these desired pulse area values.Specifically,we adopt a Gaussian-frequency distribution for the spectral amplitude by with the pulse durationτ0=1/?ω.By controlling these parameters withA0=|θB/C(tf)| andω0=ωB/CA, and choosing?ωnarrow enough,we can achieve efficient population transfer from|A〉to|B〉or|C〉at the final timetf.

    2.2.Population transfer by optimizing the spectral phase

    The above-mentioned control scheme revolves around manipulating the spectral amplitude, which requires control fields characterized by long pulse durations and precise control parameters.As a result, the efficiency of the control scheme is greatly impacted by fluctuations in the control field parameters and decoherence arising from the surrounding environment.[48]To tackle these challenges, we use the FDQOCT method developed in Refs.[27–29] to determine optimal time-dependent control fields by optimizing the spectral phase while keeping the spectral amplitude unchanged.This approach,utilizing spectral phase-only optimization,offers several advantages.Firstly, it reduces the search space,leading to more efficient optimization.Secondly,it highlights the impact of the spectral phase in quantum control.Importantly, this method maintains the laser energy input without making any alterations.

    To employ the FDQOCT method,a dummy variables ≥0 is used to track the changes of the spectral phaseφ(s,ω)from an initial guessφ(si,ω)to the optimized oneφ(sf,ω)and the corresponding variation of cost functional,which is the populationPB/C(s,tf)of the target state|B〉or|C〉at the final timetf.The objective is to increase the value ofPB/C(s,tf)by updating the spectral phase fromφ(s,ω)toφ(s+δs,ω),which can be formulated as

    A normalized Gaussian functionS(ω′-ω) =exp[-4ln2(ω′-ω)2/σ2] is introduced as a convolution filtering method to locally average the inputsδQ?/δφ(s,ω) by choosing an appropriate value for the parameterσ.

    3.Results and discussion

    3.1.Numerical simulations for the first approach

    To examine the first approach, we employ the analytically designed pulse as described in Eq.(10),withω0=ωBA,to achieve population transfer from state|A〉 to state|B〉.In our simulations, we take parametersE1=0.1 eV,E2=E3=0.4 eV,andTe=0.5 meV.Figure 2 demonstrates the final populations of the target statePBand the undesired statePCas functions of the amplitudeA0(i.e., the pulse areaθB)and the frequency bandwidth ?ω.For the sake of simplicity,we defineθB/C ≡θB/C(tf) andPB/C ≡PB/C(tf).The results indicate efficient population transfer to state|B〉can be achieved when the pulse bandwidth is sufficiently narrow.Interestingly, amplitudes ofA0=π/2 or 3π/2 lead to high-efficiency population transfer to the target state|B〉,in line with the pulse-area conditions in Eq.(8).Specifically,when ?ω=0.01Te,the transfer efficiencyPBcan reach a value of 0.999 while effectively suppressing the population of state|C〉withPC(t)<10-5.However, it is worth noting that in the case of a broad bandwidth regime,the excitation to state|C〉also becomes significant due toθC ?=0 in Figs.2(c)and 2(d).

    Fig.2.[(a),(b)]The dependence of the final populations PB and PC on both the amplitude A0 and the frequency bandwidth ?ω by using Gaussian pulses with the central frequency ω0 =ωBA.[(c), (d)] PB and PC as functions of ?ω with A0 =π/2.[(e), (f)] PB and PC as functions of A0 with the bandwidths ?ω=0.01 Te(red solid line),?ω=1.0 Te(blue dashed line),?ω=10 Te(black dotted-dashed line).

    To better understand the impact of bandwidth ?ω,Figs.2(e)and 2(f)plot the cut lines ofPBandPCas functions ofA0for three bandwidths:?ω=0.01Te(narrow bandwidth),?ω=1.0Te,and ?ω=10Te(broad bandwidth).In the case of broad bandwidth,it is evident that the Rabi oscillations are incomplete,and the maximum population of the oscillation decreases as ?ωincreases until it reaches a fixed value.This implies that the pulse-area conditions cannot be satisfied with broad bandwidth.However,a complete Rabi oscillation can be observed in the case of narrow bandwidth.The transfer to the target state occurs atA0=π/2+kπ(k ∈N),where the pulse area is precisely satisfied.Furthermore,the central frequencyω0exactly resonates with the transition frequencyωBA.

    3.2.Numerical simulations for the second approach

    We now explore the second approach,which involves utilizing the FDQOCT method to search for optimized spectral pulses in the broad bandwidth regime.In particular, we select a broad bandwidth of ?ω=10Teas an example for our simulations.We initialize the input with a zero spectral phase,φ(si,ω)=0.Additionally,we set the filtering function with a bandwidth ofσ=0.15 eV andω0=ωBA.To obtain generalized results,we conduct the FDQOCT simulations for various values of the amplitudeA0,scanning it from 0 to 2π.We employ the FDQOCT algorithm throughout the optimization process to optimize the spectral phase while keeping the spectral amplitude atA0.

    Fig.3.The optimal simulations for the frequency bandwidth ?ω =10 Te.(a)The cost functional as a function of the amplitude A0.(b)The corresponding optimized spectral phases.The optimization process is terminated when the objective value is converged to 0.999.

    Figure 3 shows the cost functional,i.e.,the final optimal populationPB, and the corresponding optimal spectral phases as functions of the amplitudeA0.To facilitate readability,we perform an overall phase shift to attain a minimum value of 0 and then modulate the phases to ensure it falls within the[0,2π] range in Fig.3(b).It is observed that the FDQOCT method can find optimal control pulses capable of achieving high-efficient population transfer,withPB>0.999,as long as the amplitudeA0exceeds a certain thresholdA0≥0.61π.

    In the following analysis,we examine the results forA0=πas an example to investigate the optimized control pulses further.Figure 4 illustrates the optimized control pulse and the corresponding time-dependent populations in three states.Specifically,as a comparison,Fig.4(a)depicts the fixed spectral amplitudeA(ω), described by Eq.(9) with ?ω=10Te,and the initial spectral phaseφ(si,ω), which are used in the FDQOCT simulation.The corresponding initial temporal control pulse is shown in Fig.4(b).Figure 4(c) shows the population evolution of the three states driven by the initial control pulse.Due to the broad bandwidth,the initial pulse with a flat spectral phase,i.e.,φ(si,ω)=0,leads to a notable population transfer to the undesired state|C〉.

    Figure 4(d) plots the optimized spectral phase achieved through the FDQOCT optimization.To obtain the optimized temporal pulse, we incorporate the fixed spectral amplitudeA(ω) and the optimized spectral phaseφ(sf,ω) into the inverse Fourier transform,as expressed by Eq.(5).The resulting optimized temporal pulse is shown in Fig.4(e).Compared to the initial pulse,the optimized spectral phase reduces the peak intensity of the optimized temporal pulse while significantly extending its duration.However, it is important to note that the time duration remains much shorter than that of the narrow bandwidth pulse with ?ω ?1.0Te.Figure 4(f)shows the corresponding dynamical evolution of the populations in the three states achieved using the optimized control pulse.Although the spectral amplitude is kept unchanged as the initial one, the optimized time-dependent pulse via the spectralphase-only optimization maximizes the population transfer to the target state|B〉while significantly suppressing its transfer to the undesired state|C〉.

    We finally analyze to assess the impact of experimental errors on the population transfer driven by the optimized control fields.Specifically,we focus on errors resulting from variations in the amplitude and central frequency of the control fields.

    Figure 5(a) depicts the dependence of the final populationPBon the control field’s amplitudeA0and the detuningδ=ω0-ωBA.The final population in the target statePBconsistently remains above 0.999 across a wide range of parameter values.This observation underscores the robustness of the population transfer process against experimental errors,highlighting the reliability of the optimized control fields.To further explore the effect of the pulse amplitude variation,we plot the corresponding cut lines ofPBas a function of the pulse amplitudeA0withδ=0 in Fig.5(b).The results demonstrate a monotonic increase in transfer probability with an increasing pulse amplitude(A0).Notably,when the value ofA0exceeds 0.8π,the transfer probability consistently exceeds 0.999.Additionally, we investigate the impact of variations in central frequency by plotting the cut lines ofPBagainst detuning(δ),with the amplitude fixed atA0=π,as shown in Fig.5(c).The population transfer ofPBgreater than 0.999 can be achieved when detuning varies within the range of[-1.2,3.9]meV.

    In addition, we also perform similar simulations for achieving reliable and efficient population transfer to the symmetric delocalized state|C〉, not presented here.It is worth noting that the results of the robustness of the population transfer process remain consistent across these simulations.This further emphasizes the robustness and effectiveness of the optimized control fields, even in the presence of experimental errors resulting from variations in pulse intensity and central frequency.

    Fig.4.FDQOCT simulation results with the initial and optimal spectral fields for A0=π and the frequency bandwidth ?ω =10 Te:(a)the fixed spectral amplitude A(ω)and the initial spectral phase φ(si,ω),[(b),(c)]the corresponding time-dependent control pulse and population evolutions in three states,[(d)–(f)]the same as(a)–(c)with the optimized spectral phase φ(sf,ω).

    Fig.5.The robustness of population transfer to the target state |B〉 by using the optimized control pulse: (a) final population PB versus the amplitude A0 and the detuning of the optimized control field, and the corresponding cut lines at(b)δ =0 and(c)A0=π.

    4.Conclusion

    In summary, we have presented an implementation of population transfer in the ADQDM, explicitly targeting the transfer from the ground state to the delocalized states.These delocalized states correspond to the maximal coherent superposition states between the direct and indirect exciton states.In the case of narrow bandwidth,we utilize a control pulse that satisfies the pulse-area conditions, leading to complete population transfer from the ground state to the desired target state.On the other hand,when dealing with a broad bandwidth,we employ the FDQOCT method to search for the optimal spectral phase while maintaining a fixed spectral amplitude in the frequency domain.The resulting optimized control pulse enables high-efficiency population transfer to the desired state while exhibiting robustness against variations in both the pulse amplitude and central frequency.Our work offers a valuable strategy for achieving population transfer in the ADQDM system and holds significant potential for applications in quantum information processing.

    Acknowledgments

    This work was supported by the National Natural Science Foundations of China(Grant Nos.12275033,61973317,and 12274470), the Natural Science Foundation of Hunan Province for Distinguished Young Scholars (Grant No.2022JJ10070), the Natural Science Foundation of Hunan Province (Grant No.2022JJ30582), and the Scientific Research Fund of Hunan Provincial Education Department(Grant No.20A025).

    猜你喜歡
    松山
    高松山
    胡松山:一句承諾,為老友養(yǎng)老送終
    杭州(2022年9期)2022-06-05 14:05:52
    糧食詩詞賦 宿五松山下荀媼家
    西夏文寫本、刻本文獻(xiàn)中的小圖案研
    西夏研究(2018年4期)2018-11-30 09:25:28
    任意角的三角函數(shù)中的學(xué)習(xí)負(fù)遷移現(xiàn)象研究
    春游萬松山
    趕時間的松山真一
    意林(2007年19期)2007-02-11 09:25:58
    国产精品美女特级片免费视频播放器 | 正在播放国产对白刺激| 亚洲av五月六月丁香网| 日韩精品免费视频一区二区三区| 日本a在线网址| 午夜老司机福利片| 看黄色毛片网站| 欧美日韩黄片免| 男女做爰动态图高潮gif福利片 | 亚洲av成人一区二区三| 99久久久亚洲精品蜜臀av| 免费av毛片视频| 久久精品国产亚洲av高清一级| 亚洲成a人片在线一区二区| 一级毛片精品| 嫩草影视91久久| 国产欧美日韩精品亚洲av| 久久久久久久久久久久大奶| svipshipincom国产片| 亚洲最大成人中文| 国产精品香港三级国产av潘金莲| 狠狠狠狠99中文字幕| 国产亚洲欧美98| 久久久久久久久中文| 午夜视频精品福利| 亚洲无线在线观看| 性少妇av在线| 欧美绝顶高潮抽搐喷水| 午夜免费成人在线视频| 日韩视频一区二区在线观看| www国产在线视频色| netflix在线观看网站| 国产精品综合久久久久久久免费 | 国产精品永久免费网站| 国产精品98久久久久久宅男小说| 日本 av在线| 一个人观看的视频www高清免费观看 | 一级a爱视频在线免费观看| 国产不卡一卡二| 午夜亚洲福利在线播放| 午夜久久久在线观看| 欧美日韩瑟瑟在线播放| 久久婷婷人人爽人人干人人爱 | 高潮久久久久久久久久久不卡| 女人爽到高潮嗷嗷叫在线视频| 18禁观看日本| 午夜福利免费观看在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产单亲对白刺激| 亚洲色图av天堂| 亚洲av片天天在线观看| 老司机福利观看| 亚洲色图 男人天堂 中文字幕| 国产亚洲av嫩草精品影院| 99riav亚洲国产免费| 亚洲色图 男人天堂 中文字幕| 很黄的视频免费| 成人三级做爰电影| 国产av一区在线观看免费| 91老司机精品| 色播在线永久视频| www日本在线高清视频| av免费在线观看网站| 999久久久精品免费观看国产| 亚洲专区中文字幕在线| 一个人免费在线观看的高清视频| 成年女人毛片免费观看观看9| 99国产精品一区二区三区| 巨乳人妻的诱惑在线观看| 两个人视频免费观看高清| 中出人妻视频一区二区| 一边摸一边做爽爽视频免费| 国产一卡二卡三卡精品| 一级作爱视频免费观看| 中文字幕精品免费在线观看视频| 两个人免费观看高清视频| 久久久久久久久久久久大奶| 脱女人内裤的视频| 婷婷精品国产亚洲av在线| 欧美日韩亚洲综合一区二区三区_| 操美女的视频在线观看| 手机成人av网站| 午夜福利一区二区在线看| 久久精品91无色码中文字幕| 黄片播放在线免费| 波多野结衣高清无吗| 免费高清在线观看日韩| 亚洲国产中文字幕在线视频| 精品一区二区三区视频在线观看免费| 国产精品日韩av在线免费观看 | 亚洲精品一区av在线观看| 黑丝袜美女国产一区| 亚洲成a人片在线一区二区| 欧美绝顶高潮抽搐喷水| 国产欧美日韩一区二区三| a在线观看视频网站| 欧美久久黑人一区二区| 身体一侧抽搐| 国产一区二区激情短视频| 国产成人一区二区三区免费视频网站| 色老头精品视频在线观看| 国产主播在线观看一区二区| 国产av又大| 可以在线观看毛片的网站| 97碰自拍视频| 一个人观看的视频www高清免费观看 | 中文字幕久久专区| av电影中文网址| 一级a爱视频在线免费观看| 此物有八面人人有两片| 在线观看免费视频网站a站| 日日干狠狠操夜夜爽| 十分钟在线观看高清视频www| 亚洲av成人一区二区三| 乱人伦中国视频| 亚洲久久久国产精品| 高清毛片免费观看视频网站| www国产在线视频色| 一级毛片高清免费大全| 成人av一区二区三区在线看| 一二三四社区在线视频社区8| 免费看十八禁软件| 国内久久婷婷六月综合欲色啪| 久久久久久久久免费视频了| 精品一区二区三区视频在线观看免费| 久久精品aⅴ一区二区三区四区| 国产一卡二卡三卡精品| 香蕉丝袜av| 国产av又大| 丰满人妻熟妇乱又伦精品不卡| 免费无遮挡裸体视频| 婷婷精品国产亚洲av在线| 国产精品久久久人人做人人爽| 欧美日韩亚洲综合一区二区三区_| 亚洲人成电影观看| 精品久久久久久成人av| 成人精品一区二区免费| 一本大道久久a久久精品| 9热在线视频观看99| 激情视频va一区二区三区| 不卡一级毛片| 麻豆久久精品国产亚洲av| www.自偷自拍.com| 91麻豆精品激情在线观看国产| 十八禁网站免费在线| 亚洲av熟女| 国产成人影院久久av| 麻豆av在线久日| 一边摸一边抽搐一进一小说| 免费人成视频x8x8入口观看| 18禁美女被吸乳视频| 成人av在线播放网站| 国产欧美日韩一区二区精品| 午夜福利成人在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产女主播在线喷水免费视频网站 | 日韩欧美免费精品| 一本一本综合久久| 久久精品国产鲁丝片午夜精品 | 乱人视频在线观看| 成人av在线播放网站| 国产大屁股一区二区在线视频| 国产伦在线观看视频一区| 亚洲专区中文字幕在线| 久久久久久久久久黄片| av视频在线观看入口| 性色avwww在线观看| 干丝袜人妻中文字幕| 国产 一区 欧美 日韩| 国产成人一区二区在线| 久久精品人妻少妇| 久久这里只有精品中国| 国产一区二区在线av高清观看| 非洲黑人性xxxx精品又粗又长| 少妇熟女aⅴ在线视频| 国产精品一及| 日本黄色片子视频| 在线观看免费视频日本深夜| 日本免费a在线| 又爽又黄a免费视频| 日韩人妻高清精品专区| 中国美女看黄片| 精品一区二区三区av网在线观看| 美女免费视频网站| 精品一区二区三区视频在线| 老司机深夜福利视频在线观看| 午夜影院日韩av| 少妇的逼好多水| 女人被狂操c到高潮| 99视频精品全部免费 在线| 淫秽高清视频在线观看| 亚洲精品乱码久久久v下载方式| 12—13女人毛片做爰片一| 国产伦人伦偷精品视频| av在线老鸭窝| 村上凉子中文字幕在线| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美日韩东京热| 亚洲熟妇中文字幕五十中出| 直男gayav资源| 嫩草影视91久久| 丝袜美腿在线中文| 亚洲精品456在线播放app | 成人三级黄色视频| 亚洲中文日韩欧美视频| 别揉我奶头~嗯~啊~动态视频| 亚洲av电影不卡..在线观看| 看黄色毛片网站| 国内精品美女久久久久久| 美女大奶头视频| 男女边吃奶边做爰视频| 成人无遮挡网站| 久久精品国产鲁丝片午夜精品 | 亚洲av第一区精品v没综合| 亚洲一区高清亚洲精品| 国产午夜精品论理片| 国产一区二区三区视频了| 三级国产精品欧美在线观看| 22中文网久久字幕| 男人舔奶头视频| 少妇的逼好多水| 男人和女人高潮做爰伦理| 国内久久婷婷六月综合欲色啪| 又黄又爽又免费观看的视频| 午夜福利在线在线| 欧美一区二区国产精品久久精品| 亚洲欧美日韩高清专用| 亚洲第一电影网av| 亚洲va日本ⅴa欧美va伊人久久| 一级a爱片免费观看的视频| 淫秽高清视频在线观看| 免费看av在线观看网站| 亚洲最大成人中文| 极品教师在线免费播放| 国产色爽女视频免费观看| 搡老岳熟女国产| 成人av在线播放网站| 国产精品98久久久久久宅男小说| 97超视频在线观看视频| 亚洲欧美日韩卡通动漫| 88av欧美| 久久久国产成人免费| 尾随美女入室| av在线蜜桃| 国产主播在线观看一区二区| 亚洲精品影视一区二区三区av| av在线老鸭窝| 老熟妇仑乱视频hdxx| 丰满乱子伦码专区| 日韩 亚洲 欧美在线| 尾随美女入室| 精品人妻1区二区| 男女边吃奶边做爰视频| 成人二区视频| 看十八女毛片水多多多| 色综合亚洲欧美另类图片| 日本 欧美在线| 亚洲国产精品久久男人天堂| 亚洲欧美日韩东京热| 国产av在哪里看| 亚洲最大成人av| 午夜爱爱视频在线播放| 国产 一区 欧美 日韩| 日韩,欧美,国产一区二区三区 | 亚洲美女黄片视频| 丰满乱子伦码专区| 99热这里只有是精品在线观看| 赤兔流量卡办理| 日日啪夜夜撸| 日本爱情动作片www.在线观看 | 欧美最黄视频在线播放免费| av在线观看视频网站免费| 免费看美女性在线毛片视频| 狂野欧美白嫩少妇大欣赏| 最新在线观看一区二区三区| 直男gayav资源| 国产av在哪里看| 国产欧美日韩一区二区精品| 欧美日韩综合久久久久久 | 一级黄片播放器| 在线观看66精品国产| 超碰av人人做人人爽久久| 免费人成在线观看视频色| 99久久中文字幕三级久久日本| 亚洲av不卡在线观看| 婷婷精品国产亚洲av在线| 最近在线观看免费完整版| 亚洲精品一卡2卡三卡4卡5卡| 少妇裸体淫交视频免费看高清| 天堂av国产一区二区熟女人妻| 亚洲av.av天堂| 欧美另类亚洲清纯唯美| 少妇人妻一区二区三区视频| 国产中年淑女户外野战色| 欧美日韩黄片免| 国模一区二区三区四区视频| 亚洲专区国产一区二区| 99久久无色码亚洲精品果冻| 看十八女毛片水多多多| 毛片一级片免费看久久久久 | 亚洲精品国产成人久久av| 又黄又爽又刺激的免费视频.| 在线观看一区二区三区| 老司机福利观看| 午夜福利18| 国产美女午夜福利| 我的老师免费观看完整版| 性色avwww在线观看| 亚洲av五月六月丁香网| 啪啪无遮挡十八禁网站| 亚洲经典国产精华液单| 精品久久久久久久末码| 国语自产精品视频在线第100页| 制服丝袜大香蕉在线| 精品久久久久久久人妻蜜臀av| 国产亚洲91精品色在线| 啦啦啦韩国在线观看视频| 88av欧美| 国内精品久久久久精免费| 91麻豆精品激情在线观看国产| 欧洲精品卡2卡3卡4卡5卡区| 男女做爰动态图高潮gif福利片| 精品日产1卡2卡| 国产真实伦视频高清在线观看 | 免费av毛片视频| 99热这里只有精品一区| 久久精品久久久久久噜噜老黄 | 国产男人的电影天堂91| 精品一区二区三区av网在线观看| 亚洲熟妇中文字幕五十中出| 国产探花在线观看一区二区| 精品久久国产蜜桃| 窝窝影院91人妻| 波多野结衣高清作品| 国产综合懂色| 天堂动漫精品| 可以在线观看毛片的网站| 国产精品一区二区三区四区久久| 午夜精品一区二区三区免费看| 国产蜜桃级精品一区二区三区| 免费黄网站久久成人精品| 日韩中字成人| 亚洲精品乱码久久久v下载方式| 一a级毛片在线观看| 国产精品久久久久久久久免| 国产一区二区在线观看日韩| 亚洲不卡免费看| 日本 av在线| 内地一区二区视频在线| 一进一出好大好爽视频| 中文字幕人妻熟人妻熟丝袜美| 搡老岳熟女国产| 老司机午夜福利在线观看视频| 村上凉子中文字幕在线| 亚洲av不卡在线观看| av国产免费在线观看| 国产精品久久久久久久久免| 成人国产麻豆网| 亚洲avbb在线观看| 亚洲综合色惰| 亚洲人成网站高清观看| 有码 亚洲区| 国产精品电影一区二区三区| 国产精品三级大全| 中文字幕av在线有码专区| 变态另类丝袜制服| 精品久久久久久久人妻蜜臀av| 琪琪午夜伦伦电影理论片6080| 麻豆一二三区av精品| 国产一区二区激情短视频| 看片在线看免费视频| 九九热线精品视视频播放| 日韩欧美在线乱码| 一个人免费在线观看电影| 国产免费男女视频| 亚洲黑人精品在线| av天堂中文字幕网| 日本欧美国产在线视频| 日韩人妻高清精品专区| 日本黄色片子视频| 男人舔女人下体高潮全视频| 精品久久久久久久久久久久久| 国产免费av片在线观看野外av| 在线播放国产精品三级| 国产精品一区二区三区四区久久| 亚洲av中文字字幕乱码综合| 欧美性感艳星| 日韩精品中文字幕看吧| 一边摸一边抽搐一进一小说| 国产精品一区二区性色av| 麻豆成人午夜福利视频| 精品人妻1区二区| 亚洲一区高清亚洲精品| 久久精品夜夜夜夜夜久久蜜豆| 日本三级黄在线观看| 黄色女人牲交| 黄色欧美视频在线观看| 色综合站精品国产| 欧美绝顶高潮抽搐喷水| 性插视频无遮挡在线免费观看| 三级男女做爰猛烈吃奶摸视频| 97热精品久久久久久| 日韩中文字幕欧美一区二区| 1024手机看黄色片| 亚洲 国产 在线| 中文字幕精品亚洲无线码一区| av在线观看视频网站免费| 男人狂女人下面高潮的视频| 男女做爰动态图高潮gif福利片| 天堂影院成人在线观看| АⅤ资源中文在线天堂| 中国美白少妇内射xxxbb| 午夜亚洲福利在线播放| h日本视频在线播放| 亚洲va在线va天堂va国产| 不卡一级毛片| 欧美xxxx性猛交bbbb| 国产精品福利在线免费观看| 亚洲av电影不卡..在线观看| 美女黄网站色视频| 99精品在免费线老司机午夜| 噜噜噜噜噜久久久久久91| 特级一级黄色大片| videossex国产| 永久网站在线| 亚洲人成伊人成综合网2020| 精品久久久久久久久亚洲 | 久久久久久久午夜电影| 搡老熟女国产l中国老女人| 两个人视频免费观看高清| 免费av不卡在线播放| 给我免费播放毛片高清在线观看| 成人国产一区最新在线观看| 亚洲成a人片在线一区二区| 婷婷色综合大香蕉| 真实男女啪啪啪动态图| 国产精品日韩av在线免费观看| 搡老熟女国产l中国老女人| av视频在线观看入口| 国产老妇女一区| 久9热在线精品视频| 午夜福利在线在线| 国产精品久久电影中文字幕| 精品午夜福利在线看| 国产在线精品亚洲第一网站| 久久中文看片网| 亚洲欧美日韩高清在线视频| 欧美性猛交╳xxx乱大交人| 人妻制服诱惑在线中文字幕| 嫁个100分男人电影在线观看| 国产爱豆传媒在线观看| 蜜桃亚洲精品一区二区三区| 国产精品一及| 看黄色毛片网站| 国产高清有码在线观看视频| 成人永久免费在线观看视频| 狂野欧美激情性xxxx在线观看| 很黄的视频免费| 久久香蕉精品热| 69av精品久久久久久| 亚洲性久久影院| 亚洲熟妇中文字幕五十中出| 国产大屁股一区二区在线视频| 久久精品国产亚洲av香蕉五月| 99热这里只有是精品50| 亚洲性夜色夜夜综合| 亚洲欧美日韩东京热| 最后的刺客免费高清国语| 欧美一区二区精品小视频在线| 欧美3d第一页| 久久99热这里只有精品18| 亚洲三级黄色毛片| 舔av片在线| 精品福利观看| 能在线免费观看的黄片| 精品久久久久久久久亚洲 | 五月玫瑰六月丁香| 亚洲性久久影院| 国产精品久久视频播放| 1000部很黄的大片| 性欧美人与动物交配| 久久久成人免费电影| 成人欧美大片| 亚洲欧美日韩卡通动漫| 国产免费一级a男人的天堂| 99热这里只有是精品在线观看| 国产主播在线观看一区二区| 美女被艹到高潮喷水动态| 搡老妇女老女人老熟妇| 国产亚洲精品久久久久久毛片| bbb黄色大片| 日韩中字成人| 联通29元200g的流量卡| 狠狠狠狠99中文字幕| 黄色日韩在线| 人妻少妇偷人精品九色| 成人三级黄色视频| 精品一区二区三区av网在线观看| 在线观看美女被高潮喷水网站| 国产精品亚洲一级av第二区| 免费在线观看成人毛片| 一进一出好大好爽视频| 日韩在线高清观看一区二区三区 | 久久精品国产亚洲av涩爱 | 精品久久久久久久末码| 91午夜精品亚洲一区二区三区 | 99在线人妻在线中文字幕| 韩国av一区二区三区四区| 久久久久久久精品吃奶| 成人av一区二区三区在线看| 成熟少妇高潮喷水视频| 国产成人福利小说| 人妻制服诱惑在线中文字幕| 久9热在线精品视频| 日本色播在线视频| 日韩大尺度精品在线看网址| 免费观看人在逋| 久久精品91蜜桃| xxxwww97欧美| 在线免费观看的www视频| 色5月婷婷丁香| 欧美成人一区二区免费高清观看| 日日啪夜夜撸| 中文在线观看免费www的网站| 国产精品爽爽va在线观看网站| 免费av不卡在线播放| 美女 人体艺术 gogo| 一区福利在线观看| 波多野结衣巨乳人妻| 亚洲五月天丁香| 22中文网久久字幕| 亚洲国产精品久久男人天堂| 淫秽高清视频在线观看| 国产老妇女一区| 亚洲成a人片在线一区二区| 美女黄网站色视频| 欧美绝顶高潮抽搐喷水| 久9热在线精品视频| 3wmmmm亚洲av在线观看| 99久久精品一区二区三区| 99久久无色码亚洲精品果冻| 嫩草影视91久久| 尤物成人国产欧美一区二区三区| 乱人视频在线观看| 欧美三级亚洲精品| 如何舔出高潮| 有码 亚洲区| 一个人看的www免费观看视频| 国产成人av教育| 精品一区二区免费观看| 91狼人影院| 午夜精品在线福利| 男人舔女人下体高潮全视频| 亚洲av中文字字幕乱码综合| 中国美女看黄片| 国产精品福利在线免费观看| 淫妇啪啪啪对白视频| 国产高清有码在线观看视频| 国产精品综合久久久久久久免费| 欧美高清性xxxxhd video| 久久久久久大精品| 在线天堂最新版资源| 欧美中文日本在线观看视频| 国产国拍精品亚洲av在线观看| 亚洲色图av天堂| 很黄的视频免费| 亚洲av美国av| 免费看光身美女| 国产真实乱freesex| 男女做爰动态图高潮gif福利片| 国产精品不卡视频一区二区| 性色avwww在线观看| 国产一区二区三区av在线 | 老女人水多毛片| 一夜夜www| 精品人妻偷拍中文字幕| 日本在线视频免费播放| 舔av片在线| 国产一级毛片七仙女欲春2| 成人亚洲精品av一区二区| 久久久久久久午夜电影| 全区人妻精品视频| 老司机福利观看| 淫秽高清视频在线观看| 动漫黄色视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 九九热线精品视视频播放| 日韩中文字幕欧美一区二区| 精品午夜福利视频在线观看一区| 国产一区二区在线av高清观看| 又紧又爽又黄一区二区| 免费看日本二区| 成年女人永久免费观看视频| 熟女电影av网| 蜜桃亚洲精品一区二区三区| 久久久久久久午夜电影| av.在线天堂| 精品日产1卡2卡| or卡值多少钱| 国内精品美女久久久久久| 日本三级黄在线观看| 在线观看美女被高潮喷水网站| 国产精品综合久久久久久久免费| av黄色大香蕉| 日日干狠狠操夜夜爽| 神马国产精品三级电影在线观看| 观看免费一级毛片| 一个人免费在线观看电影| 中文字幕av成人在线电影| 真实男女啪啪啪动态图| 亚洲国产精品成人综合色| 国产三级在线视频| 国产探花在线观看一区二区| 久久久久国内视频| 日韩中字成人|