• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of a 2D spatial displacement estimation method for turbulence velocimetry of the gas puff imaging system on EAST

    2024-04-06 07:15:52LetianLI李樂天ShaochengLIU劉少承NingYAN顏寧XiaojuLIU劉曉菊andXiangGAO高翔
    Plasma Science and Technology 2024年3期
    關(guān)鍵詞:顏寧高翔樂天

    Letian LI (李樂天) ,Shaocheng LIU (劉少承) ,Ning YAN (顏寧) ,Xiaoju LIU (劉曉菊) and Xiang GAO (高翔)

    1 Anhui University,Hefei 230039,People’s Republic of China

    2 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    Abstract A gas puff imaging (GPI) diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation (TDE) method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI data.However,with the TDE method it is difficult to analyze the data with fast transient events,such as edge-localized mode (ELM).Consequently,a method called the spatial displacement estimation (SDE) algorithm is developed to estimate the turbulence velocity with high temporal resolution.Based on the SDE algorithm,we make some improvements,including an adaptive median filter and super-resolution technology.After the development of the algorithm,a straight-line movement and a curved-line movement are used to test the accuracy of the algorithm,and the calculated speed agrees well with preset speed.This SDE algorithm is applied to the EAST GPI data analysis,and the derived propagation velocity of turbulence is consistent with that from the TDE method,but with much higher temporal resolution.

    Keywords: gas puff imaging,spatial displacement estimation,SDE,edge turbulence velocity,TDE,EAST tokamak

    1.Introduction

    The edge turbulence can contribute to remarkable cross-field transport in magnetically confined plasmas,such as blobs or filaments [1-3].During the propagation of blobs from the plasma edge to the scrape-off layer (SOL),a large amount of heat and numerous particles across the last closed flux surface (LCFS) can reach the divertor plates in a short time and lead to heat deposition on the first plasma-facing materials.Some fast transient events,such as edge-localized mode(ELM) can cause significant energy loss in the core plasma and high heat flux at the divertor target,which is a crucial issue for large fusion devices such as ITER.Consequently,the fine dynamic evolution of the edge turbulence is important for understanding edge cross-field transport and core plasma confinement.

    Two-dimensional (2D) imaging technology is applied to the measurement of edge turbulence structure and its propagation velocity.Several 2D diagnostics for turbulence structure have been developed,including beam emission spectroscopy (BES) [4-6 ],Langmuir probe [7-9],electron cyclotron emission imaging (ECEI) [10-14] and gas puff imaging (GPI) [15-17].The Langmuir probe array inserted into the edge plasma can measure floating potentials and ion saturation current directly,providing the turbulence information with high temporal evolution [18].The BES and ECEI can measure the edge 2D turbulence structure via the light emission and microwave,respectively.The GPI measures the 2D edge turbulence by injecting neutral gas (helium or deuterium) and capturing the line emission with a high-speed camera.Many tokamaks are equipped with GPI diagnostics,such as NSTX [19],Alcator C-Mod [20],TEXTOR [21],HL-2A [17] and J-TEXT [22].

    Since the turbulence flow velocity is an essential parameter for the understanding of turbulence instability and radial transport,various methods are used in velocity estimation,such as the time-delay method (TDE) [23],optical flow [24],orthogonal dynamics programming (ODP) [25] and spatial displacement estimation (SDE) [26].For example,velocity analysis for the BES diagnostic on DIII-D is performed using the ODP method [27].Velocity calculations for the Langmuir probe on NSTX and ECEI diagnostic on KSTAR are done using TDE estimation [28,29].In the TDE process,cross-correlation is performed between a reference point and the surrounding points in a series of time sequences,and the displacement is given by the distance between the two points with the maximum cross-correlation coefficient.Finally,the speed is estimated by the ratio of displacement and delay time.The velocity calculated by the TDE method has high precision,and its spatial resolution can reach optical resolution.However,time series data are required for TDE analysis,and it is difficult for this analysis to provide precise velocity in a situation with large-scale motion during a short time period.The optical flow method estimates the speed by detecting the light change on a target object.This method requires constant brightness on the target object,which is a challenge for the GPI image.In addition,if the movement is too fast and the specific structure exceeds the observation window,the optical flow method will fail to attain the correct speed,which is called the aperture problem.The SDE method calculates the spatial displacement from the spatial lag of the 2D spatial cross-correlation coefficient function.Since the SDE can be operated for two adjacent images,it has much higher temporal resolution than the TDE method,which is an advantage for the velocity estimation of fast structures.Due to the SDE method needing enough large image pixels,its spatial resolution is limited.

    Some improvements are added to the SDE algorithm that is applied to the GPI data analysis on EAST.First,we introduce an adaptive median filter [30],which can effectively solve the filtering problem when the noise is relatively high.The window size of the median filter can be dynamically modified according to the preset conditions,aiming to denoise and simultaneously preserve the detailed information of the signal.Second,the super-resolution reconstruction by bicubic upsampling [31] is used to acquire high spatial resolution image data and easily extract the detailed structure.Third,the location of a specific structure is captured automatically using an appropriate window size according to the structure's peak.When we finish the development of the SDE algorithm,it is tested by two given motion trajectories,exhibiting accurate moving speed.Finally,the SDE method is applied to the GPI data analysis,and the calculated velocity agrees well with that from the TDE method.The imaged frame can be split into 20×30 pixel2sub-frames.Therefore,the velocity distribution in the poloidal-radial plane is obtained.The rest of this paper is organized as follows.Section 2 is the development of the SDE algorithm,and the corresponding test and application on GPI data are presented in section 3 .Section 4 is a summary.

    2.Development of SDE algorithm

    In this section,we introduce the SDE algorithm in detail.The algorithm includes the following steps: data pre-processing,image enhancement,speed estimation.The purpose of data pre-processing is to remove background noise and the motion trend.Image enhancement can improve the quality and visibility of images that are easy to analyze and understand.Adaptive median filtering can help us to reasonably process the signal noise under different noise levels,preserve image details and make the subsequent calculations more accurate.Super-resolution processing can increase the image’s resolution,thereby improving the details and clarity of the picture.Using super-resolution processing technology,we can convert a low-resolution image into a high-resolution image,consequently enhance the quality of the image.The third step is to convert the time-domain signal into a frequency-domain signal through fast Fourier transform(FFT) [32],perform cross-correlation operations,and obtain the displacement from the polynomial fitting.Finally,the velocity is calculated by the relative displacement and the delay time.

    2.1.Pre-processing

    In this part,we preprocess the GPI data.First,since the background radiation will disturb the turbulence motion in GPI images,the background emission should be removed in the pre-processing stage.The background emission is given by the average of a series of frames before the helium gas reaches the edge plasma,and then every frame subtracts the background emission to remove the background [15].The original GPI image is shown in figure 1(a),and the background light radiation intensity before gas puffing is presented in figure 1(b).When we remove the background emission intensity from the original 2D signal,we obtain figure 1(c).Finally the fluctuations of the GPI emission intensity are derived by subtracting the averaged emission intensity of the interested GPI frames (t=3.466925-3.467121s) from figure 1(c),as shown in figure 1(d).

    Detrending refers to removing some information in the image sequence that affects the speed estimation [33],such as signal offset.Detrending is an essential part of speed estimation because it can further improve the velocity estimation accuracy.After the background removal step,we detrend the data usingnth-order polynomial fitting,as presented in reference [26].The images before and after the polynomial detrending are shown in figures 2(a) and (b) for discharge #102993,respectively.The trend is much lower than the signal level,as illustrated in figure 2(c).

    Figure 1.(a) Original GPI image measured in discharge #102993,(b) background emission intensity before gas puffing,(c) the same image after removing the background emission,(d) the image with the averaged emission intensity subtracted.

    Figure 2.(a) The image before detrending,(b) the image after detrending,(c) the trend of image calculated by the nth-order polynomial fitting.

    2.2.Image enhancement

    2.2.1.Adaptive median filteringThe median filter is widely used in image processing [34].The median filter works by calculating the median value of the pixels in the neighborhood of each pixel and assigning this value to the central pixel.Compared to other filtering methods,the median filter is an effective way to remove noise from images and simultaneously preserve edge information without remarkable blurring.This makes it a widely-used tool in the field of image processing.

    If a larger filter window is used for the median filter,it can effectively remove noise,but it also leads to a fuzzy image that is unfavorable in the subsequent calculations.Conversely,using a smaller filter window can help preserve more details and enhance the clarity of the image,but it is not an effective way to remove noise.Therefore,an adaptive median filter is adopted to dynamically modify the window size based on the noise level [30].

    Figure 3.Workflow diagram of the adaptive median filter.

    The adaptive median filter can dynamically change the window size of the filter according to the preset conditions.The filtering is performed on a point (x,y) of the image and inside a rectangular windowWx,y,with an allowed maximum window size ofWmax.Gx,yrepresents the gray value of point (x,y) .Gmed,GminandGmaxare the median,minimum gray value and maximum gray value in the window (excluding point (x,y)),respectively.The working principle of the adaptive median filter is illustrated in figure 3.In the first diamond,we use the intensity ofG1andG2to determine whether the gray median value in the window is too large or too small.IfGmedis betweenGminandGmax,the window size is appropriate.Next,we determine whether the valueGx,yis noise;ifGx,yis beyond the range fromGmintoGmax,the window size should be expanded.As shown in the second diamond,if the gray valueGx,yis also within a reasonable range,we consider that this point is not noise,and outputGx,y;if the point is not within a reasonable range,we consider it to be noise,and outputGmed.If the window size needs to be enlarged after the first diamond,we will increase the window sizeWx,y,then determine whether the new window size exceeds the maximum valueWmax.If not,we return to “Start”,otherwise we outputGmed.

    2.2.2.Super-resolutionThe upgrade of the GPI system on EAST was completed in 2021 [35].In the upgraded optical system,the high-speed camera has a speed of up to 531645 frames/s and the captured image has a resolution of 128×64 pixel2.When estimating the velocity of the turbulence structure,we extract the image matrix of the structure and its surroundings (approximately twice the structure length in total) and minimize the influence of movement from the outside area.To achieve both high accuracy and smoothness of the image detail,bicubic upsampling super-resolution processing is adopted to extract image data [31].In the bicubic interpolation algorithm,we assume that the interpolation at a certain pointp(x,y) is obtained by weighting the four points around it,which can be written as follows:

    The interpolation kernel function is:

    The interpolation result ofp(x,y) is:

    Assume that pointp(x,y) is located in the original image at the position shown in figure A1,where Q is the matrix of pixel values of the 16 nearest points top. Wxand Wyare calculated by the interpolation kernel function in thexdirection andydirection ofp:

    Rpis the interpolation value of pointpand calculated by multiplying the three matrices of Wx,Q and.In equation (2),ais set as a constant and the default value is -0.5 [31].The specific derivation process is shown in the Appendix.

    For example,we extract the turbulence structure of one GPI frame for super-resolution testing,as shown in figure 4.The reconstructed image with bicubic upsampling exhibits smoother shape edge and a clearer structure compared to the original image.

    Figure 4.(a) The original image,(b) the reconstructed image enlarged ten times with bicubic upsampling.

    2.3.Speed estimation

    2.3.1.Fast Fourier transformFourier transform has been used in various fields of engineering and science.Fourier transform converts images from the spatial domain to the frequency domain,enabling efficient and accurate image analysis.Fast Fourier transform (FFT) [32] is an efficient algorithm of discrete Fourier transform (DFT) [36] and is more suitable for handling large-scale signals or images than DFT.Compared to DFT,FFT incorporates a recursive algorithm based on the divide-and-conquer strategy,which enhances the speed of Fourier transform calculations.The FFT algorithm reduces the computational complexity of DFT fromO(n2) toO(nlogn),and this reduction in complexity allows for faster computation of Fourier transforms.In image processing,FFT plays a significant role in transforming an image from the spatial to the frequency domain.For the discrete 2D Fourier transform of an image with sizeM×N,the equation is as follows:

    whereF(u,v) is the value in the frequency domain,Mis the width of the image,Nis the height of the image,f(x,y) is the value in the spatial domain,iis the imaginary unit,xandyare pixel coordinates,uandvrepresent the horizontal and vertical coordinates in the frequency domain,the value range ofuis 0 ≤u≤M-1,and the value range ofvis 0 ≤v≤N-1.

    2.3.2.2D cross-correlationCross-correlation has many applications in signal and image processing.2D cross-correlation,which computes the correlation coefficient between two images in the spatial domain,is commonly used in searching for similar structures among images,image alignment and image registration.In the SDE method,2D crosscorrelation is used to estimate the relative shift [26],as defined by:

    whereA,B*are 2D signals in frequency-domain obtained using the FFT process,B*is the complex conjugate ofBandF-1denotes the inverse Fourier transform operation.φ(x,y)is the circular 2D cross-correlation function.Since convolution in the time or spatial domain can be expressed by frequency domain multiplication,and correlation is a form of convolution,we express correlation by frequency-domain multiplication [37].The location of the largest correlation can be found at the maximums of φ(x,y) [38].

    Taking two consecutive frames as an example,first,the cross-correlation operation is carried out between the original frame and itself,in order to obtain the relative initial position of the target structure,namedPori.Next,the crosscorrelation between the two frames is calculated to find the point with the maximum coherence value,namedPc.Finally,the relative displacement is given by the Euclidean distance betweenPoriandPc[39].

    The EAST GPI images of discharge #102993 after the pre-processing and adaptive median filtering are shown in figure 5.A bright eddy structure is in the middle of the images,and clear propagation is observed in the time sequence of the images.In order to illustrate the 2D crosscorrelation method,two images from figures 5(i) and (p) are selected to perform the FFT and 2D cross-correlation analysis.The 2D cross-correlation spectrum is converted back to the spatial domain by inverse FFT,and the results are shown in figure 6.Comparing the self-correlation of the first frame with the cross-correlation between frames (i) and (p) in figure 5,the coordinates of the pointsPoriandPccan be fixed,and a clear relative displacement between them is observed,which is consistent with the direction of movement in figure 5.

    2.3.3.Sub-pixel precision processingThe accuracy of the relative displacement derived fromPoriandPcin the previous section is at pixel level.The image recorded by the GPI high-speed camera is 64×128 pixel2on EAST,and the pixel area occupied by the turbulence structure is small.In order to improve the calculation accuracy,a second-order polynomial fitting is used to fit the location with the maximum correlation coefficient and its surrounding area.Consequently,the maximum correlation position can be obtained with sub-pixel accuracy [26].The fitting equation is:

    Figure 5.Time sequences of GPI image after the pre-processing and adaptive median filtering.The corresponding time slices are annotated in panels (a) to (p).

    Figure 6.(a) The cross-correlation operation between the first frame (panel (i) of figure 5) and itself,(b) the cross-correlation calculation between the second frame (panel (p) of figure 5) and the first frame.

    whereai(i=0,1,2,3,4,5) is the fitting coefficient andx,yare coordinates in the cross-correlation spectrum.The position with the maximum correlation coefficient is calculated by the partial differentiation ofxandywith polynomial fitting in equation (9),and the calculated position is given by:

    2.3.4.Velocity calculationFrom the obtainedxmaxandymax,a more accurate relative displacement betweenPoriandPccan be calculated.The coordinates of pointsPoriandPcare(xmax1,ymax1) and (xmax2,ymax2) respectively,and the Euclidean distance between these two points can be expressed as:

    Finally,the speed of movement can be estimated from the relative displacementdand the delay time τ.

    3.Application of SDE algorithm

    3.1.Algorithm test

    In this section,the validity and accuracy of the SDE algorithm are tested.Two types of motion trajectories are used in the test,with a linear motion and a curvilinear motion,as illustrated in figure 7.The frames are set at 137×159 pixel2,which is similar to the GPI rotated image of EAST.The time period of these two movements is set at 5 s,with an interval of 0.1 s between two adjacent frames.For the linear motion,the elliptical structure moves along the diagonal straight line,with a constant shape and direction.For the curvilinear motion,the trajectory is a curve,and the shape and tilted angle of the red structure change gradually frame by frame.The moving velocity calculated by the SDE algorithm is presented in figure 8.For both movements,the calculated velocities agree well with the preset velocities.The velocity of the linear motion has symmetrical distribution,i.e.the red structure accelerates first and then decelerates with the same accelerated speed.The results of both cases demonstrate that the SDE algorithm is valid and its accuracy is very high.

    Figure 7.Motion trajectories.(a) A linear motion,(b) a curvilinear motion.The speed in both cases is first accelerated and then decelerated.

    Figure 8.The structure velocity for the straight and curvilinear motions was calculated by the SDE method.(a) Two-dimensional velocity,(b) velocity in the x-direction,(c) velocity in the y-direction.

    3.2.GPI data analysis

    The SDE algorithm is applied to the GPI data analysis in EAST for discharge #103882.The GPI diagnostic is operated with a frame rate of 531645 Hz and an interval of 1.88μs between two adjacent frames.As a reference,the turbulence propagation velocities in the radial and poloidal directions are calculated using the TDE method,with a velocity point derived from 50 continuous frames,as shown in figure 9.Around the LCFS,the turbulence radial velocityVris mainly directed outwards with a maximum value of about 2 km/s.The turbulence poloidal velocityVθis directed in the ion-diamagnetic drift direction in the SOL and in the electro-diamagnetic drift direction inside the LCFS,with a maximum value of over 3 km/s.During the L-H transition on NSTX,turbulence poloidal velocity was also observed to propagate towards the electron diamagnetic drift direction inside the LCFS [40,41].Note that the event at 8.6256 s is the eruption of an ELM burst.The turbulence velocities are also calculated using the SDE algorithm in the same time period as the TDE method,as illustrated in figure 10.The GPI image is divided into 6×6 sub-frames,with 20×30 pixel2for each sub-frame.In contrast with the TDE method,the radial velocityVrin figure 10(a) exhibits clear outward propagation around the LCFS,which is similar to that in figure 9(a).Note that theVrfrom the SDE method reveals more details of the variation due to its high temporal resolution.The poloidal velocityVθin figure 10(b) reveals the same radial distribution as the TDE method in figure 9(b).Due to the high temporal resolution of the SDE algorithm,the dynamic evolution ofVθis observed within the 550μs period,and the significant changes inVθare consistent with the peaks of the divertor Dαsignal,indicating the correlation between upstream turbulence and downstream particle deposition.During the ELM burst,a significant increase is detected in the Dαsignal,with numerous particles moving outwards across the magnetic field lines.At the same time,high turbulence propagation velocity is observed onVrandVθin figures 9 and 10.In summary,the SDE algorithm reveals similar velocity estimation results to the TDE method,but has much higher temporal resolution.

    4.Summary

    The SDE algorithm is developed and applied to the GPI diagnostic on EAST tokamak.The SDE algorithm includes pre-processing,adaptive median filtering,super-resolution,2D cross-correlation via FFT,and displacement estimation.In these procedures,we remove the background and noise from the image data and preserve the detailed information of the structure.The computation efficiency is high because FFT is introduced into the 2D spatial cross-correlation technology.The temporal resolution of the SDE algorithm is as high as the temporal resolution of the GPI diagnostic,which is a significant advantage for the velocity analysis of fast events.The developed SDE algorithm is tested with a linear motion and a curvilinear motion,and the derived velocities agree with the preset velocities with high accuracy.The new SDE algorithm is applied to the GPI data analysis on EAST,and the calculated propagation velocity of turbulence is consistent with that from the TDE method,but has much higher temporal resolution.Due to its precision and high temporal resolution,the SDE method can estimate the propagation velocity of turbulence in fast transient cases,such as the eruption of ELM and other instabilities.Consequently,the SDE method provides an effective way to analyze the 2D image data with fast variations,which is important for the understanding of edge turbulence in fusion devices.

    Figure 9.The turbulence propagation velocities calculated using the TDE method for discharge #103882.(a) Radial velocity,with positive value directed outside,(b) poloidal velocity,with positive value directed upwards (electron-diamagnetic drift direction).The purple dashed line represents LCFS.

    Figure 10.Turbulence propagation velocities calculated using the SDE algorithm.(a) Radial velocity,(b) poloidal velocity.The temporal variations of a Dα signal are shown in panel (b).The time traces of GPI signal and Dα signal are aligned by some fast events.The purple dashed line represents LCFS.

    Acknowledgments

    This work was supported by the National Magnetic Confinement Fusion Energy R&D Program of China (Nos.2022YFE03030001,2022YFE03020004 and 2022YFE 03050003),National Natural Science Foundation of China(Nos.12275310,11975275,12175277 and 11975271),the Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences (No.DSJJ-2021-01),the Collaborative Innovation Program of Hefei Science Center,Chinese Academy of Sciences (No.2021HSC-CIP019) and the Users with Excellence Program of Hefei Science Center,Chinese Academy of Sciences (Nos.2021HSC-UE014 and 2021HSCUE012).

    Appendix.Bicubic upsampling

    We developed a coordinate system to demonstrate the calculation process by the kernel function in equation (2).

    Figure A1.Interpolation process in super-resolution processing.

    The coordinates of pointpare (xp,yp),and the interpolation result isRpand the distance from the point to nearby pixels is Δxand Δy.If 0<Δx<1,then 1<Δx+1<2,-1<Δx-1<0,-2<Δx-2<-1.Therefore,from equation (2) we obtain:

    Equation (5) can be derived from the equations listed above.

    猜你喜歡
    顏寧高翔樂天
    清 高翔 錄書七言詩軸
    中國書法(2023年4期)2023-08-28 06:02:08
    High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
    Scaled Preconditioned Splitting Iterative Methods for Solving a Class of Complex Symmetric Linear Systems
    《樂天》
    “清華學(xué)術(shù)女神”在線打假
    東西南北(2019年19期)2019-12-12 06:10:24
    陽關(guān)故人
    飛魔幻A(2019年11期)2019-02-06 03:58:09
    一段苦澀又奇特的成長經(jīng)歷
    花山我的故鄉(xiāng)
    歌海(2016年5期)2016-11-15 09:29:30
    Research survey and review of the effect of Compound Danshen Dripping Pills on the uric acid metabolism of patients with coronary heart disease
    最美科學(xué)家的最美事業(yè)
    做人與處世(2013年6期)2013-06-24 09:38:20
    亚洲精品美女久久av网站| 一区福利在线观看| 久久香蕉国产精品| 给我免费播放毛片高清在线观看| 校园春色视频在线观看| www日本在线高清视频| www.自偷自拍.com| 19禁男女啪啪无遮挡网站| 俺也久久电影网| 精品久久蜜臀av无| 欧美精品啪啪一区二区三区| 国产精品香港三级国产av潘金莲| 欧美成人性av电影在线观看| 欧美极品一区二区三区四区| 成人精品一区二区免费| 久久精品人妻少妇| 国产精品自产拍在线观看55亚洲| 亚洲一区高清亚洲精品| 亚洲国产日韩欧美精品在线观看 | 搞女人的毛片| 日本免费一区二区三区高清不卡| 九九热线精品视视频播放| 久久午夜亚洲精品久久| 国产99久久九九免费精品| 一边摸一边做爽爽视频免费| 一进一出好大好爽视频| 夜夜爽天天搞| www.熟女人妻精品国产| 亚洲熟女毛片儿| 国产蜜桃级精品一区二区三区| 老鸭窝网址在线观看| 亚洲av电影不卡..在线观看| 欧美日韩瑟瑟在线播放| 国产高清激情床上av| 99国产精品一区二区蜜桃av| 国产精品 欧美亚洲| 欧美精品啪啪一区二区三区| 国产免费av片在线观看野外av| 亚洲av熟女| 久久草成人影院| 一本综合久久免费| 亚洲美女黄片视频| 成人三级黄色视频| 亚洲黑人精品在线| 精品久久久久久成人av| 精品少妇一区二区三区视频日本电影| 搡老岳熟女国产| 香蕉丝袜av| 成年免费大片在线观看| 成人永久免费在线观看视频| 中文字幕人成人乱码亚洲影| 久久天躁狠狠躁夜夜2o2o| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲av高清不卡| 国产蜜桃级精品一区二区三区| 一个人观看的视频www高清免费观看 | 黄频高清免费视频| 又爽又黄无遮挡网站| 欧美乱码精品一区二区三区| 精华霜和精华液先用哪个| 18禁美女被吸乳视频| 亚洲第一欧美日韩一区二区三区| 国产精品99久久99久久久不卡| av在线播放免费不卡| 99国产精品一区二区蜜桃av| 国内久久婷婷六月综合欲色啪| 亚洲av五月六月丁香网| 国产精品,欧美在线| 日韩大码丰满熟妇| 两个人看的免费小视频| www.自偷自拍.com| 亚洲欧美一区二区三区黑人| 高清在线国产一区| 999久久久精品免费观看国产| 欧美黄色片欧美黄色片| 日本一区二区免费在线视频| 人人妻人人看人人澡| ponron亚洲| a级毛片a级免费在线| 亚洲人与动物交配视频| 熟妇人妻久久中文字幕3abv| 男女下面进入的视频免费午夜| 日韩av在线大香蕉| 久久人妻av系列| 亚洲国产高清在线一区二区三| 99精品欧美一区二区三区四区| 国产av又大| 50天的宝宝边吃奶边哭怎么回事| 免费看a级黄色片| 99国产综合亚洲精品| 国产亚洲欧美98| 又黄又粗又硬又大视频| 少妇被粗大的猛进出69影院| 精品熟女少妇八av免费久了| 搡老熟女国产l中国老女人| 色在线成人网| 亚洲av第一区精品v没综合| 精品久久久久久成人av| 老司机靠b影院| 国产一区二区在线av高清观看| 99久久国产精品久久久| 搞女人的毛片| 欧美黄色片欧美黄色片| 亚洲成a人片在线一区二区| 丁香六月欧美| 天天一区二区日本电影三级| 欧美精品啪啪一区二区三区| 老司机靠b影院| 香蕉av资源在线| 免费观看人在逋| 中文字幕精品亚洲无线码一区| 国产成人啪精品午夜网站| 少妇熟女aⅴ在线视频| 久久久久久九九精品二区国产 | 一本一本综合久久| 老司机午夜福利在线观看视频| 免费在线观看日本一区| 亚洲色图av天堂| 亚洲精品一区av在线观看| 在线免费观看的www视频| 亚洲精品中文字幕一二三四区| 亚洲欧美日韩高清专用| 高清在线国产一区| 欧美精品啪啪一区二区三区| 天天躁夜夜躁狠狠躁躁| 99精品欧美一区二区三区四区| 夜夜爽天天搞| 亚洲在线自拍视频| av中文乱码字幕在线| 国产黄色小视频在线观看| 国产激情久久老熟女| 国产精品亚洲一级av第二区| 露出奶头的视频| 国产精品亚洲av一区麻豆| 精品福利观看| 琪琪午夜伦伦电影理论片6080| 性欧美人与动物交配| av福利片在线观看| 国产精品免费一区二区三区在线| 亚洲欧美日韩高清专用| 又黄又爽又免费观看的视频| 日韩三级视频一区二区三区| 精品日产1卡2卡| 欧美成人午夜精品| 叶爱在线成人免费视频播放| 国产在线精品亚洲第一网站| 天天躁狠狠躁夜夜躁狠狠躁| 两性夫妻黄色片| 真人做人爱边吃奶动态| 久久这里只有精品中国| 最近在线观看免费完整版| 欧美乱码精品一区二区三区| 欧美黄色片欧美黄色片| 精品无人区乱码1区二区| 国产免费男女视频| 久久天堂一区二区三区四区| 黄色片一级片一级黄色片| 一本大道久久a久久精品| 久久这里只有精品中国| aaaaa片日本免费| 曰老女人黄片| 天堂动漫精品| 一边摸一边抽搐一进一小说| 久久久久久亚洲精品国产蜜桃av| 夜夜躁狠狠躁天天躁| ponron亚洲| 欧美日韩亚洲综合一区二区三区_| www.精华液| 成人av一区二区三区在线看| 18禁美女被吸乳视频| 最近最新中文字幕大全电影3| 天天躁夜夜躁狠狠躁躁| 最近最新中文字幕大全免费视频| 啦啦啦韩国在线观看视频| 国产亚洲精品第一综合不卡| 亚洲成av人片免费观看| 国内精品一区二区在线观看| 国产三级黄色录像| 久久中文看片网| 两性夫妻黄色片| 搡老熟女国产l中国老女人| 99久久精品热视频| 欧美日韩一级在线毛片| 亚洲欧美精品综合一区二区三区| 久久中文字幕一级| 一本精品99久久精品77| 亚洲乱码一区二区免费版| 久久精品91无色码中文字幕| 国产精品野战在线观看| 18禁国产床啪视频网站| 少妇的丰满在线观看| 国产亚洲av高清不卡| 亚洲无线在线观看| 最近最新中文字幕大全电影3| 婷婷精品国产亚洲av在线| 母亲3免费完整高清在线观看| 怎么达到女性高潮| 久久国产乱子伦精品免费另类| 1024视频免费在线观看| 搡老熟女国产l中国老女人| 一进一出好大好爽视频| 精品久久蜜臀av无| 此物有八面人人有两片| 久久性视频一级片| 777久久人妻少妇嫩草av网站| 亚洲国产欧美人成| 真人一进一出gif抽搐免费| 校园春色视频在线观看| 亚洲一区中文字幕在线| 日韩 欧美 亚洲 中文字幕| 国产精品av久久久久免费| 免费在线观看成人毛片| 一区二区三区国产精品乱码| 欧美一区二区精品小视频在线| 国产精品免费一区二区三区在线| 国产伦人伦偷精品视频| 国内精品久久久久久久电影| 亚洲人与动物交配视频| 国产亚洲欧美98| a在线观看视频网站| 精品午夜福利视频在线观看一区| 一级毛片女人18水好多| 亚洲精品在线美女| 精品乱码久久久久久99久播| 久久天躁狠狠躁夜夜2o2o| 国产激情久久老熟女| 日韩国内少妇激情av| av中文乱码字幕在线| 90打野战视频偷拍视频| 最近在线观看免费完整版| 夜夜躁狠狠躁天天躁| 一区二区三区高清视频在线| 久久香蕉国产精品| 三级毛片av免费| 日日爽夜夜爽网站| 国产免费av片在线观看野外av| 国产成人av教育| 亚洲av五月六月丁香网| 丝袜美腿诱惑在线| 久久久久久久久免费视频了| 亚洲精品久久成人aⅴ小说| 非洲黑人性xxxx精品又粗又长| 亚洲欧美精品综合一区二区三区| 一个人免费在线观看电影 | 婷婷精品国产亚洲av| 99在线人妻在线中文字幕| 亚洲免费av在线视频| 欧美高清成人免费视频www| 一进一出抽搐gif免费好疼| 巨乳人妻的诱惑在线观看| 五月玫瑰六月丁香| 中国美女看黄片| 国产又黄又爽又无遮挡在线| 国产视频一区二区在线看| 国产精品久久久人人做人人爽| 日韩大码丰满熟妇| 久久国产精品人妻蜜桃| 久久精品91蜜桃| 国产精品一区二区三区四区久久| 国产精华一区二区三区| 久久久精品大字幕| 嫩草影视91久久| 国产精品精品国产色婷婷| 欧美黄色淫秽网站| 亚洲午夜精品一区,二区,三区| 色综合亚洲欧美另类图片| 亚洲国产欧美一区二区综合| 一区二区三区国产精品乱码| www.999成人在线观看| 法律面前人人平等表现在哪些方面| 女人高潮潮喷娇喘18禁视频| 久99久视频精品免费| av免费在线观看网站| 国产一区二区三区在线臀色熟女| svipshipincom国产片| 欧美日韩瑟瑟在线播放| 亚洲九九香蕉| 在线国产一区二区在线| 哪里可以看免费的av片| 日本一本二区三区精品| 国产精品免费一区二区三区在线| 久久久久精品国产欧美久久久| av天堂在线播放| 久久性视频一级片| 麻豆成人av在线观看| 国产伦人伦偷精品视频| 亚洲专区字幕在线| 亚洲狠狠婷婷综合久久图片| 亚洲中文日韩欧美视频| 黄色视频不卡| 在线播放国产精品三级| 一a级毛片在线观看| 免费在线观看成人毛片| 亚洲全国av大片| 18美女黄网站色大片免费观看| 久久精品亚洲精品国产色婷小说| 一个人免费在线观看的高清视频| 国产精品电影一区二区三区| 黄片小视频在线播放| 国产激情久久老熟女| 在线视频色国产色| 国产区一区二久久| 亚洲乱码一区二区免费版| 午夜精品在线福利| 国产精品1区2区在线观看.| 久久中文字幕一级| 一本综合久久免费| 黄色视频,在线免费观看| 免费在线观看日本一区| 男女床上黄色一级片免费看| 精品一区二区三区av网在线观看| 亚洲成人国产一区在线观看| 久久久久精品国产欧美久久久| 一a级毛片在线观看| 成人国语在线视频| 免费看a级黄色片| 99久久国产精品久久久| 麻豆久久精品国产亚洲av| 久久精品91无色码中文字幕| 小说图片视频综合网站| 午夜福利在线观看吧| 亚洲午夜精品一区,二区,三区| 搡老妇女老女人老熟妇| 国产熟女xx| a级毛片a级免费在线| 日日爽夜夜爽网站| 亚洲国产欧美人成| 精品高清国产在线一区| 舔av片在线| 成人欧美大片| 国产一区二区在线av高清观看| 夜夜躁狠狠躁天天躁| 亚洲,欧美精品.| 国产成人啪精品午夜网站| 啦啦啦免费观看视频1| av片东京热男人的天堂| 久久久国产欧美日韩av| 久久久久久亚洲精品国产蜜桃av| 亚洲自拍偷在线| 久久这里只有精品19| 亚洲 国产 在线| 免费在线观看黄色视频的| 国产午夜福利久久久久久| 欧美成人一区二区免费高清观看 | 人人妻,人人澡人人爽秒播| av福利片在线| 少妇粗大呻吟视频| 国产成人aa在线观看| 亚洲一区二区三区色噜噜| 日韩大码丰满熟妇| 国产午夜福利久久久久久| 在线观看免费日韩欧美大片| 日本黄色视频三级网站网址| 精品欧美国产一区二区三| 熟女电影av网| 国产精华一区二区三区| 黄色 视频免费看| 给我免费播放毛片高清在线观看| 妹子高潮喷水视频| 好男人在线观看高清免费视频| 亚洲熟女毛片儿| 午夜福利在线观看吧| 亚洲专区国产一区二区| 亚洲五月婷婷丁香| 人妻夜夜爽99麻豆av| 国产欧美日韩一区二区精品| 一进一出抽搐gif免费好疼| 99精品久久久久人妻精品| 麻豆久久精品国产亚洲av| 欧美色视频一区免费| 黄色 视频免费看| 久久久国产成人免费| 99久久久亚洲精品蜜臀av| 亚洲色图 男人天堂 中文字幕| 麻豆久久精品国产亚洲av| 欧美人与性动交α欧美精品济南到| 黄色 视频免费看| 午夜精品久久久久久毛片777| 亚洲中文字幕一区二区三区有码在线看 | 男人舔女人下体高潮全视频| 蜜桃久久精品国产亚洲av| 一a级毛片在线观看| 99热这里只有精品一区 | 国产午夜精品久久久久久| 国内精品久久久久精免费| 欧美黑人欧美精品刺激| 国产激情偷乱视频一区二区| 麻豆国产97在线/欧美 | 国产一区二区在线av高清观看| 国产激情欧美一区二区| 国产一区二区在线av高清观看| 天堂av国产一区二区熟女人妻 | 久久午夜综合久久蜜桃| 老汉色av国产亚洲站长工具| 国产精品野战在线观看| 亚洲九九香蕉| 婷婷亚洲欧美| 久久精品成人免费网站| 亚洲中文字幕日韩| 亚洲欧美日韩高清专用| 国产精品影院久久| 久久久国产成人精品二区| 亚洲欧美日韩无卡精品| 少妇的丰满在线观看| 在线视频色国产色| 日本在线视频免费播放| 丰满人妻一区二区三区视频av | 亚洲人成电影免费在线| 久久欧美精品欧美久久欧美| 最新在线观看一区二区三区| 18禁黄网站禁片免费观看直播| 亚洲男人的天堂狠狠| 国产精品av视频在线免费观看| 中文字幕最新亚洲高清| 国产精品一区二区三区四区久久| 男男h啪啪无遮挡| 亚洲人成77777在线视频| 亚洲国产日韩欧美精品在线观看 | 草草在线视频免费看| 桃色一区二区三区在线观看| 婷婷亚洲欧美| 国产av不卡久久| 欧美中文日本在线观看视频| 久久精品夜夜夜夜夜久久蜜豆 | 无遮挡黄片免费观看| 精品欧美一区二区三区在线| 久久这里只有精品中国| 国产又黄又爽又无遮挡在线| 女生性感内裤真人,穿戴方法视频| 欧美高清成人免费视频www| 国产亚洲精品久久久久5区| 国产精品乱码一区二三区的特点| 一边摸一边抽搐一进一小说| 中文亚洲av片在线观看爽| 毛片女人毛片| 伊人久久大香线蕉亚洲五| 欧美3d第一页| 国内揄拍国产精品人妻在线| 黄色a级毛片大全视频| 19禁男女啪啪无遮挡网站| 精品久久久久久久末码| 欧美性长视频在线观看| 这个男人来自地球电影免费观看| 性欧美人与动物交配| 一区福利在线观看| 久久国产精品人妻蜜桃| 久久久国产精品麻豆| 搡老熟女国产l中国老女人| 国产亚洲精品久久久久5区| 国产黄片美女视频| 亚洲成av人片免费观看| 好男人电影高清在线观看| 99久久精品国产亚洲精品| 丁香欧美五月| 成人18禁高潮啪啪吃奶动态图| 亚洲av成人av| 在线观看舔阴道视频| 精品免费久久久久久久清纯| 亚洲专区国产一区二区| а√天堂www在线а√下载| 午夜激情av网站| 嫁个100分男人电影在线观看| 黄色 视频免费看| xxxwww97欧美| 亚洲精品久久成人aⅴ小说| 久久久久久久久免费视频了| 舔av片在线| 曰老女人黄片| 成人手机av| 又粗又爽又猛毛片免费看| 首页视频小说图片口味搜索| 日韩欧美一区二区三区在线观看| 日韩大尺度精品在线看网址| 成在线人永久免费视频| 亚洲va日本ⅴa欧美va伊人久久| 夜夜爽天天搞| 日韩欧美 国产精品| 国产日本99.免费观看| 99re在线观看精品视频| 夜夜躁狠狠躁天天躁| 国产精品自产拍在线观看55亚洲| 国产精品国产高清国产av| 毛片女人毛片| 久久久国产欧美日韩av| 亚洲天堂国产精品一区在线| 精品久久久久久久毛片微露脸| 亚洲一区中文字幕在线| 后天国语完整版免费观看| 午夜福利在线在线| 色综合欧美亚洲国产小说| avwww免费| 人妻丰满熟妇av一区二区三区| 一个人免费在线观看的高清视频| 欧美精品亚洲一区二区| 久9热在线精品视频| av天堂在线播放| svipshipincom国产片| 亚洲精品粉嫩美女一区| 老司机深夜福利视频在线观看| 国产精品久久视频播放| 97碰自拍视频| 欧美国产日韩亚洲一区| 亚洲精品粉嫩美女一区| 国产精品一区二区三区四区免费观看 | 国产一区二区在线观看日韩 | 成年人黄色毛片网站| 最好的美女福利视频网| 中文在线观看免费www的网站 | 精品福利观看| 久久香蕉激情| 国产又色又爽无遮挡免费看| 亚洲第一电影网av| 亚洲成人国产一区在线观看| 国产aⅴ精品一区二区三区波| 两个人的视频大全免费| 国产不卡一卡二| 蜜桃久久精品国产亚洲av| 少妇被粗大的猛进出69影院| 国产成人啪精品午夜网站| 亚洲成人国产一区在线观看| 欧美久久黑人一区二区| 99精品欧美一区二区三区四区| 久久久精品大字幕| 国产精品九九99| 精品高清国产在线一区| 欧美性猛交╳xxx乱大交人| 国产97色在线日韩免费| 亚洲专区国产一区二区| 亚洲色图 男人天堂 中文字幕| 99国产极品粉嫩在线观看| 女人被狂操c到高潮| 久久久久亚洲av毛片大全| 久久久国产成人精品二区| 日韩精品免费视频一区二区三区| 亚洲欧美精品综合久久99| 国产成人系列免费观看| 校园春色视频在线观看| 啦啦啦免费观看视频1| 久久精品国产99精品国产亚洲性色| 男女午夜视频在线观看| 久久久国产成人精品二区| 丁香欧美五月| 欧美另类亚洲清纯唯美| 亚洲精品久久成人aⅴ小说| 国产片内射在线| 精品国产美女av久久久久小说| 一本精品99久久精品77| 99精品欧美一区二区三区四区| 精品国内亚洲2022精品成人| 视频区欧美日本亚洲| 欧美日韩国产亚洲二区| 久久人妻福利社区极品人妻图片| 国产精品乱码一区二三区的特点| cao死你这个sao货| 久久国产精品影院| 日韩大码丰满熟妇| 亚洲一区二区三区色噜噜| 久99久视频精品免费| 国产男靠女视频免费网站| 精品欧美一区二区三区在线| 婷婷六月久久综合丁香| 欧美极品一区二区三区四区| 欧美黑人精品巨大| 日本一本二区三区精品| 久久久水蜜桃国产精品网| 熟妇人妻久久中文字幕3abv| 给我免费播放毛片高清在线观看| 精华霜和精华液先用哪个| 99精品在免费线老司机午夜| 欧美zozozo另类| 午夜视频精品福利| 精品久久久久久成人av| 91成年电影在线观看| 久热爱精品视频在线9| 久久这里只有精品19| 国产91精品成人一区二区三区| 国产伦在线观看视频一区| 日韩高清综合在线| 亚洲欧美日韩无卡精品| 日日夜夜操网爽| 日韩av在线大香蕉| 神马国产精品三级电影在线观看 | 亚洲国产看品久久| 亚洲 欧美一区二区三区| 久久久久久久精品吃奶| 此物有八面人人有两片| 亚洲第一电影网av| 在线观看美女被高潮喷水网站 | 亚洲精品久久国产高清桃花| 日本五十路高清| 精品久久久久久久久久免费视频| 国产黄色小视频在线观看| 午夜视频精品福利| 久久久久精品国产欧美久久久| 香蕉丝袜av| 色哟哟哟哟哟哟| 丝袜人妻中文字幕| 搡老岳熟女国产| 一区二区三区国产精品乱码| 久久久久九九精品影院| 啦啦啦免费观看视频1| 一区二区三区国产精品乱码| 桃红色精品国产亚洲av| 99re在线观看精品视频| 日韩欧美在线乱码| 18禁裸乳无遮挡免费网站照片| 亚洲美女黄片视频| 成人一区二区视频在线观看| 中国美女看黄片| 国产精品久久久av美女十八| 精品国内亚洲2022精品成人| 日韩av在线大香蕉| 亚洲一区二区三区色噜噜| xxxwww97欧美| av中文乱码字幕在线|