摘 要:木質(zhì)素經(jīng)胺化和季銨化改性后制備了N摻雜木質(zhì)素,并用于吸附鎢,通過SEM-EDS和FTIR對吸附劑進行表征,考察pH值、鎢初始質(zhì)量濃度、吸附時間和吸附劑用量對吸附容量的影響,利用SEM-EDS、FTIR和XPS分析揭示吸附過程的機制.結(jié)果表明,N摻雜木質(zhì)素表面疏松多孔且含有大量的酚羥基、胺基和季銨官能團,在總鎢濃度為0.005 mol/L、pHlt;4.7時,鎢的存在形態(tài)為H2W12O6-40.H2W12O6-40通過與N摻雜木質(zhì)素中氫鍵的靜電吸引、胺基的配合和氯離子的離子交換作用而被吸附.在pH=4.0、鎢初始質(zhì)量濃度為800 mg/L、吸附時間為960 min的條件下,1 g/L N摻雜木質(zhì)素對鎢的飽和吸附容量為421.68 mg/g.吸附過程遵循Langmuir模型和準二級動力學(xué)模型,表明吸附過程為單分子層均質(zhì)化學(xué)吸附.
關(guān)鍵詞:
N摻雜木質(zhì)素;鎢;吸附行為;吸附機制
中圖分類號:
TF839"" 文獻標志碼:
A"" 文章編號:
1000-1565(2024)03-0269-12
Adsorption of tungsten by N-doped lignin
ZHANG Baoping1,2, KE Jing1,2, FANG Shiyuan1,2, LI Wencan1,2
(1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China;2. Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China)
Abstract: N-doped lignin used for adsorption of tungsten was synthesized by polyamination and quaternization from lignin. The adsorbent was characterized by SEM-EDS and FTIR. The effects of pH, initial mass concentration of tungsten, adsorption time and amount of adsorbent on the adsorption capacity were investigated. The adsorption mechanism was revealed by SEM-EDS and FTIR and XPS. The results showed that N-doped lignin was loose and porous and contained a large amount of phenolic hydroxyl, amine and quaternary ammonium functional groups. When the total concentration of tungsten was 0.005 mol/L and the value of pH was smaller than 4.7, the existing form of tungsten was H2W12O6-40. H2W12O6-40 was adsorbed by N-doped lignin through electrostatic attraction of hydrogen bond and coordination with amino and ion exchange with Cl-. The saturated adsorption capacity of 1 g/L N-doped lignin for tungsten reached 421.68 mg/g at pH of 4.0, with initial tungsten mass concentration of 800 mg/L and adsorption time of 960 min. The adsorption followed Langmuir model and quasi-second-order kinetic model, indicating that the adsorption was monolayer homogeneous chemisorption.
Key words: N-doped lignin;tungsten;adsorption behavior;adsorption mechanism
鎢具有熔點最高、耐磨性強和硬度大的特點,是當代高新技術(shù)發(fā)展的戰(zhàn)略金屬,廣泛應(yīng)用于電子光學(xué)材料、特殊合金、航天軍事和醫(yī)療衛(wèi)生等領(lǐng)域[1-4].中國鎢礦品位較低且成分復(fù)雜,白鎢礦占68.7%、黑鎢礦占20.9%和黑白鎢混合礦占10.4%[5].隨著鎢應(yīng)用領(lǐng)域的擴大,較易提取的優(yōu)質(zhì)黑鎢礦面臨枯竭,而難選冶的白鎢礦成為鎢的主要來源[6].目前,主要采用溶劑萃取法[7]、化學(xué)沉淀法[8]、膜分離法[9]和離子交換法[10]從堿分解鎢礦后的粗鎢酸鈉溶液中提取鎢.這些提取方法化學(xué)試劑耗量大、耗時長和成本高,離子交換法所使用的樹脂中毒后的焚燒會產(chǎn)生苯和焦油等有機污染物[11].吸附法因具有操作簡單、成本低和無污染等優(yōu)點而備受關(guān)注[12].但水滑石、沸石、蒙脫石、海泡石、海藻酸鈉、金屬氧化物和金屬硫化物等各種無機吸附劑的吸附性能較差.生物吸附劑因具有來源廣、成本低、無污染和吸附性能好等優(yōu)點而備受關(guān)注,尤其是木質(zhì)素及其衍生物,在儲能、醫(yī)藥、廢水處理、碳的制備和提取冶金等
領(lǐng)域廣泛使用[13-17].然而,作為吸附劑,木質(zhì)素相比于其衍生物具有更少的支鏈和更低的活性,木質(zhì)素的zeta電位因—COOH而變負,難以吸附陰離子.近年來,利用甲胺、伯胺和仲胺改性木質(zhì)素,但因這些胺的堿性較弱,吸附容量并不理想.眾所周知,氨基中季銨堿性最強[18],對陰離子具有最強的吸附性能.此外,陰離子還可通過與胺的配合實現(xiàn)吸附[19],多胺因氨基含量多,可提高吸附劑對陰離子的吸附容量.因此,利用多胺和季銨對木質(zhì)素進行化學(xué)改性,探明N摻雜木質(zhì)素對鎢的吸附行為和機制具有重要的研究意義.
本文采用(3-氯-2-羥丙基)三甲基氯化銨和四乙烯五胺對木質(zhì)素進行季銨化和胺化改性,考察了pH值、鎢初始質(zhì)量濃度、吸附時間和N摻雜木質(zhì)素用量對鎢吸附效果的影響,通過SEM-EDS、FTIR和XPS揭示N摻雜木質(zhì)素對鎢的吸附機制.
1 實驗部分
1.1 材料和試劑
木質(zhì)素購于合肥巴斯夫生物科技有限公司;HCl和NaOH(昆山金城試劑有限公司);多聚甲醛和N,N-二甲基甲酰胺(上海山浦化工有限公司);苯酚和氯化亞砜(濟南鑫順化工有限公司);四乙烯五胺(西安天茂化工有限公司);(3-氯-2-羥丙基)三甲基氯化銨(上海阿拉丁生化科技股份有限公司);Na2WO4(天津市博華通化工)均為分析純.
1.2 N摻雜木質(zhì)素的合成
1.2.1 木質(zhì)素的季銨化
先將4 g木質(zhì)素和40 mL苯酚在三口燒瓶中混合均勻,再加入30 mL丙酮將其溶解,在30 ℃恒溫磁力攪拌下反應(yīng)30 min,隨后在70 ℃恒溫干燥箱中蒸發(fā)以去除多余的丙酮.在100 ℃油浴下加入80 mL質(zhì)量分數(shù)72%的濃硫酸并攪拌均勻,隨后加入5 g多聚甲醛反應(yīng)12 h,待溶液冷卻后加入飽和NaHCO3溶液中和至不再出現(xiàn)氣泡時過濾,濾渣在90 ℃恒溫干燥箱中干燥10 h.將3 g干燥后的粉末加入120 mL吡啶中,在冰浴和攪拌下逐滴加入18 mL氯化亞砜,緩慢加熱到70 ℃反應(yīng)5 h后冷卻過濾,將濾渣加入20 mL質(zhì)量分數(shù)60%的(3-氯-2-羥丙基)三甲基氯化銨和30 mL 5 mol/L NaOH溶液中攪拌20 min,在80 ℃下攪拌反應(yīng)24 h后過濾,濾渣在75 ℃恒溫干燥箱中烘干.季銨化過程如圖1所示.
1.2.2 季銨木質(zhì)素的多胺化
取5 g季銨木質(zhì)素加入10 mL 0.5 mol/L的NaOH溶液中,隨后加入1 mL甲醛和10 mL四乙烯五胺,在75 ℃下攪拌5 h進行曼尼希反應(yīng)[20],用鹽酸中和后過濾洗滌,濾渣在60 ℃恒溫干燥箱中干燥5 h得到多胺/季銨木質(zhì)素.多胺化過程如圖2所示.
1.3 鎢組分與pH值的關(guān)系
吸附容量受鎢形態(tài)的影響,而鎢的形態(tài)又受pH值的影響.因此,有必要對W-H2O體系進行熱力學(xué)分析,探明鎢的存在形態(tài)與pH值的關(guān)系.在該體系中可能存在WO2-4、HWO-4、H2WO4、W7O6-24、HW7O5-24、H2W12O10-42、H2W12O6-40[21-25].在c(W)=0.005 mol/L時,不同形態(tài)鎢摩爾分數(shù)與pH值的關(guān)系如圖3所示.結(jié)果表明,WO2-4在pH≥6.2時主要以WO2-4形態(tài)存在,在4.7lt;pHlt;6.2時主要以W7O6-24形態(tài)存在,在pH≤4.7時主要以H2W12O6-40形態(tài)存在.在pH值由大變小的過程中,體系中的含鎢形態(tài)轉(zhuǎn)變過程為WO2-4→ W7O6-24→H2W12O6-40.
1.4 吸附
用鹽酸調(diào)節(jié)溶液pH值,將一定質(zhì)量的N摻雜木質(zhì)素與一定酸度和質(zhì)量濃度的鎢酸鈉溶液混合,進行靜態(tài)吸附.考察pH值、鎢初始質(zhì)量濃度、吸附時間和N摻雜木質(zhì)素用量對鎢吸附容量和吸附率的影響,吸附容量和吸附率的計算如公式(1)和(2)所示.
q=(ρ0-ρe)m×V,(1)
η=ρ0-ρeρ0×100%.(2)
式中,q為鎢的吸附容量,mg/g;ρ0為鎢初始質(zhì)量濃度,mg/L;ρe為鎢的平衡質(zhì)量濃度,mg/L;m為吸附劑質(zhì)量,mg;V為鎢酸鈉溶液的體積,mL;η為鎢的吸附率,%.
1.5 分析與表征
利用掃描電鏡和能量色散X線光譜儀(FlexSEM1 000日立高新公司)對木質(zhì)素和N摻雜木質(zhì)素的微觀形貌和元素進行分析.采用傅里葉變換紅外光譜儀(iSTM 20美國賽默飛公司)分析木質(zhì)素改性前后官能團的變化.通過X線光電子能譜儀(Xplore15牛津儀器科技有限公司)分析N摻雜木質(zhì)素吸附前后電子結(jié)合能的變化.用電感耦合等離子光譜儀(ICP MS 300鋼研納克檢測技術(shù)股份有限公司)測定吸附前后溶液中鎢的質(zhì)量濃度.通過酸堿度測定儀(PHSJ-5 常州三豐儀器科技有限公司)對溶液的pH值進行測定.
2 結(jié)果與討論
2.1 表征
2.1.1 木質(zhì)素改性前后的微觀形貌及元素分析
通過SEM對木質(zhì)素和N摻雜木質(zhì)素的微觀形貌進行分析,采用EDS對木質(zhì)素改性前后的元素進行分析.圖4a顯示,木質(zhì)素表面光滑致密,圖4b中的N摻雜木質(zhì)素表面疏松多孔,這是由于改性后的支鏈增多所致,疏松多孔的表面更有利于目標離子的吸附.圖4c和圖4d顯示,木質(zhì)素中C、N、O和Cl的質(zhì)量分數(shù)分別為31.79%、0、51.96%和16.25%,而多胺/季銨木質(zhì)素中C、N、O和Cl的質(zhì)量分數(shù)分別為41.78%、35.94%、16.76%和5.51%,表明改性后的木質(zhì)素中含有大量的N元素.因此,SEM-EDS結(jié)果表明,改性后的木質(zhì)素表面疏松多孔且含有大量的N元素.
2.1.2 木質(zhì)素改性前后的官能團分析
通過FTIR對木質(zhì)素改性前后的官能團分析,如圖5所示.圖5表明,木質(zhì)素和N摻雜木質(zhì)素
存在一些相同的峰,如在3 417、1 045、2 932 cm-1處的波峰分別歸因于醇羥基O—H和C—O的伸縮振動及甲基中C—H的不對稱伸縮振動,在1 600、1 450、875 cm-1處的波峰為苯環(huán)的骨架振動.然而,與木質(zhì)素相比,N摻雜木質(zhì)素出現(xiàn)了新的峰,在3 741 cm-1處的弱峰為O—H的伸縮振動引起的,在1 230 cm-1處的峰為C—O伸縮振動引起的,表明3 741 cm-1處為少量游離的酚羥基.1 625 cm-1處的峰是NH2的變形振動與NH2的伸縮振動發(fā)生費密共振的結(jié)果.621 cm-1處的弱峰為季銨N—H面外彎曲振動引起的.1 087 cm-1處的弱峰是C—N伸縮振動的吸收峰.紅外光譜結(jié)果進一步表明N摻雜木質(zhì)素中含有的N為胺基和季銨官能團.
2.2 吸附行為
pH值,鎢初始質(zhì)量濃度,吸附時間和吸附劑用量對鎢吸附效果的影響見圖6.
實驗條件:400 r/min,25 ℃和10 mL待吸附液,其中,a的條件為鎢初始質(zhì)量濃度為40 mg/L、10 mg N摻雜木質(zhì)素和600 min;b的條件為pH值為4、10 mg N摻雜木質(zhì)素和600 min;c的條件為pH值為4、鎢初始質(zhì)量濃度為800 mg/L和10 mg N摻雜木質(zhì)素;d的條件為pH值為4、鎢初始質(zhì)量濃度為800 mg/L和吸附時間960 min
a.pH值;b.鎢初始質(zhì)量濃度;c.吸附時間;d.吸附劑用量
圖6a顯示,隨著pH值的增大,鎢的吸附容量呈下降趨勢.pH在2.5~4.0時的吸附容量變化很小,這是因為溶液中鎢的主要存在形態(tài)為H2W12O6-40;pH在4.0~7.0時的吸附容量急劇下降,歸因于H2W12O6-40逐漸轉(zhuǎn)變?yōu)閃O2-4,導(dǎo)致N摻雜木質(zhì)素同等數(shù)量位點吸附的WO2-4更少.因此,最佳pH值為4.0,此時的吸附容量為39.90 mg/g.圖6b表明,鎢的吸附容量隨著鎢初始質(zhì)量濃度的增加先快速增加后趨于平緩.在鎢的初始質(zhì)量濃度由200 mg/L增加到600 mg/L時,吸附容量增速較快,這是因為N摻雜木質(zhì)素的吸附位點充足.在鎢初始質(zhì)量濃度由600 mg/L增加到800 mg/L時,吸附容量的增速放緩,這是由于隨著吸附質(zhì)濃度的增加,吸附質(zhì)的量也增多,而N摻雜木質(zhì)素的吸附位點不變;鎢的初始質(zhì)量濃度大于800 mg/L時,吸附容量保持不變,主要是因為N摻雜木質(zhì)素上的吸附位點幾乎完全被H2W12O6-40占據(jù),而增加的吸附質(zhì)無法再被吸附.因此,最佳鎢初始質(zhì)量濃度為800 mg/L,此時的吸附容量為365.90 mg/g.圖6c表明,隨著吸附時間的延長,N摻雜木質(zhì)素對鎢的吸附容量先快速增加后趨于平緩.吸附時間由360 min延長到960 min時,吸附容量增速較快,主要是N摻雜木質(zhì)素的吸附位點充足,溶液中鎢的質(zhì)量濃度和吸附在木質(zhì)素上鎢的濃度梯度大,擴散驅(qū)動力大;吸附時間超過960 min后,吸附達到平衡,吸附容量幾乎不變,這是因為吸附劑中H2W12O6-40對溶液中H2W12O6-40靜電排斥力,較大的靜電排斥力和較小的擴散驅(qū)動力使H2W12O6-40很難再被吸附.此時1 g/L N摻雜木質(zhì)素對鎢的飽和吸附容量為421.68 mg/g.圖6d顯示,N摻雜木質(zhì)素對鎢的吸附率隨著吸附劑用量的增加而增加,而吸附容量卻減少,這是因為N摻雜木質(zhì)素的吸附位點增多,而溶液中H2W12O6-40的濃度不變,導(dǎo)致吸附率增加,而單位質(zhì)量吸附劑上吸附的H2W12O6-40減少,導(dǎo)致吸附容量逐漸降低.
表1為不同吸附劑對鎢吸附容量的比較.由表1可知,N摻雜木質(zhì)素的飽和吸附容量高于其他吸附劑的飽和吸附容量,表明多胺/季銨木質(zhì)素具有良好的吸附性能.
2.3 模型擬合
2.3.1 吸附等溫模型
為進一步對吸附過程進行深入研究,將平衡質(zhì)量濃度和平衡吸附容量qe的實驗結(jié)果代入Langmuir、Freundlich和Temkin模型進行擬合[31],結(jié)果如圖7和表2所示.
表2表明,F(xiàn)reundlich模型(R2=0.900 6)和Temkin模型(R2=0.961 1)的相關(guān)系數(shù)均小于Langmuir模型的相關(guān)系數(shù)(R2=0.998 3),飽和吸附容量421.68 mg/g與Langmuir模型的理論飽和吸附容量429.18 mg/g非常接近.圖7a顯示,Langmuir模型擬合線上的點均分布在線上,擬合度高.因此,N摻雜木質(zhì)素對鎢的吸附遵循Langmuir模型,表明吸附過程為單分子層均質(zhì)吸附.
分配因子(RL)[32]反映了吸附的難易程度和可逆性:RL=0時,不可逆吸附;0lt;RLlt;1時,可逆且易吸附;RL=1時,可逆且線性吸附;RLgt;1時,難吸附.計算公式如(3)式所示.
RL=(1+bC0)-1.(3)
分配因子與鎢初始質(zhì)量濃度的關(guān)系如圖7d所示,0.078lt;RLlt;0.298,表明吸附可逆且容易發(fā)生.
2.3.2 吸附動力學(xué)模型
吸附快慢體現(xiàn)了吸附效率的高低.因此,有必要對吸附過程進行動力學(xué)研究.將吸附時間與吸附容量的實驗結(jié)果進行準一級動力學(xué)模型、準二級動力學(xué)模型、分子內(nèi)擴散模型和Elovich模型[33]擬合,結(jié)果如圖8和表3所示.
由表3可知,準二級動力學(xué)模型的相關(guān)系數(shù)(R2=0.999 0)大于準一級動力學(xué)模型(R2=0.906 5)、分子內(nèi)擴散模型(R2=0.994 8)和Elovich模型(R2=0.998 3)的相關(guān)系數(shù).
圖8表明,準二級動力學(xué)模型擬合后的點均集中在直線上.因此,N摻雜木質(zhì)素對鎢的吸附符合準二級動力學(xué)模型,表明吸附過程為化學(xué)吸附控制.圖8c顯示,擬合線沒有經(jīng)過原點,表明內(nèi)擴散不是主要控制步驟.
由圖8d和表3可知,在吸附平衡前擬合點分布集中且R2達到了0.998 3,表明N摻雜木質(zhì)素對鎢的吸附為化學(xué)吸附[34].此外,表3顯示,吸附后期擴散速率最?。↘31gt; K32gt;K33),這是因為擴散層厚度增加(A1lt;A2lt;A3),吸附后期沒有有效吸附位點,吸附受液膜擴散控制.因此,反應(yīng)前期受化學(xué)吸附控制,后期受化學(xué)吸附和液膜擴散混合控制[35].
2.4 再生性
在25 ℃、振蕩速率為250 r/min和振蕩時間為60 min的條件下,采用10 mL 2 mol/L NaCl和1 mol/L NaOH混合溶液對10 mg負載鎢N摻雜木質(zhì)素進行解吸.通過吸附-解吸循環(huán)
實驗探明N摻雜木質(zhì)素的再生性能,結(jié)果如圖9所示.圖9結(jié)果表明,再生后N摻雜木質(zhì)素對鎢的吸附容量下降緩慢,第5次再生后的吸附容量僅比第1次再生后的吸附容量下降了10.64%,表明N摻雜木質(zhì)素具有很好的再生性能,利用N摻雜木質(zhì)素吸附鎢具有很廣闊的應(yīng)用前景.
2.5 吸附機制
為揭示N摻雜木質(zhì)素對鎢的吸附機制,對吸附前后的N摻雜木質(zhì)素進行SEM-EDS、FTIR和XPS分析,結(jié)果可見圖10和圖11.
圖10a顯示,吸附后的N摻雜木質(zhì)素含有白色顆粒,圖10b的電子能譜結(jié)果表明白色顆粒為鎢.從圖10c可以看出,810 cm-1為H2W12O6-40的特征峰[36].吸附后N摻雜木質(zhì)素在3 741 cm-1處羥基的波峰消失,表明N摻雜木質(zhì)素中的氫鍵通過靜電吸引吸附了鎢;1 656 cm-1和1 087 cm-1處的C=O和C—N處的波峰基本無變化,表明季銨官能團無價鍵變化,季銨通過離子交換吸附鎢;1 625 cm-1處NH2的變形振動和621 cm-1處N—H面外彎曲振動引起的峰消失,表明NH2通過配合反應(yīng)吸附鎢[37].
由圖11a可知,在N摻雜木質(zhì)素吸附鎢后,198 eV處的Cl 2p特征峰消失,35 eV處出現(xiàn)了W 4f的特征峰,這是因為Cl-與H2W12O6-40發(fā)生了離子交換.從圖11b可以看出,35.30 eV和42.00 eV為W 4f5/2的特征峰,37.10 eV為W 4f7/2的特征峰,表明N摻雜木質(zhì)素吸附了鎢.圖11c和11d O1s的光譜圖顯示,535.10 eV處的O—H特征峰消失,吸附后530.80 eV處出現(xiàn)了H2W12O6-40的特征峰[38],表明氫鍵通過靜電吸引吸附鎢.圖11e和11f表明,吸附后399.80 eV處的—NH2峰發(fā)生了偏移,在400.20 eV處的N—H峰明顯減弱.同時,在399.20 eV處出現(xiàn)的胺基與鎢配合峰變寬,表明多胺基通過配合反應(yīng)吸附鎢.XPS的結(jié)果與SEM-EDS和FTIR的結(jié)果一致.因此,N摻雜木質(zhì)素通過靜電吸引、離子交換和配合反應(yīng)吸附鎢.N摻雜木質(zhì)素對鎢的吸附機制示意如圖12所示.
3 結(jié)論
1)N摻雜木質(zhì)素表面疏松多孔且含有大量的酚羥基、胺基和季銨官能團.
2)在pH=4、鎢初始質(zhì)量濃度為800 mg/L、25 ℃和吸附時間為960 min的條件下,1 g/L N摻雜木質(zhì)素對鎢的飽和吸附容量為421.68 mg/g.N摻雜木質(zhì)素對鎢的吸附遵循Langmuir吸附等溫模型和準二級動力學(xué)模型,N摻雜木質(zhì)素對鎢的吸附為單分子層均質(zhì)化學(xué)吸附.
3)N摻雜木質(zhì)素通過靜電吸引、離子交換和配合反應(yīng)吸附鎢.
參 考 文 獻:
[1] HU Z P,LIU Y,CHEN S H,et al. Achieving high-performance pure tungsten by additive manufacturing:Processing,microstructural evolution and mechanical properties[J]. Int J Refract Met Hard Mater,2023,113:106211. DOI:10.1016/j.ijrmhm.2023.106211.
[2] LO S C,CHENG T M,HU C C,et al. Separation of tungsten and cobalt from cemented tungsten carbide by rapid breakdown anodization[J]. Sep Purif Technol,2023,310:123140. DOI:10.1016/j.seppur.2023.123140.
[3] PANDEY A K,SHARMA A K,MARQUES C. On the application of stacked periodic tungsten grating nanostructure in wide-range plasmonic sensing and other photonic devices[J]. Plasmonics,2021,16(1):9-17. DOI:10.1007/s11468-020-01248-x.
[4] BARIK R,YADAV A K,JHA S N,et al. Two-dimensional tungsten oxide/selenium nanocomposite fabricated for flexible supercapacitors with higher operational voltage and their charge storage mechanism[J]. ACS Appl Mater Interfaces,2021,13(7):8102-8119. DOI:10.1021/acsami.0c15818.
[5] TIMOFEEV I,KOSHELEVA N,KASIMOV N. Contamination of soils by potentially toxic elements in the impact zone of tungsten molybdenum ore mine in the Baikal region:A survey and risk assessment[J]. Sci Total Environ,2018,642:63-76. DOI:10.1016/j.scitotenv.2018.06.042.
[6] GUO W,LI J Q,MANICA R,et al. Quantifying bubble-scheelite interaction under the effect of sodium oleate[J].Miner Eng, 2023,204:108371.DOI:10.1016/j.mineng.108371.
[7] CHEN Y L,HUO G S,GUO X Y,et al. Sustainable extraction of tungsten from the acid digestion product of tungsten concentrate by leaching-solvent extraction together with raffinate recycling[J]. J Clean Prod,2022,375:133924. DOI:10.1016/j.jclepro.2022.133924.
[8] ZEILER B,BARTL A,SCHUBERT W D. Recycling of tungsten:Current share,economic limitations,technologies and future potential[J]. Int J Refract Met Hard Mater,2021,98:105546. DOI:10.1016/j.ijrmhm.2021.105546.
[9] ALI N,SHAH S,KHAN A,et al. Selective separation of tungsten from the model and industrial effluents through supported liquid membrane[J]. Chem Pap,2021,75(2): 553-563. DOI:10.1007/s11696-020-01309-9.
[10] MASRY B A,DAOUD J A. Sorption behavior of tungsten and molybdenum on TVEX-TOPO resin from nitric acid solution[J]. J Chem Tech amp; Biotech,2021,96(5):1399-1410. DOI:10.1002/jctb.6660.
[11] 張恒,張保平,肖煜坤,等.氨基硫脲/季銨木質(zhì)素對鉑的吸附[J].復(fù)合材料學(xué)報,2022,39(10):4674-4684. DOI:10.13801/j.cnki.fhclxb.20211018.004.
[12] DIAS D,DON D,JANDOSOV J,et al. Highly efficient porous carbons for the removal of W(Ⅵ) oxyanion from wastewaters[J]. J Hazard Mater,2021,412:125201. DOI:10.1016/j.jhazmat.2021.125201.
[13] WANG X,LENG W Q,NAYANATHARA R M O,et al. Recent advances in transforming agricultural biorefinery lignins into value-added products[J]. J Agric Food Res,2023,12:100545. DOI: 10.1016/j.jafr.2023.100545.
[14] CULEBRAS M ,COLLINS G A,BEAUCAMP A,et al. Lignin/Si hybrid carbon nanofibers towards highly efficient sustainable Li-ion anode materials[J]. Eng Sci,2022,17:195-203. DOI:10.30919/es8d608.
[15] ZHANG B P,WANG Y,LIN G,et al. Extraction of gold from the leachate of copper anode slime by quaternary ammonium rice husk lignin[J]. Solvent Extraction and Ion Exchange,2023,41(1):1-19. DOI:10.1080/07366299.2022.2115845.
[16] YADAV R,ZABIHI O,F(xiàn)AKHRHOSEINI S,et al. Lignin derived carbon fiber and nanofiber:Manufacturing and applications[J]. Compos Part B:Eng,2023,255:110613. DOI: 10.1016/j.compositesb.2023.110613.
[17] DU B Y,LI W J,ZHU H W,et al. A functional lignin for heavy metal ions adsorption and wound care dressing[J]. Int J Biol Macromol,2023,239:124268. DOI:10.1016/j.ijbiomac.2023.124268.
[18] 曹才放,章行,李小文,等.氯型季銨樹脂對鎢酸根吸附的熱力學(xué)研究[J].有色金屬科學(xué)與工程,2018,9(3):1-4. DOI:10.13264/j.cnki.ysjskx.2018.03.001.
[19] LI F Y,LIANG H N,SHAN J X,et al. Lignin-grafted quaternary ammonium phosphate with temperature and pH responsive behavior for improved enzymatic hydrolysis and cellulase recovery[J]. Int J Biol Macromol,2023,234:123779. DOI:10.1016/j.ijbiomac.2023.123779.
[20] SONG C Y, GAO C, FATEHI P, et al. Influence of structure and functional group of modified kraft lignin on adsorption behavior of dye[J]. Int J Biol Macromol,2023,240:124368. DOI:10.1016/j.ijbiomac.2023.124368.
[21] WANG H,LIU P Y,CHEN X Y,et al. Efficient dissolution of tungstic acid by isopolytungstate solution based on the polymerization theory of tungsten[J]. Hydrometallurgy,2022,209:105835. DOI:10.1016/j.hydromet.2022.105835.
[22] 梁英教,車蔭昌,劉曉霞.無機物熱力學(xué)數(shù)據(jù)手冊[M].沈陽:東北大學(xué)出版社,1993.
[23] REDKIN A F,BONDARENKO G V. Raman spectra of tungsten-bearing solutions[J]. J Solut Chem,2010,39(10):1549-1561. DOI:10.1007/s10953-010-9595-9.
[24] CRUYWAGEN J J,LZAK F J MERWE V D. Tungsten(Ⅵ) equilibria:a potentiometric and calorimetric investigation[J]. J Chem Soc,Dalton Trans,1987(7):1701-1705. DOI:10.1039/DT9870001701.
[25] 張家靚,趙中偉,陳星宇,等.W-Mo-H2O體系鎢鉬分離的熱力學(xué)分析[J].中國有色金屬學(xué)報,2013,23(5):1463-1470. DOI:10.19476/j.ysxb.1004.0609.2013.05.040.
[26] LUO B Y,LIU X H,LI J T,et al. Kinetics of tungstate and phytate adsorption by D201 resin[J]. JOM,2021,73(5):1337-1343. DOI:10.1007/s11837-021-04626-w.
[27] 朱倩倩,熊春華,厲炯慧,等.嗎啡啉螯合樹脂對水中鎢離子的吸附及解吸性能[J].化工學(xué)報,2017,68(8):3119-3125. DOI:10.11949/j.issn.0438-1157.20170163.
[28] WANG Y Y,HUANG K. Biosorption of tungstate onto garlic peel loaded with Fe(Ⅲ),Ce(Ⅲ),and Ti(Ⅳ)[J]. Environ Sci Pollut Res,2020,27(27):33692-33702. DOI:10.1007/s11356-020-09309-8.
[29] OGATA F,NAKAMURA T,UETA E,et al. Adsorption of tungsten ion with a novel Fe-Mg type hydrotalcite prepared at different Mg2+/Fe3+ ratios[J]. J Environ Chem Eng,2017,5(4):3083-3090. DOI:10.1016/j.jece.2017.06.017.
[30] ORDINARTSEV D P,SVIRIDOV A V,SVIRIDOV V V. Extracting vanadium,molybdenum,and tungsten from acidic solutions via adsorption on modified montmorillonite[J]. Russ J Phys Chem A,2018,92(10):2060-2064. DOI:10.1134/S0036024418100229.
[31] WANG J L,GUO X. Adsorption isotherm models:Classification,physical meaning,application and solving method[J]. Chemosphere,2020,258:127279. DOI:10.1016/j.chemosphere.2020.127279.
[32] RAMRAJ S M, KUBAIB A, IMRAN P M, et al. Utilizing sida acuta leaves for low-cost adsorption of chromium(Ⅵ) heavy metal with activated charcoal[J].Journal of Hazardous Materials Advances,2023,11:100338. DOI:10.1016/j.hazadv.2023.100338.
[33] JUNIOR A B B,PINHEIRO E F,ESPINOSA D C R,et al. Adsorption of lanthanum and cerium on chelating ion exchange resins:Kinetic and thermodynamic studies[J]. Sep Sci Technol,2022,57(1):60-69. DOI:10.1080/01496395.2021.1884720.
[34] GRKAN E H,I·LYAS B,TIBET Y. Adsorption performance of heavy metal ions from aqueous solutions by a waste biomass based hydrogel:comparison of isotherm and kinetic models[J]. Int J Environ Anal Chem,2023,103(6):1343-1360. DOI:10.1080/03067319.2021.1873314.
[35] PITCHAY T,JAWAD A H,JOHARI I S,et al. Kinetics studies of metallic ions adsorption by immobilised chitosan[J]. Sci Lett,2022,16(1):137-148. DOI:10.24191/sl.v16i1.15932.
[36] DENG Z E, LUO Y, BIAN M, et al. Synthesis of easily renewable and recoverable magnetic PEI-modified Fe3O4 nanoparticles and its application for adsorption and enrichment of tungsten from aqueous solutions[J]. Environ Pollut, 2023,330:121703. DOI:10.1016/j.envpol.2023.121703.
[37] BATUEVA T D,SHCHERBAN M G,KONDRASHOVA N B. Mesoporous silica materials and their sorption capacity for tungsten(Ⅵ) and molybdenum(Ⅵ) ions[J]. Inorg Mater,2019,55(11):1146-1150. DOI:10.1134/S0020168519110013.
[38] HONG H J, YOO H J, JEON J H,et al. Differential adsorption of vanadium(Ⅴ) and tungsten(W) on ion exchange resins: A novel approach for separation and recovery of spent catalyst leachate[J]. J Clean Prod,2023,426:139157. DOI:10.1016/j.jclepro.2023.139157.
(責任編輯:梁俊紅)
收稿日期:2023-12-28;修回日期:2024-02-15
基金項目:
國家自然科學(xué)基金資助項目(U1960108)
第一作者:張保平(1974—),男,武漢科技大學(xué)副教授,博士,主要從事生物質(zhì)吸附劑改性與應(yīng)用研究.E-mail:zhangbaoping@wust.edu.cn