• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      小分子熱激蛋白在植物應(yīng)對高溫脅迫中的作用

      2024-09-26 00:00:00徐彤王英琪李淵安本澤蔣敏楊文飛吳云飛
      江蘇農(nóng)業(yè)學(xué)報 2024年7期

      摘要:小分子熱激蛋白(sHSPs)是一類不依賴于腺嘌呤核苷三磷酸并具有分子伴侶功能的功能保守型蛋白質(zhì)。sHSPs在植物受到高溫脅迫時產(chǎn)生的熱激反應(yīng)中尤為重要,通過防止錯誤蛋白質(zhì)的熱集聚、與其他熱激蛋白互作,促使錯誤蛋白質(zhì)被降解或重新折疊,進(jìn)而幫助植株響應(yīng)高溫。同時,sHSP的表達(dá)受到熱休克元件、熱休克轉(zhuǎn)錄因子、長鏈非編碼RNA(lncRNA)、小分子RNA(miRNA)及一些植物激素的調(diào)控。本文總結(jié)了植物sHSPs結(jié)構(gòu)功能、調(diào)控機(jī)制及相關(guān)研究進(jìn)展,著重闡述了植物sHSPs在高溫脅迫下的響應(yīng)機(jī)制,為研究植物響應(yīng)高溫的機(jī)制提供參考。

      關(guān)鍵詞:小分子熱激蛋白;高溫脅迫;激素;植物

      中圖分類號:Q946.1文獻(xiàn)標(biāo)識碼:A文章編號:1000-4440(2024)07-1343-08Role of small molecule heat shock proteins in plants’ response to high temperature stressXU Tong WANG Yingqi LI Yuan ANSAH Ebenezerottopah JIANG Min YANG Wenfei WU Yunfei

      (1.College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China;2.Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Agricultural College of Yangzhou University, Yangzhou 225009, China;3.Huaiyin Institute of Agricultural Sciences in Xuhuai Region of Jiangsu, Huai’an 223001, China)

      Abstract:Small molecule heat shock proteins (sHSPs) are a type of functionally conserved proteins that do not depend on ATP and have molecular chaperone function. sHSPs are particularly important in the heat shock response of plants under high temperature stress. By preventing the thermal aggregation of error proteins and interacting with other heat shock proteins, sHSPs promoted the degradation or refolding of error proteins, thereby helped plants to respond to high temperatures. Besides, the expression of sHSP was regulated by heat shock elements, heat shock transcription factors, long non-coding RNA (lncRNA), micro RNA (miRNA) and some plant hormones. This article reviewed the gene structure, function, regulatory mechanism and related research progress of plant sHSPs, focused on the response mechanism of plant sHSPs under high temperature stress, so as to provide a reference for studying the mechanism of plants’ response to high temperature.

      Key words:small molecule heat shock protein;heat stress;hormone;plant

      近年來,人類活動導(dǎo)致全球氣溫升高。聯(lián)合國政府間氣候變化專門委員會(IPCC)第6次評估報告內(nèi)容顯示,過去1個多世紀(jì)中,化石燃料的燃燒以及不可持續(xù)的能源與土地的使用導(dǎo)致全球氣溫上升了1.1 ℃,未來10年里全球氣溫上升將超過1.5 ℃[1]。全球氣溫升高不利于喜溫作物的生長,這種不利影響在中低緯度地區(qū)體現(xiàn)得更為明顯。高溫脅迫首先會對細(xì)胞壁果膠Ca2+造成影響,接著會影響細(xì)胞膜和膜蛋白的正確轉(zhuǎn)錄翻譯,從而進(jìn)一步改變質(zhì)膜的流動性和通透性,影響信號運(yùn)輸。其次,高溫可能會抑制三羧酸循環(huán)和氧化磷酸化過程中相關(guān)酶的活性[2],進(jìn)而導(dǎo)致腺嘌呤核苷三磷酸(ATP)和煙酰胺腺嘌呤二核苷酸磷酸(NADPH)的供應(yīng)不足。此外,高溫會誘導(dǎo)活性氧(ROS)的積累,導(dǎo)致細(xì)胞結(jié)構(gòu)損傷。葉綠體是植物中重要的光合作用場所,作為產(chǎn)生ROS的主要場所之一,極易受到高溫的影響,尤其是光系統(tǒng)Ⅰ(PSⅠ)和光系統(tǒng)Ⅱ(PSⅡ)的結(jié)構(gòu)易受到嚴(yán)重影響[3]。以重要的糧食作物水稻為例,中國種植水稻的面積位列世界第二,產(chǎn)量位列世界第一。環(huán)境的日均最低溫度每上升1 ℃便會導(dǎo)致水稻產(chǎn)量損失10%[4]。在萌發(fā)期,種子受高溫脅迫會導(dǎo)致胚芽長度和根尖數(shù)顯著減少,抗氧化酶活性和相關(guān)基因表達(dá)也受到抑制[5]。在營養(yǎng)生長期,高溫脅迫致使葉綠體基粒片層斷裂,導(dǎo)致葉綠素合成速率降低、葉片氣孔導(dǎo)度顯著降低,這不僅導(dǎo)致株高、分蘗數(shù)、干物質(zhì)重以及葉面積和光合速率下降,還明顯影響根系的生長,甚至直接導(dǎo)致植株死亡[6-7]。在生殖生長時期,高溫會導(dǎo)致花粉敗育、柱頭表面分泌物減少、柱頭萎蔫、花粉管生長異常、雌蕊細(xì)胞中ROS過量積累,造成細(xì)胞膜系統(tǒng)損傷,雌蕊細(xì)胞程序性死亡和生理活性顯著降低,抑制籽粒灌漿,導(dǎo)致同化物分配受阻和粒重顯著下降[8-10]。

      1熱激蛋白的功能

      植物是靜態(tài)固著生長的生物,通過對外界溫度的及時感知,再通過主動的自身形態(tài)建成來適應(yīng)極端的環(huán)境。近10年來,植物感受溫度的途徑已經(jīng)得到廣泛的研究[11-12]。植物通過一系列生理響應(yīng)機(jī)制應(yīng)對高溫脅迫,如調(diào)節(jié)細(xì)胞壁中Ca2+進(jìn)入細(xì)胞質(zhì)中、激活熱休克反應(yīng)(HSR)、改變蛋白質(zhì)的亞細(xì)胞定位、利用熱激蛋白幫助蛋白質(zhì)正確折疊及轉(zhuǎn)運(yùn)等。根據(jù)前人的研究結(jié)果,線粒體熱激蛋白能夠調(diào)節(jié)氧化還原反應(yīng)中電子傳遞鏈的細(xì)胞色素生成,從而誘導(dǎo)ROS產(chǎn)生,促進(jìn)高溫下種子的萌發(fā)[13]。在熱脅迫誘導(dǎo)下,熱激蛋白還能和變性蛋白結(jié)合,幫助蛋白質(zhì)折疊[14-16]。

      熱激蛋白(HSP)作為分子伴侶,輔助蛋白質(zhì)的正確折疊,于1962年在果蠅體內(nèi)首次被發(fā)現(xiàn)[17],1982年熱激蛋白的分子伴侶功能被正式提出[18]。熱激蛋白除了在受脅迫的細(xì)胞中表達(dá)外,在正常的細(xì)胞中亦有表達(dá)。據(jù)此可分為組成型HSP,也稱為熱休克同源蛋白(HSC),以及誘導(dǎo)性HSP,兩者在結(jié)構(gòu)和功能上相似。小分子熱激蛋白(sHSPs)是一類相對分子量較小的熱激蛋白類型[19],相對分子量范圍為12 000~42 000,廣泛地分布于真核生物和部分原核生物中[20]。sHSP由α-晶體蛋白結(jié)構(gòu)域(ACD)、N末端區(qū)域(NTR)和1個短的C末端區(qū)域(CTR)構(gòu)成,其中保守序列ACD被高度靈活的NTR和CTR所包圍[21],中間部分包括2個疏水的β折疊域和1個親水的α螺旋,通過ACD結(jié)構(gòu)域可以識別sHSP[22]。同時,兩側(cè)較短的C端和可變長度的N端有助于sHSPs識別變性蛋白,幫助其折疊或穩(wěn)定。根據(jù)前人的研究結(jié)果,sHSPs的C端可能和維持分子伴侶的活性有關(guān),N端臂可能和底物蛋白質(zhì)的相互作用相關(guān)[23-24]。在植物受到逆境脅迫時,sHSPs含量驟增[25],可作為分子伴侶,幫助蛋白質(zhì)折疊以及蛋白質(zhì)建立正確構(gòu)象,同時也可參與多肽鏈的降解和轉(zhuǎn)錄調(diào)控。sHSPs區(qū)別于其他大分子蛋白質(zhì),不依賴于ATP發(fā)揮功能。而蛋白質(zhì)保持結(jié)構(gòu)和功能正常,需要sHSPs的參與。根據(jù)序列同源性及亞細(xì)胞定位分析結(jié)果,被子植物中sHSPs包含11個亞家族(CⅠ~CⅥ、MTⅠ、MTⅡ、ER、CP和 PX)。其中,6個sHSP亞家族(CⅠ~CⅥ) 定位于細(xì)胞質(zhì)或細(xì)胞核,2個亞家族(MTⅠ和MTⅡ)定位于線粒體,其他3個亞家族(CP、ER、PX)分別定位于葉綠體、內(nèi)質(zhì)網(wǎng)和過氧化物酶體[22]。在核質(zhì)sHSP中,CⅠ、CⅡ、CⅢ亞家族保守性高,其中CⅠ亞家族的蛋白質(zhì)數(shù)目最多。

      目前sHSPs蛋白在多種植物中被鑒定,如在擬南芥(Arabidopsis thaliana L.)中鑒定到19個[26],在水稻(Oryza sativa L.)中鑒定到23個[27],在番茄(Solanum lycopersicum L.)中至少鑒定到42個[28],在小麥(Triticum aestivum L.)中鑒定到109個[29],在玉米(Zea may L.)中鑒定到44個[30]。在擬南芥中,AtHSP17.8能夠通過調(diào)節(jié)脫落酸(ABA)信號來正向調(diào)控其抗逆境能力[31],并且可能調(diào)控葉綠體膜蛋白靶向性[32]。擬南芥中葉綠體HSP21能夠和類囊體相互作用,通過保護(hù)膜免受氧自由基引起的膜脂過氧化來抵抗高溫[24]。在高溫條件下,水稻CⅠ類sHSP基因HSP16.7A、HSP16.9B、HSP16.9C、HSP17.4、HSP17.7、HSP17.9 A和HSP18的表達(dá)均會受到影響[33]。 如OsHSP16.9過表達(dá)有助于提高水稻的耐熱能力[34]。OsHSP17.4和OsHSP17.9A能夠防止蛋白質(zhì)的不可逆熱聚集,并通過防止檸檬酸合成酶的聚集來抵御高溫。OsHSP17.7過表達(dá)能夠提高植物耐熱性、對紫外線-B(UV-B)的抗性以及耐旱性[35-36]。研究結(jié)果還表明,sHSP能夠調(diào)控萌發(fā)種子的基礎(chǔ)耐熱性以及影響種子的壽命,其中OsHSP17.9A、OsHSP17.4和OsHSP16.9A在幼苗期和花期表達(dá)量有所上調(diào)[37]。除了CI-sHSP類基因外,其他的水稻sHSP也和耐熱性相關(guān),如sHSP22能影響生長素的運(yùn)輸,調(diào)控下胚軸的伸長來響應(yīng)高溫[38-39]。葉綠體OsHSP26.7受到氧化脅迫和高溫脅迫的誘導(dǎo),在體內(nèi)熱應(yīng)激和氧化應(yīng)激期間對光系統(tǒng)Ⅱ(PSⅡ)的保護(hù)起著重要作用[40]。在玉米中,ZmHSP22是第1個被證明磷酸化的蛋白質(zhì),同年發(fā)現(xiàn)AtHSP17.6A在擬南芥中過表達(dá)能夠增強(qiáng)其響應(yīng)滲透脅迫的能力[41- 42]。胞質(zhì)型蛋白ZmHSP16.9受到H2O2和高溫的誘導(dǎo)表達(dá),在煙草中表達(dá)能夠顯著提升其抗高溫和抗氧化脅迫的能力[43]。小麥中葉綠體sHSP26在種子發(fā)育后期起作用,其在擬南芥中表達(dá)能夠提升植株對高溫的耐受性,該基因和基礎(chǔ)耐熱緊密相關(guān)[44]。在番茄中,葉綠體SlHSP21能夠保護(hù)PSⅡ,在番茄果實成熟的過程中能抵抗氧化脅迫。該基因存在乙烯激素響應(yīng)相關(guān)的基序,其可能和乙烯調(diào)控有關(guān),具有類似功能的還有SlHSP20、SlHSP22和SlHSP27[45]。在與光系統(tǒng)Ⅰ(PSⅠ)活性相關(guān)的WHIRLY1過表達(dá)植株中,SlHP21.5上調(diào)表達(dá),能夠增加膜穩(wěn)定性和可溶性糖的含量,降低ROS的積累,進(jìn)一步增強(qiáng)植株耐熱性[30]。

      2熱脅迫下小分子熱激蛋白的表達(dá)調(diào)控2.1熱休克轉(zhuǎn)錄因子和熱休克元件上游元件作用

      熱休克元件(HSE)作為熱激反應(yīng)中調(diào)控HSP表達(dá)的上游調(diào)控元件,通過和高溫下熱休克轉(zhuǎn)錄因子(HSF)形成三聚體[46-49],來調(diào)控HSP相關(guān)基因的轉(zhuǎn)錄表達(dá)。HSF包含3個功能域:DNA結(jié)合結(jié)構(gòu)域(DBD)、寡聚結(jié)構(gòu)域(OD)、核定位結(jié)構(gòu)域(NLS)[48],其中DBD能特異性地和HSE結(jié)合,來啟動sHSP的表達(dá),同時sHSP網(wǎng)絡(luò)也能反過來作用于HSFA2,通過影響其溶解度、細(xì)胞定位功能和激活劑的功能影響sHSP蛋白活性[50]。在熱激反應(yīng)中,HSF相關(guān)因子被證明在其中起到重要作用,如HSFA2 mRNA能夠通過發(fā)夾結(jié)構(gòu)來感知外界高溫[51],在擬南芥中,HsfA1有助于植物的獲得性耐熱[52],HSFA2被證實參與植物的熱脅迫記憶[53]?,F(xiàn)階段研究者已經(jīng)從不同的植物中分離到許多HSF和HSP,前人在擬南芥中至少發(fā)現(xiàn)了21種HSF[54],在水稻中至少克隆到19種HSF[55]。其中,HSFA1a、HSFA1b和HSFA1d是熱激反應(yīng)的主要正調(diào)節(jié)基因[52],HSFA2對植物的耐熱性有正向調(diào)控作用[53],OsHSFA2d能通過熱脅迫下的選擇性剪接,從正常情況下無轉(zhuǎn)錄活性的OsHSFA2dII形式轉(zhuǎn)變?yōu)橛修D(zhuǎn)錄活性的OsHSFA2dI形式來響應(yīng)高溫[56]。水稻3 號染色體上的耐熱基因HTG3選擇性剪接的亞型能夠編碼功能性HSF,前人研究結(jié)果表明,HTG3能夠通過調(diào)節(jié)脅迫相關(guān)基因的表達(dá)和茉莉酸信號基因,從而調(diào)控水稻耐熱性[57]。

      2.2長鏈非編碼RNA和小分子RNA的下游元件作用長鏈非編碼RNA(lncRNA)和小分子RNA(miRNA)是在植物應(yīng)激反應(yīng)中基因表達(dá)調(diào)節(jié)過程的重要組成部分,在轉(zhuǎn)錄和轉(zhuǎn)錄后調(diào)控中起到重要作用[58]。lncRNA、miRNA、mRNA和sHSP可以共同形成 miRNA-lncRNA-mRNA網(wǎng)絡(luò)或lncRNA-miRNA-mRNA網(wǎng)絡(luò),以應(yīng)對生物和非生物脅迫[59]。miRNA調(diào)節(jié)的sHSP能在熱脅迫過程中被誘導(dǎo),從而使細(xì)胞快速產(chǎn)生響應(yīng)脅迫的蛋白質(zhì)[60]。研究結(jié)果表明,高溫下miR156亞型被誘導(dǎo)表達(dá),通過負(fù)調(diào)控SPL來解除SPL對熱脅迫基因的控制,從而激活HSP的表達(dá)[61]。除此以外,在高溫下,擬南芥HSFA1b、HSFA7b通過和miR398的啟動子結(jié)合以激活miR398表達(dá),CSD1、CSD2和CCS轉(zhuǎn)錄表達(dá)水平下調(diào),進(jìn)而促進(jìn)HSP/HSF的積累,增強(qiáng)植株耐熱性[62]。

      3植物激素對小分子熱激蛋白表達(dá)的影響當(dāng)植物受到非生物脅迫時,植物激素可以和其他激素或蛋白質(zhì)(如熱激蛋白、特異性轉(zhuǎn)錄因子)互作[63],通過信號級聯(lián)反應(yīng)響應(yīng)逆境脅迫。下面對脫落酸、乙烯、茉莉酸、赤霉素對熱激反應(yīng)中熱激蛋白表達(dá)調(diào)控的影響進(jìn)行介紹。

      3.1脫落酸

      脫落酸(ABA)在植物受到熱脅迫、干旱脅迫等逆境脅迫時,會在植物體內(nèi)大量積累,調(diào)控下游逆境相關(guān)基因的表達(dá),來抵御脅迫。研究發(fā)現(xiàn), ABA可以通過調(diào)節(jié)HSF和HSP表達(dá)來提高植物的耐熱性。施加外源ABA,能夠提高水稻幼苗的抗氧化防御能力和熱激反應(yīng)相關(guān)基因(如OsHSP23.7、OsHSP17.7、OsHSF7和OsHsfA2a)的表達(dá)水平,從而增強(qiáng)水稻幼苗的耐熱性[64]。

      除此以外,在其他植物中,ABA的調(diào)控作用得到了更廣泛的研究,如熱脅迫上調(diào)小麥熱激轉(zhuǎn)錄因子編碼基因TaHsfA6f的轉(zhuǎn)錄水平,過表達(dá)TaHsfA6f的擬南芥轉(zhuǎn)基因植株,ABA含量會顯著增加,這提高了擬南芥對各種逆境的耐受性。進(jìn)一步的轉(zhuǎn)錄組學(xué)分析結(jié)果表明,在熱脅迫條件下,ABA激活TaHsfA6f的表達(dá),而TaHsfA6f又反過來增強(qiáng)ABA的積累,形成正反饋回路,加強(qiáng)了對熱脅迫的響應(yīng)[65]。此外,研究結(jié)果表明,在HSFA6b無效突變體、HSFA6b過表達(dá)株系和HSFA6b顯性負(fù)性突變體的種子萌發(fā)、子葉綠化、根系伸長的生長階段,HSFA6b正調(diào)控ABA介導(dǎo)的耐鹽和耐旱反應(yīng),其作為ABA介導(dǎo)的熱脅迫反應(yīng)的下游調(diào)節(jié)因子發(fā)揮作用,并且是抗熱脅迫所必需的[66]。在高溫條件下,玉米ZmHSP26具有保護(hù)葉綠體PSⅡ的能力,并且其表達(dá)受到ABA的調(diào)控[67]。除此以外,外源ABA處理會導(dǎo)致核定位蛋白ZmHsfA4a編碼基因下調(diào)表達(dá),進(jìn)而降低下游HSP相關(guān)基因的表達(dá)量,來響應(yīng)干旱[68]。在ABA和吲哚乙酸(IAA)處理下,丹參(Salvia miltiorrhiza Bunge)體內(nèi)SmHSP21.8可被誘導(dǎo)表達(dá)[69]。

      ABA還能通過調(diào)節(jié)植物中酶的活性、糖類物質(zhì)含量來響應(yīng)熱脅迫。ABA在高溫脅迫下會誘導(dǎo)植物煙酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶的表達(dá)從而使ROS含量增加,再通過提高ROS水平來增強(qiáng)抗氧化能力,從而增強(qiáng)植物耐熱性[70-71]。同時,ABA 還可以通過加速蔗糖的運(yùn)輸和增強(qiáng)碳代謝和促進(jìn)能量平衡,以增強(qiáng)植物的耐熱性[72-73]。參與蔗糖轉(zhuǎn)運(yùn)和代謝的基因,如與蔗糖轉(zhuǎn)運(yùn)蛋白、蔗糖合酶和轉(zhuǎn)化酶相關(guān)的基因,在熱脅迫下都可能被ABA激活[74]。

      3.2茉莉酸

      茉莉酸(JA)、茉莉酸甲酯(MeJA)是植物中重要的內(nèi)源激素。茉莉酸在植物質(zhì)體和過氧化物酶體中合成,茉莉酸甲酯在植物胞質(zhì)中以茉莉酸為前體,在酶的催化下形成。茉莉酸主要調(diào)節(jié)植物正常生長發(fā)育(尤其是開花、結(jié)果和衰老) 過程中植物對生物脅迫(病原體、昆蟲等)和非生物脅迫(低溫、鹽、干旱、高溫、重金屬等脅迫)的應(yīng)答反應(yīng)[75]。研究結(jié)果表明,HTG3a能夠編碼功能性HSF,正向調(diào)控水稻耐熱性,進(jìn)一步的研究結(jié)果表明,HTG3a能夠和OsJAZ9和OsJAZ12的啟動子結(jié)合,OsJAZ9和OsJAZ12轉(zhuǎn)錄表達(dá)水平上調(diào),并且OsJAZ9能作為水稻耐熱性的正調(diào)控基因幫助抵抗熱脅迫[57]。低溫脅迫下,對番茄外源施用水楊酸甲酯(MeSA),可誘導(dǎo)番茄中sHSP轉(zhuǎn)錄本的積累,尤其是Ⅱ類sHSP的轉(zhuǎn)錄本豐度增加,降低了低溫脅迫對番茄的傷害[76]。在煙草(Nicotiana tabacum L.)中,用外源MeJA 處理單一葉片后,可以檢測到sHSP被誘導(dǎo)表達(dá),從而響應(yīng)熱脅迫[77]。在擬南芥響應(yīng)高溫脅迫的過程中,外源施加低劑量JA,有助于擬南芥維持細(xì)胞活力:如擬南芥突變體cpr5-1中JA信號通路的組成型表達(dá)被激活,則耐熱能力提升,而當(dāng)cpr5-1與缺乏JA生物合成途徑的突變體jar1-1或缺乏JA信號通路的突變體coi1-1雜交后,耐熱性降低[78]。此外,最近的一項研究結(jié)果表明,較高的溫度導(dǎo)致JOXs和ST2A的表達(dá)量增加,具有生物活性的茉莉酸鹽濃度降低,導(dǎo)致JAZ蛋白豐度增加,從而促進(jìn)植物在高溫下生長[79]。

      3.3乙烯

      乙烯(Ethylene)是一類內(nèi)源性植物激素,在20世紀(jì)30年代被發(fā)現(xiàn)可在植物中合成[80],其既可以單獨調(diào)控果實的成熟,也可以和其他植物激素、大分子蛋白質(zhì)協(xié)同作用,共同調(diào)控植物的生命進(jìn)程,并參與植物的應(yīng)激反應(yīng)[81-82]。乙烯在植物體中的合成途徑已得到廣泛研究,其主要通過S-腺苷甲硫氨酸被1-氨基環(huán)丙烷-1-羧酸(ACC)合酶(ACS)催化生成ACC,最后,ACC氧化酶(ACO)催化ACC形成乙烯、二氧化碳和氰化物[83-84]。在不同的植物中,乙烯調(diào)控方式不同,在番茄熱激反應(yīng)中,乙烯以下游轉(zhuǎn)錄因子MADS-RIN 為媒介,來調(diào)控下游SlHSP17.6、SlHSP17.7A、SlHSP17.7B、SlHSP20.0和SlHSP20.1 5個Ⅰ類熱激蛋白基因的表達(dá)[45],其中SlHSP17.7A和SlHSP17.7B的表達(dá)模式和ACS、MADS-RIN相似,且外源乙烯的施加會使SlHSPA/SlHSPB表達(dá)量下調(diào)[85]。在禾本科植物中,AP2/EREBP家族中ERF014s被證實與禾本科植物中sHSP-ERF014基因座上sHSP基因簇共同進(jìn)化,在熱激反應(yīng)早期,ERF014s可以參與HSFAs-HSPs網(wǎng)絡(luò),直接調(diào)控sHSP的表達(dá)[86],這有助于研究高溫馴化植物的進(jìn)化歷程。

      3.4赤霉素

      赤霉素(GA)是植物生長激素,對種子萌發(fā)、解除種子的休眠以及植物的莖、花、種子發(fā)育有積極作用[87]。赤霉素主要是通過和受體GID1以及DELLA蛋白形成復(fù)合體,再進(jìn)行泛素化降解來進(jìn)行GA的信號調(diào)節(jié)[88]。GA可以和ABA拮抗介導(dǎo)植物的多種生理過程,GA和ABA的比例平衡對正常發(fā)育和應(yīng)激反應(yīng)至關(guān)重要[89]。非生物脅迫通過影響ABA和GA含量的平衡來觸發(fā)相關(guān)的脅迫反應(yīng),高溫會增加擬南芥種子中的ABA含量并降低GA含量,來降低高溫造成的傷害[90]。研究結(jié)果表明,在水稻中,株型調(diào)控基因NAL11能夠編碼含有Dna J結(jié)構(gòu)域的HSP,可參與葉綠體的發(fā)育、維持GA在植物中的穩(wěn)態(tài),從而提升植物在高溫下的存活率[91]。

      4展望

      近年來全球氣候變暖導(dǎo)致高溫天氣頻發(fā),對植物的生長發(fā)育產(chǎn)生了不可逆轉(zhuǎn)的影響。在高溫脅迫下,sHSP的轉(zhuǎn)錄表達(dá)容易受到上游HSFs、HSE、LncRNA和miRNA的調(diào)控。植物激素也能從轉(zhuǎn)錄組水平來影響HSF、sHSP及其他熱激調(diào)控元件的表達(dá)。然而,sHSP容易形成二聚體或多聚體,存在較強(qiáng)的冗余作用,導(dǎo)致現(xiàn)階段對sHSPs在熱脅迫中的功能及互作機(jī)制所知甚少。因此,在后續(xù)的研究中需要注意如下內(nèi)容:(1) 構(gòu)建更多的sHSP單突變或多突變遺傳材料,有助于進(jìn)一步挖掘sHSP耐熱基因;(2) 除了HSF和HSE,探索新的調(diào)控因子及不同植物激素通過哪些LncRNA和miRNA進(jìn)而誘導(dǎo)sHSP的轉(zhuǎn)錄表達(dá),進(jìn)而建立調(diào)控網(wǎng)絡(luò);(3) 秈稻和粳稻耐高溫能力具有顯著差異,嘗試構(gòu)建不同的點突變或使用近等基因系株系來構(gòu)建耐高溫水稻新種質(zhì)資源用于應(yīng)對未來可能出現(xiàn)的高溫逆境。

      參考文獻(xiàn):

      [1]ROMERO H L A J. Climate change 2023:synthesis report. Contribution of working groups Ⅰ,Ⅱ and Ⅲ to the sixth assessment report of the intergovernmental panel on climate change[R]. Geneva:IPCC,2023.

      [2]KAN Y, MU X R, GAO J, et al. The molecular basis of heat stress responses in plants[J]. Molecular Plant,2023,16(10):1612-1634.

      [3]LEE B H, WON S H, LEE H S ,et al. Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice[J]. Gene,2000,245(2):283-290.

      [4]PENG S B, HUANG J L, SHEEHY J E, et al. Rice yields decline with higher night temperature from global warming[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(27):9971-9975.

      [5]于玉鳳,楊穎慧,潘素君,等. 肌肽對高溫脅迫下水稻種子萌發(fā)及其生理特性的影響[J/OL]. 分子植物育種,2022:1-12. https://kns.cnki.net/kcms/detail/46.1068.s.20220325.1059.002.html.

      [6]余欣,童飛,詹妮,等. 干旱-高溫交叉脅迫對水稻幼苗光合特性的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2022,40(3):72-78.

      [7]穰中文,周清明. 水稻高溫脅迫的生理響應(yīng)及耐熱機(jī)理研究進(jìn)展[J]. 中國農(nóng)學(xué)通報,2015,31(21):249-258.

      [8]張明靜,韓笑,胡雪,等. 不同種植方式下溫度升高對水稻產(chǎn)量及同化物轉(zhuǎn)運(yùn)的影響[J]. 中國農(nóng)業(yè)科學(xué),2021,54(7):1537-1352.

      [9]周宇嬌,張偉楊,楊建昌. 高溫脅迫導(dǎo)致水稻光溫敏核不育系開穎與雌蕊受精障礙的研究進(jìn)展[J]. 作物雜志,2022(4):1-8.

      [10]張彩霞. 高溫影響水稻韌皮部同化物轉(zhuǎn)運(yùn)及代謝的作用機(jī)制及調(diào)控[D]. 北京:中國農(nóng)業(yè)科學(xué)院,2019.

      [11]CHEN D, LYU M, KOU X X, et al. Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B[J]. Molecular Cell,2022,82(16):3015-3029.

      [12]JUNG J H, BARBOSA A D, HUTIN S, et al. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis[J]. Nature,2020,585(7824):256-260.

      [13]MA W, GUAN X, LI J, et al. Mitochondrial small heat shock protein mediates seed germination via thermal sensing[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(10):4716-4721.

      [14]LEE G J, ROSEMAN A M, SAIBIL H R, et al. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state[J]. The EMBO Journal,1997,16(3):659-671.

      [15]LEE G J, VIERLING E. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein[J]. Plant Physiology,2000,122(1):189-197.

      [16]EHRNSPERGER M, GRAEBER S, GAESTEL M, et al. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation[J]. The EMBO Journal,1997,16(2):221-229.

      [17]RITOSSA F. A new puffing pattern induced by temperature shock and DNP in drosophila[J]. Experientia,1962,18(12):571-573.

      [18]PELHAM H R. A regulatory upstream promoter element in the Drosophila hsp 70 heat-shock gene[J]. Cell,1982,30(2):517-528.

      [19]黃祥富,黃上志,傅家瑞,等. 植物熱激蛋白的功能及其基因表達(dá)的調(diào)控[J]. 植物學(xué)通報,1999,16(5):530-536.

      [20]WATERS E R, VIERLING E. Plant small heat shock proteins - evolutionary and functional diversity[J]. New Phytologist,2020,227(1):24-37.

      [21]ZHANG N, JIANG J. Research advances of small heat shock protein gene family (sHSPs) in plants[J]. Plant Physiology Journal,2017,53(6):943-948.

      [22]WATERS E R. The evolution,function,structure,and expression of the plant sHSPs[J]. Journal of Experimental Botany,2013,64(2):391-403.

      [23]BASHA E, JONES C, BLACKWELL A E, et al. An unusual dimeric small heat shock protein provides insight into the mechanism of this class of chaperones[J]. Journal of Molecular Biology,2013,425(10):1683-1696.

      [24]BERNFUR K, RUTSDOTTIR G, EMANUELSSON C. The chloroplast-localized small heat shock protein Hsp21 associates with the thylakoid membranes in heat-stressed plants[J]. Protein Science,2017,26(9):1773-1784.

      [25]JAGADISH S V K, MUTHURAJAN R, OANE R, et al. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.)[J]. Journal of Experimental Botany,2010,61(1):143-156.

      [26]SCHARF K D, SIDDIQUE M, VIERLING E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins)[J]. Cell Stress & Chaperones,2001,6(3):225-237.

      [27]SARKAR N K, KIM Y K, GROVER A. Rice sHsp genes:genomic organization and expression profiling under stress and development[J]. Bmc Genomics,2009,10:393.

      [28]YU J H, CHENG Y, FENG K, et al. Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses[J]. Frontiers in Plant Science,2016,7:1215.

      [29]MUTHUSAMY S K, DALAL M, CHINNUSAMY V, et al. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat[J]. Journal of Plant Physiology,2017,211:100-113.

      [30]QI H H, CHEN X K, LUO S, et al. Genome-wide identification and characterization of heat shock protein 20 genes in maize[J]. Life,2022,12(9):1397.

      [31]KIM D H, XU Z Y, HWANG I. AtHSP17.8 overexpression in transgenic lettuce gives rise to dehydration and salt stress resistance phenotypes through modulation of ABA-mediated signaling[J]. Plant Cell Reports,2013,32(12):1953-1963.

      [32]KIM D H, XU Z Y, NA Y J, et al. Small heat shock protein Hsp17.8 functions as an AKR2A cofactor in the targeting of chloroplast outer membrane proteins in Arabidopsis[J]. Plant Physiology,2011,157(1):132-146.

      [33]GUAN J C, JINN T L, YEH C H, et al. Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.)[J]. Plant Molecular Biology,2004,56(5):795-809.

      [34]郭虹霞,王創(chuàng)云,趙麗,等. 水稻中2個小分子熱激蛋白基因啟動子的序列分析及功能鑒定[J]. 西北農(nóng)業(yè)學(xué)報,2019,28(7):1079-1086.

      [35]SATO Y, YOKOYA S. Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein,sHSP17.7[J]. Plant Cell Reports,2008,27(2):329-334.

      [36]SARKAR N K, KOTAK S, AGARWAL M, et al. Silencing of class I small heat shock proteins affects seed-related attributes and thermotolerance in rice seedlings[J]. Planta,2019,251(1):26.

      [37]CHEN X H, LIN S K, LIU Q L, et al. Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress[J]. Biochimica Et Biophysica Acta-Proteins and Proteomics,2014,1844(4):818-828.

      [38]繆樂怡,范金嵐,詹嘉濤,等. 水稻小分子熱激蛋白基因Os02g0782500對逆境脅迫和激素的響應(yīng)分析[J]. 廣東農(nóng)業(yè)科學(xué),2023,50(12):112-119.

      [39]SINGH G, SARKAR N K, GROVER A. Hsp70,sHsps and ubiquitin proteins modulate HsfA6a-mediated Hsp101 transcript expression in rice (Oryza sativa L.)[J]. Physiological Plant,2021,173(4):2055-2067.

      [40]KIM K H, ALAM I, KIM Y G, et al. Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue[J]. Biotechnology Letters,2012,34(2):371-377.

      [41]LUND A A, RHOADS D M, LUND A L, et al. In vivo modifications of the maize mitochondrial small heat stress protein,HSP22[J]. Journal of Biological Chemistry,2001,276(32):29924-29929.

      [42]SUN W, BERNARD C, COTTE B V D, et al. At-HSP17.6A,encoding a small heat-shock protein in Arabidopsis,can enhance osmotolerance upon overexpression[J]. Plant J,2001,27(5):407-415.

      [43]SUN L P, LIU Y, KONG X P, et al. ZmHSP16.9,a cytosolic class I small heat shock protein in maize (Zea mays),confers heat tolerance in transgenic tobacco[J]. Plant Cell Reports,2012,31(8):1473-1484.

      [44]CHAUHAN H, KHURANA N, NIJHAVAN A, et al. The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress[J]. Plant,Cell & Environment,2012,35(11):1912-1931.

      [45]SHUKLA V, UPADHYAY R K, TUCKER M L,et al. Transient regulation of three clustered tomato class-I small heat-shock chaperone genes by ethylene is mediated by SlMADS-RIN transcription factor[J]. Scientific Reports,2017,7(1):6474.

      [46]KUMAR M, BUSCH W, BIRKE H, et al. Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis[J]. Molecular Plant,2009,2(1):152-165.

      [47]李春子.煙草細(xì)胞質(zhì)小分子熱激蛋白HSP17.8基因的克隆及脅迫誘導(dǎo)表達(dá)特性分析[D]. 海口:海南大學(xué),2010.

      [48]LIU H C, LIAO H T, CHARNG Y Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis[J]. Plant Cell Environment,2011,34(5):738-751.

      [49]GONG C, PANG Q Q, LI Z L, et al. Genome-wide identification and characterization of Hsf and Hsp gene families and gene expression analysis under heat stress in eggplant (Solanum melongema L.)[J]. Horticulturae,2021,7(6):149.

      [50]CHARNG Y Y, LIU H C, LIU N Y, et al. A heat-inducible transcription factor,HsfA2,is required for extension of acquired thermotolerance in Arabidopsis[J]. Plant Physiology,2007,143(1):251-262.

      [51]NOVER L, BHARTI K, DRING P, et al. Arabidopsis and the heat stress transcription factor world:how many heat stress transcription factors do we need?[J]. Cell Stress Chaperones,2001,6(3):177-189.

      [52]YOSHIDA T, OHAMA N, NAKAJIMA J, et al. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression[J]. Mol Genet Genomics,2011,286(5/6):321-332.

      [53]SCHARF K D, BERBERICH T, EBERSBERGER I, et al. The plant heat stress transcription factor (Hsf) family:structure,function and evolution[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms,2012,1819(2):1014-1019.

      [54]BANIWAL S K, BHARTI K, CHAN K Y, et al. Heat stress response in plants:a complex game with chaperones and more than twenty heat stress transcription factors[J]. Journal of Biosciences,2004,29(4):471-487.

      [55]YASUDA H, SAGEHASHI Y, SHIMOSAKA E, et al. Generation of transgenic rice expressing heat shock protein genes under cool conditions[J]. Plant Biotechnology,2013,30(5):489-496.

      [56]CHENG Q, ZHOU Y H, LIU Z W, et al. An alternatively spliced heat shock transcription factor,OsHSFA2dI,functions in the heat stress-induced unfolded protein response in rice[J]. Plant Biology,2015,17(2):419-429.

      [57]WU N, YAO Y L, XIANG D H, et al. A MITE variation-associated heat-inducible isoform of a heat-shock factor confers heat tolerance through regulation of JASMONATE ZIM-DOMAIN genes in rice[J]. New Phytologist,2022,234(4):1315-1331.

      [58]LI N, XU R, LI Y H. Molecular networks of seed size control in plants[J]. Annual Review of Plant Biology,2019,70:435-463.

      [59]BASAK J, NITHIN C. Targeting non-coding RNAs in plants with the CRISPR-Cas technology is a challenge yet worth accepting[J]. Frontiers in Plant Science,2015,6:1001.

      [60]BALAZADEH S. A ‘hot’ cocktail:the multiple layers of thermomemory in plants[J]. Current Opinion in Plant Biology,2022,65:102147.

      [61]STIEF A, ALTMANN S, HOFFMANN K, et al. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors[J]. Plant Cell,2014,26(4):1792-1807.

      [62]GUAN Q M, LU X Y, ZENG H T, et al. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis[J]. The Plant Journal:for Cell and Molecular Biology,2013,74 5:840-851.

      [63]CHANG C. Ethylene biosynthesis,perception,and response[J]. Journal of Plant Growth Regulation,2007,26(2):89-91.

      [64]LIU X L, JI P, YANG H T, et al. Priming effect of exogenous ABA on heat stress tolerance in rice seedlings is associated with the upregulation of antioxidative defense capability and heat shock-related genes[J]. Plant Growth Regulation,2022,98(1):23-38.

      [65]BI H H, ZHAO Y, LI H H, et al. Wheat heat shock factor TaHsfA6f increases ABA levels and enhances tolerance to multiple abiotic stresses in transgenic plants[J]. International Journal of Molecular Sciences,2020,21(9):3121.

      [66]HUANG Y C, NIU C Y, YANG C R, et al. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses[J]. Plant Physiology,2016,172(2):1182-1199.

      [67]王華麗,陳寧,杜晗蔚,等. 高溫脅迫下ABA調(diào)控sHSP26對玉米葉綠體的保護(hù)作用[J]. 河南農(nóng)業(yè)大學(xué)學(xué)報,2019,53(6):831-838.

      [68]王前前. 玉米熱激轉(zhuǎn)錄因子ZmHsfA4α的抗旱功能研究[D].合肥:安徽農(nóng)業(yè)大學(xué),2017.

      [69]王世威,屈仁軍,彭佳銘,等. 丹參小分子熱激蛋白SmHSP21.8基因克隆、誘導(dǎo)模式和原核表達(dá)[J]. 藥學(xué)學(xué)報,2022,57(6):1909-1917.

      [70]SUZUKI N, MILLER G, MORALES J, et al. Respiratory burst oxidases:the engines of ROS signaling[J]. Current Opinion in Plant Biology,2011,14(6):691-699.

      [71]KAYA H, TAKEDA S, KOBAYASHI M J, et al. Comparative analysis of the reactive oxygen species-producing enzymatic activity of Arabidopsis NADPH oxidases[J]. Plant Journal,2019,98(2):291-300.

      [72]REZAUL I M, FENG B, CHEN T, et al. Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets[J]. Physiologia Plantarum,2019,165(3):644-663.

      [73]SANTIAGO J P, SHARKEY T D. Pollen development at high temperature and role of carbon and nitrogen metabolites[J]. Plant Cell Environment,2019,42(10):2759-2775.

      [74]REZAUL I M, BAOHUA F, TINGTING C, et al. Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets[J]. Physiologia Plantarum,2019,165(3):644-663.

      [75]HOLLAND C K, JEZ J M. Structural biology of jasmonic acid metabolism and responses in plants[M]. Grenchen:Springer International Publishing,2018:67-82.

      [76]DING C K, WANG C Y, GROSS K C, et al. Reduction of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl jasmonate and methyl salicylate[J]. Plant Science,2001,161(6):1153-1159.

      [77]HAMILTON E W, COLEMAN J S. Heat-shock proteins are induced in unstressed leaves of Nicotiana attenuata (Solanaceae) when distant leaves are stressed[J]. American Journal of Botany,2001,88(5):950-955.

      [78]CLARKE S M, CRISTESCU S M, MIERSCH O, et al. Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana[J]. New Phytologist,2009,182(1):175-187.

      [79]ZHU T, HERRFURTH C, XIN M, et al. Warm temperature triggers JOX and ST2A-mediated jasmonate catabolism to promote plant growth[J]. Nature Communications,2021,12(1):4804.

      [80]BAKSHI A, SHEMANSKY J M, CHANG C, et al. History of Research on the plant hormone ethylene[J]. Journal of Plant Growth Regulation,2015,34:809-827.

      [81]MATTOO A K, UPADHYAY R K. Plant hormones:some glimpses on biosynthesis,signaling networks,and crosstalk[M]. Singapore:Springer Singapore,2019:227-246.

      [82]YANG S F, HOFFMAN N E. Ethylene biosynthesis and its regulation in higher plants[J]. Annual Review of Plant Biology,1984,35:155-189.

      [83]KENDE H. Ethylene biosynthesis[J]. Annual Review of Plant Biology,1993,44:283-307.

      [84]RAVANEL S, GAKIRE B, JOB D, et al. The specific features of methionine biosynthesis and metabolism in plants[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(13):7805-7812.

      [85]UPADHYAY R K, TUCKER M L, MATTOO A K. Ethylene and RIPENING INHIBITOR modulate expression of SlHSP17.7A,B class I small heat shock protein genes during tomato fruit ripening[J]. Frontiers in Plant Science,2020,11:975.

      [86]HAN J P, XIE X X, ZHANG Y, et al. Evolution of the DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN subfamily in green plants[J]. Plant Physiological,2022,190(1):421-440.

      [87]YAMAGUCHI S. Gibberellin metabolism and its regulation[J]. Annual Review of Plant Biology,2008,59:225-251.

      [88]DU R, NIU S H, LIU Y, et al. The gibberellin GID1-DELLA signalling module exists in evolutionarily ancient conifers[J]. Scientific Reports,2017,7(1):16637.

      [89]LIU X, HOU X L. Antagonistic regulation of ABA and GA in metabolism and signaling pathways[J]. Front in Plant Science,2018,9:251.

      [90]TOH S, IMAMURA A, WATANABE A, et al. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds[J]. Plant Physiology,2008,146(3):1368-1385.

      [91]LUO L X, XIE Y L, YU S J, et al. The DnaJ domain-containing heat-shock protein NAL11 determines plant architecture by mediating gibberellin homeostasis in rice (Oryza sativa)[J]. New Phytologist,2023,237(6):2163-2179.

      (責(zé)任編輯:陳海霞)

      中卫市| 利津县| 咸宁市| 尚志市| 丰县| 临海市| 灵宝市| 沙坪坝区| 土默特右旗| 开鲁县| 永川市| 临清市| 曲阜市| 宁津县| 黄骅市| 和林格尔县| 托里县| 沙雅县| 民勤县| 林芝县| 盐亭县| 北流市| 东阿县| 略阳县| 定兴县| 汉中市| 冷水江市| 浦城县| 连南| 全州县| 呼和浩特市| 汉寿县| 清徐县| 三穗县| 闸北区| 绿春县| 宝山区| 上杭县| 大关县| 神池县| 洞口县|