• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      投喂不同餌料對(duì)斑鱖生長(zhǎng)及消化性能的影響

      2024-11-05 00:00:00賴銘勇

      摘要:【目的】探明斑鱖(Siniperca scherzeri)攝食配合飼料后其生長(zhǎng)與消化性能的變化規(guī)律,為開展以配合飼料替代傳統(tǒng)餌料魚的斑鱖規(guī)模養(yǎng)殖提供參考依據(jù)?!痉椒ā窟x取馴化和未馴化斑鱖苗種各180尾,分別投喂配合飼料和活餌魚,飼養(yǎng)20周后饑餓24 h,測(cè)定分析其生長(zhǎng)性能、消化酶活性、腸道組織結(jié)構(gòu)及腸道微生物群落結(jié)構(gòu)?!窘Y(jié)果】至飼養(yǎng)20周后,飼料組斑鱖的存活率、臟體比與活餌組斑鱖相比無顯著差異(P>0.05,下同),但終末體質(zhì)量、增重率及飼料系數(shù)顯著低于活餌組斑鱖(P<0.05,下同);飼料組斑鱖腸道α-淀粉酶活性顯著高于活餌組斑鱖,胰蛋白酶活性顯著低于活餌組斑鱖,而胃蛋白酶和脂肪酶活性無顯著差異。此外,飼料組斑鱖腸道的肌層厚度和黏膜褶皺高度均顯著低于活餌組斑鱖,但二者間的腸黏膜褶皺數(shù)無顯著差異。在腸道微生物群落方面,飼料組斑鱖腸道微生物群落的ACE指數(shù)和Chao1指數(shù)顯著低于活餌組斑鱖,但Shannon指數(shù)和Simpson指數(shù)無顯著差異;2種餌料投喂模式下斑鱖腸道微生物群落結(jié)構(gòu)均以變形菌門、厚壁菌門、軟壁菌門和放線菌門為絕對(duì)優(yōu)勢(shì)菌門,其相對(duì)豐度之和在98.00%以上;在屬分類水平上,飼料組斑鱖腸道內(nèi)的伯克霍爾德菌屬相對(duì)豐度顯著高于活餌組斑鱖,而鞘氨醇盒菌屬和支原體屬相對(duì)豐度顯著低于活餌組斑鱖?!窘Y(jié)論】以配合飼料替代活餌投喂斑鱖,其生長(zhǎng)速度顯著降低,腸道組織結(jié)構(gòu)、消化酶活性及腸道微生物群落結(jié)構(gòu)出現(xiàn)適應(yīng)性變化,尤其是配合飼料的投喂有助于維持腸道微生物穩(wěn)定性??梢?,以配合飼料替代活餌養(yǎng)殖斑鱖具有可行性,但還需進(jìn)一步優(yōu)化飼料營(yíng)養(yǎng)組分及投喂策略,提高配合飼料養(yǎng)殖下斑鱖的生長(zhǎng)速率。

      關(guān)鍵詞:斑鱖;配合飼料;活餌;生長(zhǎng)性能;消化酶活性;腸道組織;腸道微生物

      中圖分類號(hào):S965.127文獻(xiàn)標(biāo)志碼:A文章編號(hào):2095-1191(2024)08-2523-12

      Effects of feeding different diets on growth and digestive perfor?mance of spotted mandarin fish(Siniperca scherzeri)

      LAI Ming-yong

      (Fujian Freshwater Fisheries Research Institute,F(xiàn)uzhou,F(xiàn)ujian 35000 China)

      Abstract:【Objective】To study the changes of growth and digestive performance of spotted mandarin fish(Siniperca scherzeri)after feeding on the compound feed,which provided reference for the large-scale culture of S.Scherzeri by using the compound feed instead of the traditional forage fish.【Method】A total of 180 domesticated individuals and 180 undomesticated individuals were fed with compound feed and live forage fish respectively,and starved for 24 h after feeding 20 weeks.The growth performance,digestive enzyme activity,intestinal structure and intestinal microbiota struc-ture of S.scherzeris were determined and analyzed.【Result】After 20 weeks of feeding,the survival rate,viscero-body ratio of S.scherzeri in compound feed group had no significant differences compared with those in live bait group(P>0.05,the same below),but the final body weight,weight gain rate and feed coefficient were significantly lower than those in live bait group(P<0.05,the same below).The intestinalα-amylase activity of compound feed group was signifi-cantly higher than that of the live bait group,and the trypsinactivity was significantly lower,but there was no significant difference in pepsin and lipase activities between the two groups.In addition,the thickness of muscle layer and the height of mucosal folds of S.scherzeri in compound feed group were significantly lower than those in live bait group,but there was no significant difference in the number of intestinal folds between the two groups.In terms of intestinal microbiota,the ACE index and Chao1 index of intestinal microbiota of S.scherzeri in compound feed group were significantly lower than those in live bait group,but there was no significant difference in Shannon index and Simpson index between the twogroups.Under the two feeding patterns,Proteobacteria,F(xiàn)irmicutes,Tenericutes and Actinobacteria were the dominant microbiota,and the sum of their relative abundance was more than 98.00%.At the genus classification level,the relative abundance of Burkholderia-Caballeronia-Paraburkholderia in the intestine of S.scherzeri in compound feed group was significantly higher than that in live bait group,while the relative abundance of Sphingopyxis and Mycoplasma ofS.scher-zeri in compound feed group was significantly lower than that in live bait group.【Conclusion】The growth rate of S.scher-zeri decreases significantly when fed with compound feed instead of live bait,and the intestinal structure,digestive en-zyme activity and intestinal microbiota structure show adaptive changes.Especially,the feeding of compound feed helps maintain the stability of intestinal microorganisms.In conclusion,it is feasible to breed S.scherzeri with compound feed instead of live bait,but it is necessary to further optimize feed nutrient composition and feeding strategies to improve the growth rate of S.Scherzeri underfeeding with compound feed.

      Key words:Sinipercascherzeri;compound feed;live bait;growth performance;digestive enzyme activity;intes-tine tissue;intestinal microorganisms

      Foundation items:China Agriculture Research System(CARS-46);Basic Research Project of Fujian Public Wel-fare Research Institute(Mincaizhi〔2023〕600);Fujian Seed Industry Innovation and Industrialization Project(Minnong-zong〔2021〕5]

      0引言

      【研究意義】斑鱖(Siniperca scherzeri)俗稱黑鱖、巖鱖、老虎鱖等,隸屬于鱸形目(Perciformes)鱖屬(Siniperca),為東亞特有種類,廣泛分布在我國(guó)內(nèi)陸水域,是一種典型的肉食性魚類(Liu et al.,2017;田田,2023)。斑鱖肉質(zhì)細(xì)嫩、味道鮮美,不含肌間刺,營(yíng)養(yǎng)與藥用價(jià)值高,深受廣大消費(fèi)者青睞(Yang et al.,2012),是目前我國(guó)養(yǎng)殖的三大鱖類之一。當(dāng)前,斑鱖養(yǎng)殖仍以傳統(tǒng)的鮮活餌料魚為主,生產(chǎn)上存在諸多不利因素(李松林等,2021):(1)餌料魚的養(yǎng)殖與運(yùn)輸條件要求較高,直接增加了養(yǎng)殖成本;(2)餌料魚可能攜帶病原微生物,增加了養(yǎng)殖過程中的疾病傳播風(fēng)險(xiǎn);(3)餌料魚養(yǎng)殖還會(huì)造成漁業(yè)資源浪費(fèi),影響?zhàn)B殖業(yè)的綠色轉(zhuǎn)型(Wang et al.,2023)。因此,探索配合飼料替代餌料魚對(duì)斑鱖生長(zhǎng)性能、腸道功能結(jié)構(gòu)和微生物群落的影響,對(duì)開展斑鱖規(guī)?;?、標(biāo)準(zhǔn)化養(yǎng)殖及促進(jìn)斑鱖養(yǎng)殖業(yè)可持續(xù)發(fā)展具有重要意義?!厩叭搜芯窟M(jìn)展】相對(duì)于翹嘴鱖(S.chuatsi)而言,斑鱖更易馴化,但生長(zhǎng)速度及養(yǎng)殖規(guī)模遠(yuǎn)不及翹嘴鱖(李傳陽等,2016;李松林等,2021)。至今,國(guó)內(nèi)外有關(guān)斑鱖馴化與養(yǎng)殖的研究報(bào)道較少,研究者更多關(guān)注鱖馴食技術(shù)、營(yíng)養(yǎng)需求及飼料開發(fā)等。王貴英等(2005)研究指出,鱖配合飼料的最適蛋白含量為44.27%~48.41%;Li等(2017)研究發(fā)現(xiàn),使用人工飼料投喂雜交鱖(S.chuatsi♀×S.scherzeri♂)的生長(zhǎng)性能及消化道蛋白酶活性均顯著低于餌料魚;班賽男等(2020)、馬林等(2023)研究表明,攝食配合飼料不會(huì)影響翹嘴鱖的生長(zhǎng)性能,且其消化酶活性與餌料魚組無顯著差異;任萍等(2020)研究證實(shí),鱖攝入糖后可促進(jìn)糖原和脂肪的合成,轉(zhuǎn)化為糖原和甘油三酯,但幼9cd2ae23c87df7e5f53b9ab4cb9f4b12鱖對(duì)葡萄糖的利用效率低于糊精。腸道是魚類重要的消化吸收器官,其形態(tài)結(jié)構(gòu)與食性、食物關(guān)系緊密,且相互適應(yīng)(周景祥等,2001;高紅云等,2021)。消化酶活性是衡量肉食性魚類消化能力的重要指標(biāo)之一(Fernández et al.,2001),其活性與飼料吸收、生理狀態(tài)、腸道環(huán)境及其他因素有關(guān)(Buddington etal.,1997)。魚類腸道微生物與宿主的種類、營(yíng)養(yǎng)狀況及生長(zhǎng)環(huán)境等因素密切相關(guān)(Sullam etal.,2012;Miyake et al.,2015;Huanget al.,2020),在促進(jìn)營(yíng)養(yǎng)物質(zhì)消化吸收、抵御疾病、促進(jìn)生長(zhǎng)等方面發(fā)揮重要作用(Dawood et al.,2016;陳儉等,2022;何琴等,2023),其中攝食的餌料組成是影響魚類腸道菌群結(jié)構(gòu)的主要因素之一(Sullam etal.,2012)。因此,開展魚類腸道組織結(jié)構(gòu)、消化酶活性及腸道菌群結(jié)構(gòu)分析不僅有助于揭示魚類食物變化與腸道組織結(jié)構(gòu)、消化酶活性及微生物群落適應(yīng)性之間的關(guān)系,還能綜合評(píng)價(jià)養(yǎng)殖魚類的健康水平。辛晴晴等(2022)以鯽的腸道組織結(jié)構(gòu)、抗氧化性能和腸道菌群結(jié)構(gòu)為指標(biāo),探究了鯽對(duì)飼料添加不同劑量檸檬黃色素的生理響應(yīng);魏孟申等(2024)以腸道組織結(jié)構(gòu)、消化酶活性和微生物群落結(jié)構(gòu)為指標(biāo),探究了大口黑鱸對(duì)慢性氨氮脅迫的適應(yīng)性,并確立了大口黑鱸高密度養(yǎng)殖的氨氮安全閾值。在鱖養(yǎng)殖方面,曾萌冬等(2021)研究發(fā)現(xiàn)鱖對(duì)配合飼料的攝食量和利用率均低于餌料魚,消化道組織結(jié)構(gòu)及其消化酶活性也發(fā)生適應(yīng)性變化;陳劍斌等(2023)研究證實(shí)攝食配合飼料的鱖在生長(zhǎng)、飼料效率、胃腸功能、肌肉品質(zhì)、抗氧化和非特異性免疫能力等方面更具優(yōu)勢(shì),但加重了肝臟和腎臟的代謝負(fù)擔(dān)?!颈狙芯壳腥朦c(diǎn)】至今,有關(guān)斑鱖的研究主要集中在系統(tǒng)分類學(xué)、遺傳學(xué)、繁殖生物學(xué)及營(yíng)養(yǎng)評(píng)價(jià)等方面(蒲德永等,2013;田田等,2023;Wang et al.,2023),針對(duì)其飼料營(yíng)養(yǎng)、消化組織結(jié)構(gòu)、消化酶活性及腸道微生物結(jié)構(gòu)特征等的研究較少?!緮M解決的關(guān)鍵問題】比較分析配合飼料與餌料魚對(duì)斑鱖生長(zhǎng)、腸道功能結(jié)構(gòu)及其微生物群落結(jié)構(gòu)的影響,探明斑鱖攝食配合飼料后其生長(zhǎng)與消化性能的變化規(guī)律,為開展以配合飼料替代傳統(tǒng)餌料魚的斑鱖規(guī)模養(yǎng)殖提供參考依據(jù)。

      1材料與方法

      1.1試驗(yàn)魚養(yǎng)殖

      試驗(yàn)用斑鱖親本取自福建省閩江水系的野生群體,經(jīng)人工繁育,獲得斑鱖苗種(體質(zhì)量10.8±0.5 g)。斑鱖苗種在直徑2.0 m、高0.8 m的圓形移動(dòng)養(yǎng)殖桶內(nèi)養(yǎng)殖,養(yǎng)殖用水來源于周邊的溪水,每3 d更換1/3養(yǎng)殖水體。試驗(yàn)過程采用納米微孔曝氣管曝氣增氧,溶解氧含量保持在6.0 mg/L以上;養(yǎng)殖水體pH為6.5~7.6,水溫控制在20.0~28.0℃。試驗(yàn)前,初孵稚魚統(tǒng)一以團(tuán)頭魴(Megalobramaamblycephala)水花苗種為活餌,養(yǎng)殖4周后,活餌組斑鱖魚苗改用鮮活的鯪(Cirrhinusmolitorella)喂養(yǎng)直至試驗(yàn)結(jié)束;同時(shí)部分斑鱖采用饑餓→少量活餌魚→活餌魚+冰鮮餌料魚→冰鮮餌料魚→冰鮮餌料魚+飼料→飼料的方式逐步馴化攝食人工配合飼料(表1),3周內(nèi)完全轉(zhuǎn)換到人工配合飼料。同步養(yǎng)殖3個(gè)月后,分別選取攝食活餌魚和配合飼料的斑鱖魚苗各180尾進(jìn)行試驗(yàn),每組設(shè)3個(gè)重復(fù),每個(gè)重復(fù)60尾。各處理組每天飽食投喂3次(7:00、12:00和17:00),試驗(yàn)周期為20周。動(dòng)物試驗(yàn)由福建省淡水水產(chǎn)研究所動(dòng)物倫理委員會(huì)批準(zhǔn),批準(zhǔn)號(hào)FFRIFJ-DW-2024-1。

      1.2生長(zhǎng)性能指標(biāo)測(cè)定

      飼養(yǎng)20周結(jié)束后,計(jì)算斑鱖存活率(SR);每處理組每個(gè)重復(fù)隨機(jī)取10尾斑鱖,分別測(cè)量其體長(zhǎng)、體質(zhì)量和內(nèi)臟總質(zhì)量,然后計(jì)算增重率(WGR)、臟體比(VSI)及飼料系數(shù)(FC),具體公式如下:

      式中,Mi表示試驗(yàn)結(jié)束時(shí)的斑鱖存活數(shù)量(尾);M0表示試驗(yàn)開始時(shí)的斑鱖數(shù)量(尾);Wi表示斑鱖終末體質(zhì)量(g);W0表示斑鱖初始體質(zhì)量(g);Wv表示試驗(yàn)結(jié)束時(shí)的斑鱖內(nèi)臟總質(zhì)量(g);Feed表示飼料投喂量(g)。

      1.3消化酶活性測(cè)定

      每處理組取6尾斑鱖,在冰上解剖分離出腸道前中段,剔除脂肪組織,以PBS(pH 7.4)沖洗,濾紙吸干后稱重,并裝入1.5 mL無菌凍存管中,液氮速凍保存。樣品帶回實(shí)驗(yàn)室后,取100 mg左右的組織樣品,分別加入9倍量的PBS進(jìn)行勻漿,勻漿液在4℃下5000×g離心15min,吸取上清液進(jìn)行消化酶活性測(cè)定。胃蛋白酶、胰蛋白酶、脂肪酶和α-淀粉酶試劑盒購(gòu)自南京建成生物工程研究所,參照各試劑盒使用說明,通過iMarker酶標(biāo)儀(美國(guó)Thermo Fisher Scientific公司)測(cè)定各處理組斑鱖腸道樣本的光密度(OD),再通過標(biāo)準(zhǔn)曲線計(jì)算腸道消化酶活性。

      1.4腸道組織結(jié)構(gòu)觀察

      每處理組取6尾斑鱖,在冰上解剖分離出腸道,剔除脂肪組織和黏連物,以Bouin’s固定24 h后用70%乙醇反復(fù)浸洗至無色;經(jīng)石蠟包埋、切片(切片厚度4~5μm)及蘇木精—伊紅染色后,置于Leica 3000顯微鏡下觀察拍照。

      1.5基因組DNA提取和16S rRNA測(cè)序

      每處理組取6尾斑鱖,取其腸道內(nèi)容物100 mg,放入1.5 mL無菌凍存管中,利用液氮速凍將其打碎至粉末,取150~200 mg樣品進(jìn)行基因組DNA提取,DNA提取試劑盒為E.Z.N.A.?Stool DNA Kit(美國(guó)Omega Bio-Tek公司)。提取的DNA以1.2%瓊脂糖凝膠電泳檢測(cè)其純度,然后利用NanoDrop Lite微量分光光度計(jì)測(cè)定其濃度。以適當(dāng)稀釋的DNA為模板,使用通用引物(338F:5'-ACTCCTACGGGAGG CAGCAG-3',806R:5'-GGACTACHVGGGTWTCTA AT-3')對(duì)16S rRNA序列V3~V4變異區(qū)進(jìn)行PCR擴(kuò)增(Liu et al.,2016)。PCR反應(yīng)體系20.0μL:DNA模板15 ng,5×TransStartFastPfu緩沖液4.0μL,上、下游引物(5μmol/L)各0.8μL,TransStartFastPfu DNA聚合酶0.4μL,ddH2O補(bǔ)足至20.0μL。擴(kuò)增程序:95℃預(yù)變性3 min;95℃30 s,55℃30 s,72℃30 s,進(jìn)行27個(gè)循環(huán);72℃延伸10min。PCR擴(kuò)增產(chǎn)物經(jīng)2.0%瓊脂糖凝膠電泳后,通過凝膠回收試劑盒進(jìn)行純化回收,使用Qubit 4.0(美國(guó)ThermoFisherScien-tific公司)進(jìn)行定量分析,同時(shí)將陽性擴(kuò)增產(chǎn)物送至上海美吉生物醫(yī)藥科技有限公司構(gòu)建測(cè)序文庫(kù),并通過Illumina PE300/PE250平臺(tái)完成高通量測(cè)序。

      1.6測(cè)序數(shù)據(jù)比對(duì)分析

      獲得的Raw reads使用FASTP v0.19.6進(jìn)行質(zhì)控(Chen et al.,2018),并以FLASH v1.2.11進(jìn)行拼接(Mago?and Salzberg,2011):(1)設(shè)置50 bp的過濾窗口,若窗口內(nèi)Reads平均質(zhì)量值低于20,則從窗口開始截去后端堿基,去除質(zhì)控后長(zhǎng)度在50bp以下或含N堿基的Reads;(2)根據(jù)PE Reads間的重疊關(guān)系,對(duì)Reads進(jìn)行拼接,最小重疊長(zhǎng)度設(shè)為10bp;(3)拼接序列重疊區(qū)允許的最大錯(cuò)配比率為0. 去除不合格的Reads;(4)根據(jù)Reads上的條形碼和引物序列區(qū)分樣本,條形碼允許的錯(cuò)配數(shù)為0,最大引物錯(cuò)配數(shù)為2。使用UPARSE v7.1對(duì)質(zhì)控拼接獲得的Clean reads進(jìn)行操作分類單元(OTU)聚類分析(Edgar,2013),相似度設(shè)為97%,去除嵌合體,并剔除包含葉綠體和線粒體基因的序列。為減少測(cè)序深度對(duì)后續(xù)Alpha和Beta多樣性分析數(shù)據(jù)的影響,將所有樣本序列數(shù)抽平至20000,抽平后單個(gè)樣本的平均序列覆蓋度均在99.0%以上。通過RDP Classi-fier(v 2.11)和SILVA數(shù)據(jù)庫(kù)進(jìn)行OTU物種分類學(xué)注釋(Wang et al.,2007),置信度閾值設(shè)為70%,在不同物種分類水平下統(tǒng)計(jì)單個(gè)樣本的群落組成;采用Mothur(http://www.mothur.org/wiki/Calculators)計(jì)算Alpha多樣性指數(shù)(ACE、Chao1、Shannon和Simpson)(Schloss et al.,2009;Douglas et al.,2020),通過Wilxocon秩和檢驗(yàn)進(jìn)行Alpha多樣性的組間差異分析;以基于Bray-Curtis距離算法的主坐標(biāo)分析(PCoA)檢驗(yàn)樣本間微生物群落結(jié)構(gòu)的相似性,并結(jié)合PERMANOVA非參數(shù)檢驗(yàn)分析樣本組間的微生物群落結(jié)構(gòu)差異。

      1.7統(tǒng)計(jì)分析

      試驗(yàn)數(shù)據(jù)采用SPSS 22.0進(jìn)行單因素方差分析(One-way ANOVA)和獨(dú)立樣本t檢驗(yàn),并以Graph-Pad Prism 8.0繪圖。

      2結(jié)果與分析

      2.1不同餌料投喂模式對(duì)斑鱖生長(zhǎng)性狀的影響

      在不同餌料投喂模式下,活餌組、飼料組的斑鱖存活率分別為90%和85%(圖1),組間差異不顯著(P>0.05,下同);活餌組斑鱖的終末體質(zhì)量、增重率較飼料組斑鱖分別顯著提高15.5%和14.1%(P<0.05,下同),但在臟體比方面兩處理組間無顯著差異。

      2.2不同餌料投喂模式對(duì)斑鱖飼料轉(zhuǎn)化率和腸道消化酶活性的影響

      由圖2可看出,不同餌料投喂模式下斑鱖的飼料系數(shù)存在顯著差異,活餌組斑鱖的飼料系數(shù)為763.3%,是飼料組(266.7%)的2.86倍,表明人工配合飼料投喂模式下斑鱖的飼料轉(zhuǎn)化率更高。在斑鱖腸道消化酶活性方面,不同餌料投喂模式下斑鱖腸道的胰蛋白酶和α-淀粉酶活性存在顯著差異(圖3)。其中,活餌組斑鱖腸道胰蛋白酶活性為275.00 U/mg,是飼料組斑鱖(30.10 U/mg)的9.12倍;而活餌組斑鱖腸道α-淀粉酶活性(46.30 U/mg),僅為飼料組斑鱖(81.80 U/mg)的56.6%。此外,斑鱖腸道胃蛋白酶和脂肪酶活性受餌料投喂模式的影響均不顯著。

      2.3不同餌料投喂模式下斑鱖腸道結(jié)構(gòu)特征比較

      斑鱖腸道結(jié)構(gòu)由黏膜層、黏膜下層、肌層和漿膜層組成。由圖4可看出,不同餌料投喂模式下,活餌組斑鱖腸道的肌層厚度(122.01±19.86μm)顯著高于飼料組斑鱖(75.41±15.21μm),活餌組斑鱖的腸黏膜褶皺數(shù)(26.97±6.58個(gè))與飼料組斑鱖(22.67±5.51個(gè))無顯著差異,但黏膜褶皺高度表現(xiàn)為活餌組斑鱖(969.52±32.65μm)顯著高于飼料組斑鱖(598.03±127.63μm)。

      2.4不同餌料模式下斑鱖腸道微生物群落多樣性比較

      經(jīng)質(zhì)控處理后,活餌組和飼料組樣本共獲得910521條Clean reads,平均每個(gè)樣本擁有75876條Clean reads,平均長(zhǎng)度為423.51 bp。這些Clean reads注釋到1629個(gè)OTUs,歸屬于22個(gè)門(Phyla)、46個(gè)綱(Classes)、109個(gè)目(Orders)、191個(gè)科(Families)、447個(gè)屬(Genera)和642個(gè)種(Species)。稀釋曲線(圖5)顯示,所有樣本在20000條測(cè)序序列時(shí)均趨于平緩,樣本覆蓋度均超過99.0%,表明所有樣本序列幾乎全部被檢出且達(dá)到飽和狀態(tài),測(cè)序結(jié)果能全面反映斑鱖腸道微生物群落結(jié)構(gòu)組成及多樣性的真實(shí)性,測(cè)序深度能反映每個(gè)樣本中的微生物群落信息,可用于后續(xù)數(shù)據(jù)分析。

      由圖6可知,活餌組與飼料組斑鱖腸道微生物群落的OTUs數(shù)目分別為1112個(gè)和810個(gè),其中共有OTUs數(shù)目為293個(gè)。為進(jìn)一步了解活餌組與飼料組斑鱖腸道微生物的物種豐度及多樣性,采用Mothur對(duì)OTUs進(jìn)行Alpha多樣性分析,結(jié)果(圖7)顯示,活餌組斑鱖腸道微生物群落的ACE指數(shù)和Chao1指數(shù)顯著高于飼料組斑鱖腸道微生物群落,Shannon指數(shù)和Simpson指數(shù)也高于飼料組斑鱖腸道微生物群落,但差異不顯著。

      2.5不同餌料模式下斑鱖腸道微生物組成和相對(duì)豐度比較

      Beta多樣性主要反映不同樣本間腸道微生物組成的相似性,PCoA分析結(jié)果(圖8)顯示,PCoA1貢獻(xiàn)率為16.2%,PCoA2貢獻(xiàn)率為11.9%。圖中每個(gè)點(diǎn)的間距可反映個(gè)體間差異程度,兩點(diǎn)間的距離越近表明相似性越高。在不同餌料投喂模式iV0o6YAlh06Y62bd9xYZzuV+KQVSPHM/cNnUDKOQigE=下,活餌組與飼料組斑鱖個(gè)體形成的圓圈有交集,且活餌組斑鱖個(gè)體較飼料組斑鱖個(gè)體有擴(kuò)大趨勢(shì),即投喂活餌的斑鱖腸道微生物群落類型更復(fù)雜多變。

      在門分類(圖9-A)水平下,活餌組斑鱖腸道內(nèi)相對(duì)豐度排名前10的優(yōu)勢(shì)菌群分別為變形菌門(Proteobacteria,91.12%)、厚壁菌門(Firmicutes,3.90%)、軟壁菌門(Tenericutes,1.79%)、放線菌門(Actinobacteria,1.39%)、擬桿菌門(Bacteroidetes,0.89%)、藍(lán)藻門(Cyanobacteria,0.47%)、酸桿菌門(Acidobacteria,0.32%)、彎曲菌門(Epsilonbacteraeota,0.03%)、梭桿菌門(Fusobacteria,0.02%)和螺旋體門(Spirochaetes,0.01%);飼料組斑鱖腸道內(nèi)相對(duì)豐度排名前10的優(yōu)勢(shì)菌群依次為變形菌門(97.12%)、擬桿菌門(0.83%)、軟壁菌門(0.72%)、放線菌門(0.37%)、厚壁菌門(0.34%)、酸桿菌門(0.18%)、梭桿菌門(0.18%)、螺旋體門(0.04%)、藍(lán)藻門(0.02%)和彎曲菌門(0.03%)。此外,活餌組斑鱖腸道內(nèi)的厚壁菌門、軟壁菌門和放線菌門相對(duì)豐度顯著高于飼料組斑鱖,而變形菌門相對(duì)豐度顯著低于飼料組斑鱖。

      在屬分類(圖9-B)水平下,活餌組斑鱖腸道內(nèi)相對(duì)豐度排名前10的優(yōu)勢(shì)菌群分別為伯克霍爾德菌屬(Burkholderia-Caballeronia-Paraburkholderia,78.14%)、鞘氨醇盒菌屬(Sphingopyxis,2.98%)、醋酸桿菌屬(Acetobacter,2.83%)、支原體屬(Mycoplasma,1.79%)、戴爾福特菌(Delftia,1.60%)、芽孢桿菌屬(Bacillus,1.30%)、雙歧桿菌屬(Bifidobacterium,1.02%)、假單胞菌屬(Pseudomonas,0.52%)、鞘脂單胞菌屬(Novosphingobium,0.50%)和伊麗莎白菌屬(Elizabethkingia,0.47%);飼料組斑鱖腸道內(nèi)相對(duì)豐度排名前10的優(yōu)勢(shì)菌群分別為伯克霍爾德菌屬(87.76%)、鞘氨醇盒菌屬(2.21%)、醋酸桿菌屬(1.07%)、戴爾福特菌(1.90%)、支原體屬(0.72%)、伊麗莎白菌屬(0.72%)、假單胞菌屬(0.46%)、鞘脂單胞菌屬(0.42%)、芽孢桿菌屬(0.01%)和雙歧桿菌屬(0.01%)。此外,活餌組斑鱖腸道內(nèi)的伯克霍爾德菌屬相對(duì)豐度顯著低于飼料組斑鱖,而鞘氨醇盒菌屬和支原體屬相對(duì)豐度顯著高于飼料組斑鱖。

      3討論

      目前,我國(guó)超過90%的鱖養(yǎng)殖仍以活餌或冰凍雜魚為食(Nirmal etal.,2022),與水產(chǎn)養(yǎng)殖的綠色可持續(xù)發(fā)展理念不符,亟待研發(fā)人工配合飼料替代活餌或冰凍雜魚。為此,本研究設(shè)計(jì)并開發(fā)出專門針對(duì)斑鱖營(yíng)養(yǎng)的配合飼料,其替代活餌的養(yǎng)殖結(jié)果表明,以配合飼料與活餌喂養(yǎng)斑鱖的存活率無顯著差異,有效解決了以往飼料替代活餌養(yǎng)殖過程中斑鱖返口或閉口死亡的問題,對(duì)今后開展斑鱖的規(guī)模化和標(biāo)準(zhǔn)化養(yǎng)殖具有重要指導(dǎo)意義。飼料的適口性和營(yíng)養(yǎng)水平對(duì)魚類的生長(zhǎng)發(fā)育也有重要影響,決定了水產(chǎn)養(yǎng)殖的成功與否(Li etal.,2013)。配合飼料的營(yíng)養(yǎng)組分為粗蛋白占46.00%、粗脂肪占12.40%、粗灰分占15.90%、水分占8.00%,活餌的營(yíng)養(yǎng)組分為粗蛋白占15.61%、粗脂肪占1.52%、粗灰分占5.45%、水分占76.20%。綜合2種餌料投喂模式養(yǎng)殖的斑鱖存活率,可初步確定配合飼料具有替代活餌養(yǎng)殖斑鱖的可行性。

      近年來,使用人工配合飼料替代活餌投喂鱖的生長(zhǎng)跟蹤研究已有相關(guān)報(bào)道。李燕等(2016)研究發(fā)現(xiàn),投喂以石斑魚粉料調(diào)配人工飼料的翹嘴鱖生長(zhǎng)速率低于活餌組;Ding等(2022)研究表明,使用現(xiàn)有鱖商業(yè)飼料養(yǎng)殖的翹嘴鱖苗種生長(zhǎng)速率低于活餌組。本研究中,飼料組斑鱖的增重率也顯著低于活餌組,與李燕等(2016)、Ding等(2022)的研究結(jié)果基本一致。活餌養(yǎng)殖鱖的生長(zhǎng)速度優(yōu)于使用配制飼料,可能是由于鱖的生性以活餌為食,即使經(jīng)人工馴化后可攝食人工配合飼料,但天生的偏好活餌特性使其面對(duì)活餌的攝食行為更積極(曾萌冬等,2024)。盡管活餌在促進(jìn)鱖的生長(zhǎng)方面表現(xiàn)良好,但也存在一些不利因素,如活餌組斑鱖個(gè)體的臟體比偏高,可能與活餌養(yǎng)殖斑鱖的內(nèi)臟處于亞健康狀態(tài)有關(guān)(陳劍斌等,2023)。

      魚類消化酶的活性與飼料吸收、生理狀態(tài)、腸道環(huán)境及其他因素有關(guān)(Buddington etal.,1997;余友斌等,2023)。Zhu等(2014)研究報(bào)道,添加外源酶制劑可增強(qiáng)黃顙魚等淡水魚類的消化酶活性,改善飼料中干物質(zhì)和粗蛋白的表觀消化率,減少糞便中的蛋白含量,進(jìn)而有效改善其生長(zhǎng)性能。本研究結(jié)果表明,經(jīng)過20周的飼喂試驗(yàn)后,飼料組斑鱖腸道胰蛋白酶活性顯著低于活餌組斑鱖,可能與其特定生長(zhǎng)率有關(guān)(李燕等,2016;曾萌冬等,2024)?!?淀粉酶活性與碳水化合物的利用有關(guān)(高梅等,2006)。飼料組斑鱖腸道“-淀粉酶活性顯著高于活餌組斑鱖,表明配方飼料中的淀粉含量高于活餌,因此需要更多“-淀粉酶進(jìn)行消化和吸收(曾萌冬等,2024)。一般而言,肉食性魚類的腸道較短,雜食性魚類的腸道較長(zhǎng),草食性魚類則介于二者之間(曾端和葉元土,1998)。若攝食的餌料發(fā)生改變,魚類的消化道結(jié)構(gòu)也會(huì)隨之發(fā)生適應(yīng)性變化(歐紅霞等,2020;陳劍斌等,2023;榮華等,2023;曾萌冬等,2024),因此腸道結(jié)構(gòu)完整性是消化能力的重要保證。本研究通過對(duì)比活餌組與飼料組斑鱖腸道組織切片,發(fā)現(xiàn)2種餌料投喂模式下的斑鱖腸道結(jié)構(gòu)均由黏膜層、黏膜下層、肌層和漿膜層組成,結(jié)構(gòu)完整?;铕D組斑鱖腸道的肌層厚度顯著高于飼料組斑鱖,說明試驗(yàn)周期內(nèi)斑鱖食性改變對(duì)其腸道節(jié)律性收縮運(yùn)動(dòng)已產(chǎn)生一定影響。此外,活魚組斑鱖的腸黏膜褶皺相對(duì)排列整齊,且黏膜褶皺高度顯著高于飼料組斑鱖,軸心中央乳糜管明顯,表現(xiàn)出更強(qiáng)的消化吸收79D44uk9Zk10xKdIqvPhwQ==能力。

      腸道微生物群落組成對(duì)魚類營(yíng)養(yǎng)物質(zhì)的消化和吸收過程起重要作用,可生產(chǎn)短鏈脂肪酸和維生素等必需營(yíng)養(yǎng)素,促進(jìn)魚類宿主的生長(zhǎng)發(fā)育(陳秀梅等,2022;Cao et al.,2024);同時(shí)腸道微生物群落結(jié)構(gòu)受飼料營(yíng)養(yǎng)水平、養(yǎng)殖環(huán)境及宿主狀態(tài)等因素的影響(Pelusio etal.,2020;Kim etal.,2021;Liu et al.,2023)。Alpha多樣性是反映腸道微生物群落豐富度和均勻度的綜合指標(biāo)(Sullam et al.,2012;Huang et al.,2020),其中,ACE指數(shù)和Chao1指數(shù)主要表征魚類腸道菌群物種的豐富度,Shannon指數(shù)和Simpson指數(shù)主要指示魚類腸道微生物群落的豐度和均勻度。本研究中,雖然活餌組斑鱖腸道微生物群落的ACE指數(shù)和Chao1指數(shù)顯著高于飼料組斑鱖腸道微生物群落,但Shannon指數(shù)和Simpson指數(shù)無顯著差異,說明以活餌投喂斑鱖在腸道微生物群落均勻度上并無明顯優(yōu)勢(shì)。Beta多樣性又稱為群落間多樣性,主要用于比較群落間的物種差異性(Willis and Whittaker,2002)。本研究結(jié)果表明,在2種餌料投喂模式下的斑鱖腸道微生物群落類型存在一定差異,其中飼料組斑鱖個(gè)體聚集得更加緊密,說明飼料組斑鱖個(gè)體間的腸道微生物含量差異程度較小,腸道微生物群落結(jié)構(gòu)更加趨于一致。

      魚類腸道微生物群落結(jié)構(gòu)受食物種類、宿主及水環(huán)境等多個(gè)因素的影響(Sullam etal.,2012;Wong and Rawls et al.,2012;Bolnick et al.,2014;Miyake et al.,2015)。在淡水養(yǎng)殖魚類腸道中,變形菌門、厚壁菌門和擬桿菌門等是腸道微生物群落結(jié)構(gòu)中的常見優(yōu)勢(shì)菌群(馬阿敏等,2021)。本研究結(jié)果表明,2種餌料投喂模式下斑鱖腸道微生物群落結(jié)構(gòu)中變形菌門、厚壁菌門、軟壁菌門和放線菌門的相對(duì)豐度之和均在98.00%以上。雖然不同的餌料投喂模式并未改變斑鱖腸道中優(yōu)勢(shì)菌門的類別,但在相對(duì)豐度方面存在明顯差異,活餌組斑鱖腸道內(nèi)的厚壁菌門、軟壁菌門和放線菌門相對(duì)豐度顯著高于飼料組斑鱖,而變形菌門相對(duì)豐度顯著低于飼料組斑鱖,究其原因可能是活餌魚體內(nèi)的微生物群落對(duì)斑鱖產(chǎn)生了影響。在屬分類水平上,飼料組斑鱖腸道內(nèi)的伯克霍爾德菌屬相對(duì)豐度顯著高于活餌組斑鱖,而鞘氨醇盒菌屬和支原體屬相對(duì)豐度顯著低于活餌組斑鱖。伯克霍爾德菌屬作為變形菌門中參與糖類分解代謝的一類微生物,對(duì)宿主的健康和代謝具有促進(jìn)作用(Zhang et al.,2024);支原體屬則是軟壁菌門中的條件致病菌,其較高的相對(duì)豐度對(duì)宿主免疫和疾病防控具有負(fù)面效應(yīng)(McAuliffe et al.,2005)。綜上所述,飼料組斑鱖腸道內(nèi)的條件致病菌相對(duì)豐度較低,而有益微生物相對(duì)豐度較高,即飼料組斑鱖具有更好的自我調(diào)節(jié)功能,能有效緩解外界環(huán)境導(dǎo)致的應(yīng)激反應(yīng),而有助于降低養(yǎng)殖過程中的致病風(fēng)險(xiǎn)。

      4結(jié)論

      以配合飼料替代活餌投喂斑鱖,其生長(zhǎng)速度顯著降低,腸道組織結(jié)構(gòu)、消化酶活性及腸道微生物群落結(jié)構(gòu)出現(xiàn)適應(yīng)性變化,尤其是配合飼料的投喂有助于維持腸道微生物穩(wěn)定性。可見,以配合飼料替代活餌養(yǎng)殖斑鱖具有可行性,但還需進(jìn)一步優(yōu)化飼料營(yíng)養(yǎng)組分及投喂策略,提高配合飼料養(yǎng)殖下斑鱖的生長(zhǎng)速率。

      參考文獻(xiàn)(References):

      班賽男,朱傳忠,楊新冬,陳偉軍,李棟,夏冬梅,楊生燦,陳晶,孫云章,易敢峰.2020.攝食不同餌料對(duì)翹嘴鱖生長(zhǎng)、體成分和消化酶活性的影響[J].淡水漁業(yè),50(1):93-100.[Ban S N,Zhu C Z,Yang X D,Chen W J,Li D,Xia D M,Yang S C,Chen J,Sun Y Z,Yi G F.2020.Effect of different diet on the growth performance,body composi-tion and digestive enzymes active of mandarin fish(Siniperca chuatsi)[J].Freshwater Fisheries,50(1):93-100.]doi:10.3969/j.issn.1000-6907.2020.01.014.

      陳儉,代冰濤,王紅明,宋守鋼,譚北平,章雙.2022.飼料中添加β-葡聚糖對(duì)珍珠龍膽石斑魚生長(zhǎng)性能、免疫指標(biāo)、轉(zhuǎn)錄組及腸道菌群的影響[J].南方農(nóng)業(yè)學(xué)報(bào),53(5):1434-1447.[Chen J,Dai B T,Wang H M,Song S G,Tan B P,Zhang S.2022.Effects of addingβ-glucan to feed on the growth performance,immune indexes,transcriptome andintestinal flora of Epinephelusfuscoguttatus♀×Epinephe-lus lanceolatus♂[J].Journal of Southern Agriculture,53(5):1434-1447.]doi:10.3969/j.issn.2095-1191.2022.05.026.

      陳劍斌,于俊琦,徐杭忠,馬俊康,劉天驥,李洪琴,劉匆,羅浩,李虹,翟旭亮,薛洋,羅莉.2023.配合飼料和餌料魚對(duì)鱖生長(zhǎng)、胃腸結(jié)構(gòu)功能及肉質(zhì)的影響[J].水產(chǎn)學(xué)報(bào),47(10):82-96.[Chen J B,Yu J Q,Xu H Z,Ma J K,Liu T J,Li H Q,Liu C,Luo H,Li H,Zhai X L,Xue Y,Luo L.2023.Effects of compound feed and bait fish on growth,gastrointestinal structure and function and meat quality of Siniperca chuatsi[J].Journal of Fisheries of China,47(10):82-96.]doi:10.11964/jfc.20230113886.

      陳秀梅,王桂芹,單曉楓,錢愛東.2022.魚類腸道屏障損傷與腸道炎癥發(fā)生發(fā)展關(guān)系的研究進(jìn)展[J].河南農(nóng)業(yè)科學(xué),51(5):1-9.[Chen X M,Wang G Q,Shan X F,Qian A D.2022.Research progress on the relationship between intes-tinal barrier damage and intestinal inflammation develop-ment in fish[J].Journal of Henan Agricultural Sciences,51(5):1-9.]doi:10.15933/j.cnki.1004-3268.2022.05.001.

      高梅,羅毅平,曹振東.2006.飼料碳水化合物對(duì)南方鲇(Silu-rus meridionalis Chen)幼魚消化酶活性的影響[J].西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版),31(2):119-123.[Gao M,Luo Y P,Cao Z D.2006.Effect of dietary carbohydrate on digestive enzyme activities in southern catfish(Silurus meridionalis Chen)juveniles[J].Journal of Southwest China Normal University(Natural Science),31(2):119-123.]doi:10.3969/j.issn.1000-5471.2006.02.028.

      高云紅,景琦琦,黃濱,關(guān)長(zhǎng)濤,張佳偉,李文升,翟介明,賈玉東.2021.云龍石斑魚胃排空特征和攝食消化特性研究[J].漁業(yè)科學(xué)進(jìn)展,42(1):92-99.[Gao Y H,Jing Q Q,Huang B,Guan C T,Zhang J W,Li W S,Zhai J M,Jia Y D.2021.Characteristics of gastric evacuation and feeding digestion in“Yunlong”groupers(Epinephelus moara♀×E.lanceolatus♂)[J].Progress in Fishery Sciences,42(1):92-99.]doi:10.19663/j.issn2095-9869.20191216001.

      何琴,王利,段薈芹,茍小蘭.2023.枯草芽孢桿菌和糞腸球菌對(duì)鯽魚生長(zhǎng)性能、血清學(xué)指標(biāo)和腸道微生物多樣性的影響[J].江蘇農(nóng)業(yè)學(xué)報(bào),39(1):142-147.[He Q,Wang L,Duan H Q,Gou X L.2023.Effects of Bacillus subtilis and Enterococcus faecalis on growth performance,serum bio-chemical indices and intestinal microflora of Carassius auratus[J].Jiangsu Journal of Agricultural Sciences,39(1):142-147.]doi:10.3969/j.issn.1000-4440.2023.01.017.

      李傳陽,許淼洋,THAMMRATSUNTORN Jeerawat,趙金良,錢葉洲,吳超,錢德.2016.3種鱖魚生長(zhǎng)與攝食量、胃蛋白酶活性和胃蛋白酶原基因表達(dá)相關(guān)分析[J].上海海洋大學(xué)學(xué)報(bào),25(1):1-7.[Li C Y,Xu M Y,Thammratsun-torn J,Zhao J L,Qian Y Z,Wu C,Qian D.2016.Compari-son of growth,food intake,pepsin activity and pepsinogen genes expression among Siniperca species[J].Journal of Shanghai Ocean University,25(1):1-7.]

      李松林,韓志豪,王小源,陳乃松.2021.鱖養(yǎng)殖概況及攝食調(diào)控機(jī)制研究進(jìn)展[J].水產(chǎn)學(xué)報(bào),45(10):1787-1795.[Li S L,Han Z H,Wang X Y,Chen N S.2021.Research prog-ress on aquaculture and feeding regulation mechanism of Mandarin fish[J].Journal of Fisheries of China,45(10):1787-1795.]doi:10.11964/jfc.20200812371.

      李燕,李永強(qiáng),李建忠,駱志強(qiáng),施順昌,陸錦天.2016.配合飼料完全替代鮮活餌料對(duì)翹嘴鱖生長(zhǎng)、體成分及消化能力的影響[J].水產(chǎn)科技情報(bào),43(3):164-168.[Li Y,Li YQ,Li J Z,Luo Z Q,Shi S C,Lu J T.2016.Effects of com-plete replacement of live feed with compound feed on growth,body composition and digestive ability of Siniperca chuatsi[J].Fisheries Science&Technology Information,43(3):164-168.]doi:10.16446/j.cnki.1001-1994.2016.03.012.

      馬阿敏,李娜,覃虹焱,王子悅,姚曲.2021.淡水魚類腸道微生物菌群研究進(jìn)展[J].甘肅畜牧獸醫(yī),51(5):9-13.[Ma A M,Li N,Qin H Y,Wang Z Y,Yao Q.2021.Research progress of intestinal microbiota of freshwater fish[J].Gansu Animal and Veterinary Sciences,51(5):9-13.]doi:10.3969/j.issn.1006-799X.2021.05.003.

      馬林,李明澤,畢相東,逯云召,薄其康,劉克明,王勝利,尤宏?duì)?2023.攝食不同餌料對(duì)翹嘴鱖生長(zhǎng)性能、肌肉營(yíng)養(yǎng)成分及消化酶活性的影響[J].飼料研究,46(6):44-49.[Ma L,Li M Z,Bi X D,Lu Y Z,Bo Q K,Liu K M,Wang S L,You H Z.2023.Effect of different diets on growth per-formance,muscle nutrient composition and digestive enzyme activity of Sinipercachuatsi[J].Feed Resrarch,46(6):44-49.]doi:10.13557/j.cnki.issn 1002-2813.2023.06.010.

      歐紅霞,王廣軍,李志斐,余德光,龔?fù)麑?2020.不同飼料對(duì)大口黑鱸腸道組織結(jié)構(gòu)的影響[J].水產(chǎn)科學(xué),39(6):902-907.[Ou H X,Wang G J,Li Z F,Yu D G,Gong W B.2020.Influence of different diets on intestinal histological morphologic structure of largemouth bass Micropterus salmoides[J].Fisheries Science,39(6):902-907.]doi:10.16378/j.cnki.1003-1111.2020.06.015.

      蒲德永,黃小琪,魏剛.2013.大眼鱖和斑鱖消化道組織結(jié)構(gòu)的比較研究[J].淡水漁業(yè),43(2):26-31.[Pu D Y,Huang X Q,Wei G.2013.Histological studies and comparison on the digestive tract in Siniperca kneri and Siniperca scher-zeri[J].Freshwater Fisheries,43(2):26-31.]doi:10.3969/j.issn.1000-6907.2013.02.005.

      任萍,梁旭方,方劉,何珊,肖倩倩,史登勇.2020.鱖對(duì)葡萄糖和糊精利用差異比較研究[J].水生生物學(xué)報(bào),44(2):364-371.[Ren P,Liang X F,F(xiàn)ang L,He S,Xiao Q Q,Shi D Y.2020.Comparative study of the difference in glucose and dextrin utilization in the Chinese perch(Siniperca chuatsi)[J].Acta Hydrobiologica Sinica,44(2):364-371.]doi:10.7541/2020.044.

      榮華,張雷,王曉雯,武祥偉,王金浩,胡青,畢保良,孔令富,豆騰飛.2023.四種不同食性魚類的消化酶活性及腸道組織形態(tài)學(xué)比較研究[J].淡水漁業(yè),53(2):29-35.[Rong H,Zhang L,Wang X W,Wu X W,Wang J H,Hu Q,Bi B L,Kong L F,Dou T F.2023.Comparative study on diges-tive enzyme activity and intestinal tissue morphology of four fishes with different feeding habits[J].Freshwater Fisheries,53(2):29-35.]doi:10.3969/j.issn.1000-6907.2023.02.004.

      田田,張風(fēng)光,王茂元,黃洪貴,秦志清,賴銘勇,劉銀華,黃柳婷,吳妹英.2023.2月齡斑鱖形態(tài)性狀與體質(zhì)量的相關(guān)性研究[J].河南農(nóng)業(yè)科學(xué),52(8):126-134.[Tian T,Zhang F G,Wang M Y,Huang H G,Qin Z Q,Lai M Y,Liu Y H,Huang L T,Wu M Y.2023.Correlation between morpho-logical traits and body weight of 2-month-old Sinipercascherzeri[J].Journal of Henan Agricultural Sciences,52(8):126-134.]doi:10.15933/j.cnki.1004-3268.2023.08.014.

      田田.2023.人工養(yǎng)殖斑鱖(Siniperca scherzeri)形態(tài)性狀與體質(zhì)量的相關(guān)性研究[J].水產(chǎn)學(xué)雜志,36(3):68-74.[Tian T.2023.Correlation analysis of morphological traits and body weight of spotted mandarin fish(Siniperca scherzeri)under artificial cultivation[J].Chinese Journal of Fisheries,36(3):68-74.]doi:10.3969/j.issn.1005-3832.2023.03.010.

      王貴英,曾可為,高銀愛,李清,夏儒龍.2005.鱖配合飼料的最適蛋白質(zhì)含量[J].水生生物學(xué)報(bào),29(2):189-192.[Wang G Y,Zeng K W,Gao YA,Li Q,Xia R L.2005.The opti‐mum dietary protein level for Siniperca chuatsi[J].Acta Hydrobiologica Sinica,29(2):189-192.]doi:10.3321/j.issn:1000-3207.2005.02.015.

      魏孟申,鄭濤,路思琪,強(qiáng)俊,陶易凡,李巖,徐跑.2024.氨氮脅迫對(duì)大口黑鱸幼魚組織結(jié)構(gòu)、酶活及腸道微生物的影響[J].水生生物學(xué)報(bào),48(1):10-22.[Wei M S,Zheng T,Lu S Q,Qiang J,TaoY F,Li Y,Xu P.2024.Ammonia-N stress on tissue structure,enzyme activity and intestinal microbiota of Macropterussalmoides[J].Acta Hydrobio‐logica Sinica,48(1):10-22.]doi:10.7541/2023.2023.0054.

      辛晴晴,呂茜茜,吳利敏,田雪,馬文閣,李學(xué)軍.2022.飼料中添加檸檬黃對(duì)鯽肝、腸組織結(jié)構(gòu)、抗氧化指標(biāo)及腸道菌群的影響[J].水產(chǎn)學(xué)報(bào),46(10):1902-1911.[Xin Q Q,LüX X,Wu L M,Tian X,Ma W G,Li X J.2022.Effects of tartrazine consumption on liver and intestine structure,antioxidant indices and intestinal microbiota in crucian carp(Carassius auratus)[J].Journal of Fisheries of China,46(10):1902-1911.f118380060750d93dab76311e2b533a57fec905cc06e951600e232235c55fced]doi:10.11964/jfc.20220313401.

      余友斌,黃溫赟,崔銘超.2023.養(yǎng)殖密度對(duì)大黃魚生長(zhǎng)、血清生化、營(yíng)養(yǎng)成分、消化酶和代謝酶活力的影響[J].漁業(yè)現(xiàn)代化,50(3):64-71.[Yu Y B,Huang W Y,Cui M C.2023.Effects of stocking densities on growth performance,nutrient composition,serum biochemical,digestive and metabolic enzymes activities of large yellow croaker(Lar-imichthyscrocea)[J].Fishery Modernization,50(3):64-71.]doi:10.3969/j.issn.1007-9580.2023.03.008.

      曾端,葉元土.1998.魚類食性與消化系統(tǒng)結(jié)構(gòu)的研究[J].西南農(nóng)業(yè)大學(xué)學(xué)報(bào),20(4):81-84.[Zeng D,Ye Y T.1998.Studies on digestive system and different feeding habits of some fishes in freshwater[J].Journal of Southwest Agri‐cultural University,20(4):81-84.]doi:10.13718/j.cnki.xdzk.1998.04.017.

      曾萌冬,馬晨夕,趙亮亮,趙金良.2024.活餌與飼料投喂對(duì)幼鱖腸肽酶活力及小肽轉(zhuǎn)運(yùn)、吸收的影響[J].水生生物學(xué)報(bào),48(1):53-62.[Zeng M D,Ma C X,Zhao L L,Zhao J L.2024.Feeding live bait and feed on the peptidase acti-vity,transport and absorption of small peptides in juvenile mandarin fish[J].Acta Hydrobiologica Sinica,48(1):53-62.]doi:10.7541/2023.2021.0108.

      曾萌冬,徐俊,宋銀都,趙金良.2021.配合飼料替代活餌對(duì)鱖生長(zhǎng)性能、消化功能及小肽轉(zhuǎn)運(yùn)載體基因表達(dá)的影響[J].南方農(nóng)業(yè)學(xué)報(bào),52(1):228-237.[Zeng M D,Xu J,Song Y D,Zhao J L.2021.Effects of replacing live bait with compound feed on growth,digestion and expression of small peptide transporter(PepT1)gene of Siniperca chuatsi[J].Journal of Southern Agriculture,52(1):228-237.]doi:10.3969/j.issn.2095-1191.2021.01.028.

      周景祥,余濤,黃權(quán),李月紅.2001.鯉魚、黃顙魚和大眼鰤鱸消化酶活性的比較研究[J].吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),23(1):94-96.[Zhou J X,Yu T,Huang Q,Li Y H.2001.Compari‐son studies on the activities of the digestive enzymes of common carp,Huangsang cat-fish and walleye[J].Journal of Jilin Agricultural University,23(1):94-96.]doi:10.13327/j.jjlau.2001.01.026.

      Bolnick D I,Snowberg L K,Hirsch P E,Lauber C L,Knight R,Gregory Caporaso J,Svanb?ck.2014.Individuals?diet diversity influences gut microbial diversity in two fresh-water fish(threespine stickleback and Eurasian perch)[J].Ecology Letter,17(8):979-987.doi:10.1111/ele.12301.

      Buddington R K,Krogdahl A,Bakke-McKellep A M.1997.The intestines of carnivorous fish:Structure and functions and the relations with diet[J].Acta Physiologica Scandi‐navica,638:67-80.

      Cao S W,Dicksved J,Lundh T,Vidakovic A,Norouzitallab P,Huyben D.2024.A meta-analysis revealing the technical,environmental,and host-associated factors that shape the gut microbiota of Atlantic salmon and rainbow trout[J].Reviews in Aquaculture,16(4):1603-1620.doi:10.1111/raq.12913.

      Chen S F,Zhou Y Q,Chen Y R,Jia G.2018.Fastp:An ultra-fast all-in-one FASTQ preprocessor[J].Bioinformatics,34(17):i884-i890.doi:10.1093/bioinformatics/bty560.

      Dawood M A O,Koshio S,Ishikawa M,Yokoyama S E,El Basuini M F,Hossain M S,Nhu T H,Dossou S,Moss A S.2016.Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth,gut microbiota and immune responses of red sea bream,Pagrus major[J].Fish&Shellfish Immunology,49:275-285.doi:10.1016/j.fsi.2015.12.047.

      Ding LY,Zhang Y P,Chen J C,Chen W J,Xie S Q,Chen Q T.2022.Growth,muscle nutrition composition,and digestive enzyme activities of the juvenile and adult Siniperca chuatsi fed on live baits and a formulated diet[J].Fishes,7(6):379.doi:10.3390/fishes7060379.

      Douglas G M,Maffei V J,Zaneveld J R,Yurgel S N,Brown J R,Taylor C M,Huttenhower C,Langille M G I.2020.PIC‐RUSt2 for prediction of metagenome functions[J].Nature Biotechnology,38(6):685-688.doi:10.1038/s41587-020-0548-6.

      Edgar R C.2013.UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods,10:996-998.doi:10.1038/nmeth.2604.

      Fernández I,Moyano F J,Díaz M,Martinez T.2001.Characteri-zation ofα-amylase activity in five species of Mediterra‐nean sparid fishes(Sparidae,Teleostei)[J].Journal of Ex-perimental Marine Biology and Ecology,262(1):1-12.doi:10.1016/S0022-0981(01)00228-3.

      Huang Q,Sham R C,Deng Y,Mao Y P,Wang C X,Zhang T,Leung K M Y.2020.Diversity of gut microbiomes in marine fishes is shaped by host-related factors[J].Molecu‐lar Ecology,29(24):5019-5034.doi:10.1111/mec.15699.

      Kim P S,Shin N R,Lee J B,Kim M S,Whon T W,Hyun D W,Yun J H,Jung M J,Kim J Y,Bae J W.2021.Host habitat is the major determinant of the gut microbiome of fish[J].Microbiome,9(1):166.doi:10.21203/rs.3.rs-332643/v 1.

      Li W,Zhang T,Ye S W,Liu J S,Li Z J.2013.Feeding habits and predator-prey size relationships of mandarin fish Siniperca chuatsi(Basilewsky)in a shaqTCeAzrtYAuQLu0F33alTM12OQINfjL4GQzqSzO55lM=llow lake,central China[J].Journal of Applied Ichthyology,29(1):56-63.doi:10.1111/j.1439-0426.2012.02044.x.

      Li Y,Li J Z,Lu J T,Li Z,Shi S C,Liu Z J.2017.Effects of live and artificial feeds on the growth,digestion,immunity and intestinal microflora of mandarin fish hybrid(Sini-percachuatsi♀×Siniperca scherzeri♂)[J].Aquaculture Research,48(8):4479-4485.doi:10.1111/are.13273.

      Liu C S,Zhao D F,Ma W J,Guo Y D,Wang A J,Wang Q L,Lee D J.2016.Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp.[J].Applied Microbiology and Biotechnology,100(3):1421-1426.doi:10.1007/s00253-015-7039-6.

      Liu LW,Liang X F,F(xiàn)ang J G.2017.The optimal stocking den‐sity for hybrid of Sinipercachuatsi(♀)×Sinipercascher-zeri(♂)mandarin fish fed minced prey fish[J].Aquacul‐ture Research,48(3):1342-1345.doi:10.1111/are.12892.

      Liu M K,Li Q Y,Tan L T,Wang L P,Wu F C,Li L,Zhang G F.2023.Host-microbiota interactions play a crucial role in oyster adaptation to rising seawater temperature in summer[J].Environmental Research,216(2):114585.doi:10.1016/j.envres.2022.114585.

      Mago?T,Salzberg S L.2011.FLASH:Fast length adjustment of short reads to improve genome assemblies[J].Bioinfor‐matics,27(21):2957-2963.doi:10.1093/bioinformatics/btr507.

      McAuliffe L,Ellis R J,Lawes J R,Ayling R D,Nicholas RA J.2005.16S rDNA PCR and denaturing gradient gel electro‐phoresis:A single generic test for detecting and differentia-ting Mycoplasma species[J].Journal of Medical Microbio-logy,54(8):731.doi:10.1099/jmm.0.46058-0.

      Miyake S,Ngugi D K,Stingl U.2015.Diet strongly influences the gut microbiota of surgeon fishes[J].Molecular Eco-logy,24(3):656-672.doi:10.1111/mec.13050.

      Nirmal N P,Santivarangkna C,Benjakul S,Maqsood S.2022.Fish protein hydrolysates as a health-promoting ingre-dient—Recent update[J].Nutrition Reviews,80(5):1013-1026.doi:10.1093/nutrit/nuab065.

      Pelusio N F,Rossi B,Parma L,Volpe E,Ciulli S,Piva A,D'Amico F,Scicchitano D,Candela M,Gatta P P,Bonaldo A,Grilli E.2020.Effects of increasing dietary level of organic acids and nature-identical compounds on growth,intestinal cytokine gene expression and gut microbiota of rainbow trout(Oncorhynchus mykiss)reared at normal and high temperature[J].Fish&Shellfish Immunology,107:324-335.doi:10.1016/j.fsi.2020.10.021.

      Schloss P D,Westcott S L,Ryabin T,Hall J R,Hartmann M,Hollister E M,Lesniewsk R A,Oakley B B,Parks A H,Robinson C J,Sahl J W,Stres B,Thallinger G G,van Horn D J,Weber C F.2009.Introducing mothur:Open-source,platform-independent,community-supported soft‐ware for describing and comparing microbial communities[J].Applied and Environmental Microbiology,75(23):7537-7541.doi:10.1128/AEM.01541-09.

      Sullam K E,Essinger S D,Lozupone C A,O'Connor M P,Rosen G L,Knight R,Kilham S S,Russell JA.2012.Envi‐ronmental and ecological factors that shape the gut bacte‐rial communities of fish:A meta-analysis[J].Molecular Ecology,21(13):3363-3378.doi:10.1111/j.1365-294X.2012.05552.x.

      Wang M Y,Lai1 M Y,Tian T,Wu M Y,Liu Y H,Liang P,Huang L T,Qin Z Q,Ye X J,Xiao W,Huang H G.2023.Comparison of growth performance and muscle nutrition levels of juvenile Siniperca scherzeri fed on an iced trash fish diet and a formulated diet[J].Fishes,8(8):393.doi:10.3390/fishes8080393.

      Wang Q,Garrity G M,Tiedje J M,Cole J R.2007.Na?ve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J].Applied and Environ‐mental Microbiology,73(16):5261-5267.doi:10.1128/AEM.00062-07.

      Willis K J,Whittaker R J.2002.Ecology.Species diversity—Scale matters[J].Science,295(5558):1245-1248.doi:10.1126/science.1067335.

      Wong S,Rawls J F.2012.Intestinal microbiota composition in fishes is influenced by host ecology and environment[J].Molecular Ecology,21(3):3100-3102.doi:10.1111/j.1365-294X.2012.05646.x.

      Yang M,Liang X F,Tian C X,Gul Y,Dou Y Q,Cao L,Yu R.2012.Isolation and characterization of fifteen novel micro‐satellite loci in golden mandarin fish(Siniperca scherzeri)steindachne[J].Conservation Genetic Resources,4(3):599-601.doi:10.1007/s 12686-012-9601-1.

      Zhang Q Y,Cai Y Z,Zhang L P,Lu M,Yang LY,Wang D K,Jia Q J.2024.The accumulation of active ingredients of Polygonatumcyrtonema Hua is associated with soil charac‐teristics and bacterial community[J].Frontiers in Microbio-logy,15:1347204.doi:10.3389/fmicb.2024.1347204.

      Zhu Y,Qing X,Ding Q L,Duan M M,Wang C F.2014.Com‐bined effects of dietary phytase and organic acid on growth and phosphorus utilization of juvenile yellow catfish Pel-teobagrusfulvidraco[J].Aquaculture,430:1-8.doi:10.1016/j.aquaculture.2014.03.023.

      (責(zé)任編輯蘭宗寶)

      汉沽区| 黑龙江省| 叙永县| 苏尼特右旗| 岑巩县| 临沂市| 江口县| 德清县| 察隅县| 河北区| 吴忠市| 日喀则市| 屯昌县| 凌云县| 共和县| 浠水县| 罗平县| 竹北市| 寿宁县| 宁明县| 涪陵区| 长阳| 乌兰浩特市| 璧山县| 尼玛县| 屏东县| 仪征市| 宁都县| 广水市| 当雄县| 太保市| 怀柔区| 三都| 于田县| 久治县| 仪征市| 重庆市| 莱芜市| 雷州市| 太原市| 西畴县|