摘要:種群動(dòng)力學(xué)作為生態(tài)系統(tǒng)的一個(gè)重要分支,日益受到廣大學(xué)者的關(guān)注。單種群及兩種群的差分生態(tài)系統(tǒng)的研究已取得一些重要成果,但對(duì)三種群生態(tài)差分系統(tǒng)的研究工作還未見(jiàn)發(fā)表。本文研究一類指數(shù)型三種群生物差分系統(tǒng)。首先,利用迭代方法及不等式技巧證明了該系統(tǒng)的每一個(gè)正解都是持久的和有界的;其次,利用不動(dòng)點(diǎn)理論證明了該系統(tǒng)正平衡點(diǎn)的存在性;最后,利用線性化理論、Rouche定理及李亞普諾夫穩(wěn)定性理論獲得了確保該生態(tài)系統(tǒng)正平衡點(diǎn)漸近穩(wěn)定的若干充分條件。所得結(jié)論推廣了參考文獻(xiàn)[20-24]中的相應(yīng)結(jié)果。
關(guān)鍵詞:生態(tài)系統(tǒng);有界性;持久性;平衡點(diǎn);穩(wěn)定性
中圖分類號(hào): O241.84 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-2443(2024)04-0306-08
引 言
數(shù)學(xué)模型已經(jīng)被廣泛研究,因?yàn)樗鼈兛梢悦枋錾飳W(xué)、生態(tài)學(xué)、物理學(xué)、經(jīng)濟(jì)學(xué)等領(lǐng)域的許多現(xiàn)實(shí)生活問(wèn)題[1-3]。近年來(lái),隨著生物技術(shù)的快速發(fā)展,生物數(shù)學(xué)模型受到了數(shù)學(xué)和生物工作者的廣泛關(guān)注[4-8]。差分方程作為一種重要的生物數(shù)學(xué)模型,可用于描述種群生物學(xué)中的真實(shí)情況[9-10]。最近,人們對(duì)指數(shù)型差分方程組進(jìn)行了充分的研究[11-13]。盡管差分方程的形式非常簡(jiǎn)單,但要徹底理解其解的動(dòng)力學(xué)行為是極其困難的[14-19]。有許多論文與指數(shù)型生態(tài)差分系統(tǒng)有關(guān),例如,El Metwally等[20]研究了以下單物種差分種群模型
根據(jù)(29), (30)和(17), 容易驗(yàn)證系統(tǒng)(28)滿足定理2.3的條件。所以,由定理2.3可知, 系統(tǒng)(28)的正平衡點(diǎn)[(x, y, z)] 對(duì)區(qū)域[(xi,yi,zi)?(0.3601,0.8577)×(0.4046,0.8333)×(0.2926,0.75),i=0.1]中的任何初值是全局漸近穩(wěn)定的。上述結(jié)果顯示在圖2~4中。
5 結(jié)論
本文研究了一類指數(shù)型三種群差分系統(tǒng)的動(dòng)力學(xué)行為。主要結(jié)果如下:
(1) 利用不等式性質(zhì)證明了生態(tài)系統(tǒng)(6)的每一個(gè)正解都是持久的和有界的;
(2) 利用不動(dòng)點(diǎn)定理,得到系統(tǒng)(6)至少存在一個(gè)正平衡點(diǎn);
(3) 利用線性化理論及Rouche定理,得到了確保系統(tǒng)(6)的正平衡點(diǎn)是局部漸近穩(wěn)定的充分條件;
(4) 利用李亞普諾夫穩(wěn)定性定理,得到了確保系統(tǒng)(6)的正平衡點(diǎn)是全局漸近穩(wěn)定的充分條件;
(5) 通過(guò)數(shù)值算法驗(yàn)證了所得理論結(jié)果的正確性。
所得結(jié)論推廣了參考文獻(xiàn)[20-24]中的相應(yīng)結(jié)果。另外,本文的方法可用于研究類似的多種群差分系統(tǒng)。
參考文獻(xiàn):
[1] BRAUER F,CHAVEZ CC. Mathematical Models in Population Biology and Epidemiology[M].New York:Springer Verlag, 2001:3-47.
[2] WANG C Y, WANG S. Oscillation of partial population model with diffusion and delay[J]. Applied Mathematics Letters, 2009, 22: 1793-1797.
[3] ELSAYEDE M, ALZAHRANI F, ABBAS I, et al. Dynamical behavior and solution of nonlinear difference equation via Fibonacci sequence[J]. Journal of Applied Analysis and Computation, 2020, 10: 282-296.
[4] WANG C Y, WANG S, YANG F P, et al. Global asymptotic stability of positive equilibrium of three-species Lotka-Volterra mutualism models with diffusion and delay effects[J]. Applied Mathematical Modelling, 2010, 34: 4278-4288.
[5] ZHANG Y J, WANG C Y. Stability analysis of n-species Lotka-Volterra almost periodic competition models with grazing rates and diffusions[J]. International Journal of Biomathematics, 2014, 7(2): Article ID: 1450011.
[6] WANG C Y, LI L R, ZHANG Q Y, et al. Dynamical behavior of a Lotka-Volterra competitive-competitive-cooperative model with feedback controls and time delays[J]. Journal of Biological Dynamics, 2019, 13: 43-68.
[7] VARGAS-DE-LEON C. Global stability of nonhomogeneous coexisting equilibrium state for the multispecies Lotka-Volterra mutualism models with diffusion[J]. Mathematical Methods in the Applied Sciences, 2022, 45: 2123-2131.
[8] CHEN X S, LUO D M. Dynamical analysis of an almost periodic multispecies mutualism system with impulsive effects and time delays[J]. Filomat, 2023, 37: 551-565.
[9] KOCIC V L, LADAS G. Global Behavior of NonLinear Difference Equations of Higher Order with Applications[M]. Dordrecht: Kluwer Academic Publishers, 1993:1-26.
[10] ELAYDI S. An Introduction to Difference Equations[M]. third ed, New York: Springer, 2005:10-38.
[11] PAPASCHINOPOLUOS G, SCHINAS C J. On the dynamics of two exponential type systems of difference equations[J]. Computational & Applied Mathematics, 2012, 64: 2326-2334.
[12] KHAN A Q, QURESHI M N. Behavior of an exponential system of difference equations[J]. Discrete Dynamics in Nature and Society, 2014, Article ID: 607281.
[13] KHAN A Q,NOORANI M S M, ALAYACHI H S. Global dynamics of higher-order exponential systems of difference equations[J]. Discrete Dynamics in Nature and Society, 2019, Article ID: 3825927.
[14] ELSAYED E M. Solutions of rational difference system of order two[J]. Mathematical and Computer Modelling, 2012, 55: 378-384.
[15] WANG C Y, FANG X J, LI R. On the solution for a system of two rational difference equations[J]. Journal of Computational Analysis and Applications, 2016, 20: 175-186.
[16] TASKARA N, TOLLU D T, TOUAFEK N, et al. A solvable system of difference equations[J]. Communications of the Korean Mathematical Society, 2020, 35: 301-319.
035781a44e85aa2e97927c9f2b468e548f4dc76535e48602d601bd44ca99c2f4[17] WANG C Y, LI J H,. Dynamics of a high-order nonlinear fuzzy difference equation[J]. Journal of Applied Analysis and Computation, 2021, 11: 404-421.
[18] JIA L L , WANG C Y, ZHAO X J, et al. Dynamic behavior of a fractional-type fuzzy difference system[J].Symmetry, 2022, 14: Article ID:1337.
[19] JIA L L , ZHAO X J , WANG C Y ,et al. Dynamic behavior of a seven-order fuzzy difference system[J]. Journal of Applied Analysis and Computation, 2023, 13(2): 486-501.
[20] EL-METWALLY H,GROVE E A, LADAS G, et al. On the difference equation [xn+1=α+βxn-1e-xn][J]. Nonlinear Analysis: Theory Methods and Applications, 2001, 47: 4623- 4634.
[21] WANG W, FENG H. On the dynamics of positive solutions for the difference equation in a new population model[J]. Journal of Nonlinear Sciences and Applications, 2016, 9: 1748-1754.
[22] OZTURK I, BOZKURT F, OZEN S. On the difference equation[yn+1=(α+β e-yn)/][(γ+yn-1)][J].Applied Mathematics and Computation, 2006, 181: 1387-1393.
[23] PAPASCHINOPOLUOS G, RADIN M A, SCHINAS C J. Study of the asymptotic behavior of the solutions of three systems of difference equations of exponential form[J]. Applied Mathematics and Computation, 2012, 218: 5310-5318.
[24] THAI T H, DAI N A, ANH P T. Global dynamics of some system of second-order difference equations[J]. Electronic Research Archive, 2021, 29: 4159-4175.
[25] SEDAGHAT H. Nonlinear difference equations: theory with applications to social science models[M]. Dordrecht: Kluwer Academic Publishers, 2003:3-11.
[26] CAMOUZIS ,LADAS E G. Dynamics of third-order rational difference equations: with open problems and conjectures[M]. Boca Raton :Chapman and Hall/HRC,2007:3-28.
On the Dynamic Behavior of a Type of Exponential Three Populations Differential Ecosystem
WANG Chang-you 1, YANG Tao 1, CHEN Hua 2, WANG Qi-yu 1
(1. College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, China;2. College of Marxism, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China)
Abstract: Population dynamics, as an important branch of ecosystems, is increasingly receiving attention from scholars. Significant achievements have been made in the study of differential ecosystems of single and two populations, but research on differential ecosystems of three populations has not yet been published. In this paper, we study a class of exponential 3 populations biological differential systems. Firstly, we use iterative methods and inequality techniques to prove that every positive solution of the system is persistent and bounded. Secondly, the existence of a positive equilibrium point of the system is proved, using fixed point theory. Finally, using linearization theory, Rouche theorem and Lyapunov stability theory, we provide sufficient conditions for the asymptotic stability of the positive equilibrium point of the ecosystem. The obtained conclusion extends the corresponding results in references [20-24].
Key words: ecosystem; boundedness; persistence; equilibrium point; stability
(責(zé)任編輯:馬乃玉)
安徽師范大學(xué)學(xué)報(bào)(自然科學(xué)版)2024年4期