基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(82260433)
通信作者:徐房添,男,博士,教授,主任醫(yī)師,研究方向:骨科基礎(chǔ)與臨床。E-mail:1242212565@qq.com
摘 "要:軟骨缺損的修復(fù)一直是臨床上的難題。近年來(lái),以脂肪干細(xì)胞(Adipose stem cells,ASCs)為種子細(xì)胞的軟骨組織工程取得了重要進(jìn)展,為軟骨的修復(fù)提供了新方法,但尚不成熟。本文通過(guò)查閱國(guó)內(nèi)外文獻(xiàn),就ASCs、相關(guān)的細(xì)胞因子以及各種新型的仿生支架等在軟骨組織工程中的最新研究進(jìn)展及存在的問(wèn)題進(jìn)行綜述。文獻(xiàn)復(fù)習(xí)結(jié)果表明,ASCs具有來(lái)源豐富、免疫原性低等優(yōu)勢(shì),尤其向軟骨細(xì)胞分化的能力,使其有希望成為軟骨組織工程理想的種子細(xì)胞。研究發(fā)現(xiàn)ASCs分泌的相關(guān)細(xì)胞因子,尤其是ASCs分泌的多種細(xì)胞外囊泡、外泌體(其內(nèi)含有的多種非編碼RNA)具有促進(jìn)ASCs軟骨分化、抑制軟骨細(xì)胞凋亡等作用。另外,近年來(lái)軟骨組織工程支架的研發(fā)也得到很大進(jìn)展,如3D打印支架、氧化石墨烯的納米材料支架、多種天然和人工合成材料構(gòu)建的復(fù)合仿生支架等。目前存在的問(wèn)題是:ASCs的成軟骨誘導(dǎo)效率尚需進(jìn)一步提高,以及開發(fā)出更適合體內(nèi)微環(huán)境的3D仿生支架等,這將是軟骨組織工程今后研究的重點(diǎn)。
關(guān)鍵詞:脂肪干細(xì)胞;軟骨組織工程;支架材料;胞間信號(hào)肽類和蛋白質(zhì)類
中圖分類號(hào):R68 " "文獻(xiàn)標(biāo)志碼:A " "文章編號(hào):1001-5779(2024)10-1058-06
DOI : 10.3969/j.issn.1001-5779.2024.10.016
New research progress of cartilage tissue engineering based on adipose stem cells
LAI Ling-yong1, XU Fang-tian2, ZHANG Ya-liang1, MIAO Sheng-wang1, ZHOU Bo1
(1.The First Clinical Medical School of Gannan Medical University; 2.Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000)
Abstract ": The repair of cartilage defects has been a clinical challenge. In recent years, many significant advances have been achieved in cartilage tissue engineering using adipose-derived stem cells (ASCs) as seed cells, providing an exciting new method for cartilage repair. However, it is not mature yet.We reviewed the latest research progress and existing problems in cartilage tissue engineering involving ASCs, related cytokines, and various novel biomimetic scaffolds by referring to domestic and foreign literature in this article. The results of literature review show that ASCs possess many advantages such as abundant sources and low immunogenicity, especially the ability to differentiate into chondrocytes, making them be the promising seed cells for cartilage tissue engineering. Recent studies have found that related cytokines, particularly various extracellular vesicles and exosomes (containing many kinds of non-coding RNAs) secreted by ASCs can promote the cartilage differentiation of ASCs and inhibit the apoptosis of chondrocytes. Additionally, significant progress has been made in the research and development of scaffolds for cartilage tissue engineering in recent years, including 3D printing scaffolds, the nanomaterials scaffolds of graphene oxide (GO), and the composite biomimetic scaffolds constructed from various natural and synthetic materials and so on. However, there are still many challenges to be addressed. The future research in cartilage tissue engineering will focus on further improving the chondrogenic differentiation efficiency of ASCs and developing 3D biomimetic scaffolds that are more suitable for the microenvironment in vivo.
Key words ": "Adipose stem cells; Cartilage tissue engineering; Scaffold materials; Intercellular signal peptides and proteins
關(guān)節(jié)軟骨缺損是臨床上十分常見的問(wèn)題,導(dǎo)致關(guān)節(jié)不同程度的功能障礙,其治療一直是醫(yī)學(xué)面臨的挑戰(zhàn)。由于關(guān)節(jié)軟骨代謝率低,缺乏血液供應(yīng)、淋巴管分布和神經(jīng)支配,來(lái)自骨髓或血液的祖細(xì)胞在軟骨損傷后不能及時(shí)進(jìn)入,因此軟骨損傷后自發(fā)修復(fù)的能力非常有限,極易發(fā)展為骨關(guān)節(jié)炎[1]。目前臨床上應(yīng)用的諸多外科治療方法,如軟骨下骨微骨折、自體/異體骨軟骨移植、同種異體幼年軟骨顆粒狀移植[2]等,效果均不甚理想。近年來(lái),以脂肪干細(xì)胞(Adipose stem cells, ASCs)為種子細(xì)胞的軟骨組織工程取得了一系列重要進(jìn)展,為軟骨損傷、缺損的修復(fù)開辟了一條有效途徑[3],但尚不成熟。本文就ASCs、相關(guān)的細(xì)胞因子、天然及人工合成的仿生支架等在軟骨組織工程中的最新研究進(jìn)展及存在的問(wèn)題進(jìn)行綜述。
1 "脂肪干細(xì)胞的特點(diǎn)
2001年ZUK P A等[4]首次從脂肪組織中提取到一類間充質(zhì)干細(xì)胞(Adipose-derived mesenchymal stem cells, AD-MSCs),又稱ASCs,具有多向分化潛能,且來(lái)源豐富、易獲取及免疫原性低等優(yōu)勢(shì)。ASCs在體外的免疫表型取決于時(shí)間和傳代次數(shù),經(jīng)過(guò)2次及以上傳代后,其表面抗原與骨髓間充質(zhì)干細(xì)胞(Bone marrow mesenchymal stem cells,BMSCs)相似,重疊度>90%,其表面表達(dá)CD44、CD90、CD73、CD166、CD29以及細(xì)胞骨架標(biāo)志物(如α-平滑肌肌動(dòng)蛋白)[5]。與經(jīng)典的BMSCs相似,ASCs具有在特定誘導(dǎo)條件下分化為軟骨細(xì)胞、骨細(xì)胞、脂肪細(xì)胞、神經(jīng)細(xì)胞等的多向分化能力[6]。因而ASCs被認(rèn)為是理想的種子細(xì)胞來(lái)源,是軟骨組織工程種子細(xì)胞的較佳選擇。
ASCs分泌的相關(guān)旁分泌因子有助于組織修復(fù)、傷口愈合和器官再生。HUTCHINGS G等[7]發(fā)現(xiàn),ASCs可通過(guò)釋放相關(guān)的旁分泌因子,如瘦素、血管生成素、顆粒細(xì)胞-吞噬細(xì)胞集落刺激因子和轉(zhuǎn)化生長(zhǎng)因子-β(Transforming growth factor-β,TGF-β)等,刺激新生血管形成;另外,相關(guān)的細(xì)胞因子還可將遠(yuǎn)處的ASCs募集到組織缺損部位,共同參與新血管生成。這對(duì)于組織缺損的修復(fù)、使構(gòu)建的特定工程化組織盡早血管化有重要意義。PERS Y M等[8]研究表明,可以通過(guò)釋放相關(guān)的旁分泌因子和細(xì)胞因子,啟動(dòng)免疫級(jí)聯(lián)反應(yīng),產(chǎn)生持久的系統(tǒng)免疫調(diào)節(jié),從而利于ASCs成軟骨分化。BELLO A B等[9]研究發(fā)現(xiàn),負(fù)載Matrilin3/TGF-β3的明膠微粒可促進(jìn)ASCs的軟骨分化,且可減輕軟骨細(xì)胞肥大化。
ASCs可分泌多種細(xì)胞外囊泡,在再生醫(yī)學(xué)中具有廣闊應(yīng)用前景。除了相關(guān)細(xì)胞因子、蛋白質(zhì)外,分泌組的治療作用還隱藏在非編碼RNA中,如miR-21、miR-24和miR-26,這些RNA由干細(xì)胞分泌的外泌體攜帶,利用ASCs分泌組開發(fā)新的治療策略是學(xué)者目前關(guān)注的熱點(diǎn)[10]。ZHAO J等[11]發(fā)現(xiàn),缺氧處理的ASCs外泌體能減輕腰椎小關(guān)節(jié)骨關(guān)節(jié)炎,可促進(jìn)軟骨愈合并有防止軟骨退化的作用。WU J等[12]研究表明,ASCs衍生的外泌體可抑制軟骨細(xì)胞凋亡,并通過(guò)平衡合成代謝與分解代謝過(guò)程保護(hù)軟骨免受損傷。
2 "軟骨組織工程支架材料
支架材料是組織工程三大要素之一,軟骨組織工程要求支架材料有良好的生物相容性,能吸附種子細(xì)胞、自身分泌的生長(zhǎng)因子或外源生長(zhǎng)因子,使細(xì)胞在支架內(nèi)增殖分化,并且要有良好的生物降解性,保證其降解產(chǎn)物對(duì)機(jī)體無(wú)毒無(wú)害[13]。目前研究的支架材料主要有天然高分子材料、人工合成高分子材料及復(fù)合材料等,無(wú)論合成還是天然的支架,都必須再現(xiàn)細(xì)胞外基質(zhì)(Extracellular matrix, ECM),模仿有利于干細(xì)胞附著和增殖的體內(nèi)微環(huán)境[14]。近些年,3D打印支架和納米材料支架在軟骨組織工程中的研究越來(lái)越多。
2.1 3D打印支架 "近年來(lái),3D打印技術(shù)在軟骨組織工程中的應(yīng)用取得很大進(jìn)展,其主要利用計(jì)算機(jī)斷層掃描/磁共振成像技術(shù)、先進(jìn)的計(jì)算機(jī)輔助設(shè)計(jì)(Computer-aided design,CAD)數(shù)控技術(shù)和生物高分子材料,以制備具有仿生結(jié)構(gòu)形狀的數(shù)字化快速成型的工程化支架模塊,并可通過(guò)適當(dāng)?shù)牟牧线x擇來(lái)控制支架的降解速率和機(jī)械強(qiáng)度,其機(jī)制遵循分層制造、逐層疊加的原理[15]。3D打印的方法通常包括立體光刻技術(shù)(Stereolithography technology, SLA)、數(shù)字光處理技術(shù)(Digital light processing, DLP)、噴墨打印技術(shù)、熔融沉積打印技術(shù)(Fused deposition modeling, FDM)、選擇性激光燒結(jié)技術(shù)(Selective laser sintering, SLS)等[16]。目前軟骨組織工程中研究較多的3D打印“墨水”主要是兩種材料:一是天然高分子材料,如海藻酸鹽、瓊脂糖、殼聚糖、纖維素、葡聚糖和透明質(zhì)酸;二是人工合成高分子材料,如聚己內(nèi)酯、聚乳酸和聚乳酸-羥基乙酸等[17]。NEDUNCHEZIAN S等[18]利用3D打印技術(shù)構(gòu)建了載有ASCs的透明質(zhì)酸支架,與傳統(tǒng)HA水凝膠相比,其可分泌更多的硫酸化糖胺聚糖(Sulfated glycosaminoglycan, sGAG),對(duì)軟骨形成有促進(jìn)作用。LANDAU S等[19]通過(guò)3D打印技術(shù)制成載有軟骨細(xì)胞和ASCs的聚己內(nèi)酯支架,該支架可增加細(xì)胞黏附率,并促進(jìn)ASCs的軟骨分化。
2.2 納米材料支架 "納米材料支架的研發(fā)是近年令人興奮的進(jìn)展之一。由于軟骨組織獨(dú)特的微結(jié)構(gòu)和缺乏血管等特點(diǎn),再生非常困難,納米材料和納米纖維技術(shù)的發(fā)展為解決此問(wèn)題帶來(lái)了希望[20]。納米材料至少在一維方向上具有<100 nm的結(jié)構(gòu)成分,且由于其納米級(jí)結(jié)構(gòu)和高比表面積表現(xiàn)出獨(dú)特的性能:包括但不限于增強(qiáng)化學(xué)反應(yīng)性、機(jī)械強(qiáng)度、可降解性和生物相容性[21],在微觀結(jié)構(gòu)、物理化學(xué)、機(jī)械和生物性能方面模仿天然軟骨,更有希望開發(fā)出模擬軟骨細(xì)胞外基質(zhì)環(huán)境的支架,從而改善支架-細(xì)胞間的相互作用,提高組織工程構(gòu)建體的功能。
2.2.1 氧化石墨烯(Graphene oxide, GO) GO是石墨烯氧化的產(chǎn)物[22],是一種新型納米材料。GO可在含有干細(xì)胞的傳遞系統(tǒng)中促進(jìn)活性生物因子釋放,如生長(zhǎng)因子或合成蛋白,最終調(diào)節(jié)干細(xì)胞分化和增殖[23]。RICCI A等[24]發(fā)現(xiàn),使用GO及其生物復(fù)合材料可促進(jìn)ASCs的成軟骨分化,而增加石墨烯的孔隙率又可增加ASCs的負(fù)載量,從而增加干細(xì)胞的軟骨分化率。
2.2.2 碳納米管(Carbon nanotubes, CNTs) CNTs是由碳制成的圓柱形管狀納米材料,具有優(yōu)異的導(dǎo)電性、導(dǎo)熱性和機(jī)械強(qiáng)度,可在組織工程中提供良好性能和耐用性的生物支架材料,現(xiàn)已被廣泛研究和開發(fā)[25]。ELíDóTTIR K L等[26]發(fā)現(xiàn),將CNTs應(yīng)用在基于聚二甲基硅氧烷的支架表面可使軟骨細(xì)胞黏附和增殖能力增加,有利于ASCs成軟骨分化。MIRMUSAVI M H等[27]發(fā)現(xiàn),與不含多壁碳納米管的支架相比,軟骨細(xì)胞在含有多壁碳納米管的支架上呈現(xiàn)出更高的細(xì)胞活力,軟骨分化能力更強(qiáng)。
2.3 天然高分子材料及其復(fù)合支架
2.3.1 膠原蛋白 膠原蛋白是一種非水溶性的纖維狀蛋白質(zhì),是構(gòu)成動(dòng)物細(xì)胞外基質(zhì)的重要物質(zhì),在細(xì)胞黏附、生長(zhǎng)、分化和遷移等方面具有重要的作用,可增強(qiáng)組織再生能力[28]。TANG R F等[29]在兔軟骨缺損模型中使用Ⅰ型膠原支架,結(jié)果表明Ⅰ型膠原支架顯示出更好的吸附作用,具有引導(dǎo)ASCs三維排列的能力,且發(fā)現(xiàn)WNT5A質(zhì)粒通過(guò)刺激聚集素、SOX9基因和蛋白的表達(dá),抑制軟骨細(xì)胞肥大,促進(jìn)軟骨修復(fù)。KILMER C E等[30]發(fā)現(xiàn)Ⅰ型和Ⅱ型膠原共混水凝膠對(duì)軟骨組織修復(fù)具有促進(jìn)作用。
2.3.2 海藻酸鹽 海藻酸鹽是從海藻中提取的天然多糖,具有良好的生物相容性,可加工成水凝膠、微球、纖維、海綿等多種形態(tài)[31]。LIAO S等[32]采用靜電噴霧法制備包埋脂肪干細(xì)胞的藻酸鹽-明膠微球,結(jié)果發(fā)現(xiàn)微球能促進(jìn)ASCs的增殖和成軟骨能力。BEIGI M H等[33]也報(bào)道了在軟骨損傷的兔模型中,海藻酸鹽可促進(jìn)軟骨組織再生。
2.3.3 殼聚糖 殼聚糖是一種來(lái)源于甲殼素的多糖,廣泛存在于甲殼類動(dòng)物和昆蟲的外骨骼以及真菌等生物的細(xì)胞壁中,由于其游離氨基而具有更大的化學(xué)修飾潛力,因而在組織工程中具有廣泛的應(yīng)用前景[34]。ZUBILLAGA V等[35]設(shè)計(jì)了一種殼聚糖/甲殼素3D多孔支架,結(jié)果顯示殼聚糖可增強(qiáng)ASCs的分化能力。LIN I C等[36]在探究殼聚糖和軟骨ECM組成的混合支架對(duì)誘導(dǎo)干細(xì)胞成軟骨的影響中發(fā)現(xiàn),ASCs在此復(fù)合支架中成軟骨分化能力加強(qiáng),預(yù)示這種三維復(fù)合支架在基于ASCs的軟骨組織工程中具有巨大潛力。除此之外,其他天然高分子材料,如瓊脂糖、葡聚糖和透明質(zhì)酸、纖維素、明膠、層黏連蛋白等支架材料也有希望應(yīng)用于軟骨組織工程。
2.4 人工合成高分子材料及其復(fù)合支架 "人工合成高分子材料支架也是近些年的可喜進(jìn)展。聚乳酸、聚乙醇酸、聚己內(nèi)酯、聚乙二醇以及聚乳酸與聚乙醇酸的聚合物等人工合成高分子材料具有良好的生物相容性,利于軟骨組織修復(fù),常用于軟骨組織工程研究[37]。NGUYEN H T等[38]提出一種利用人脂肪干細(xì)胞和聚己內(nèi)酯支架制備工程軟骨的簡(jiǎn)單方法,結(jié)果表明,ASCs和PCL支架可在體外構(gòu)建軟骨組織,并且構(gòu)建的工程化軟骨可在小鼠體內(nèi)存在6個(gè)月。LI X等[39]發(fā)現(xiàn),大鼠脂肪干細(xì)胞在聚乙二醇和硫酸軟骨素(Chondroitin sulfate,CS)組成的水凝膠中表現(xiàn)出良好的細(xì)胞活力和成軟骨能力,具有降低干細(xì)胞炎癥反應(yīng)的作用,且該支架系統(tǒng)可促進(jìn)軟骨再生。
3 "細(xì)胞因子與軟骨分化
除了合適的種子細(xì)胞和支架外,還需要適當(dāng)?shù)拇碳ず蜖I(yíng)養(yǎng)使種子細(xì)胞分化為所需的軟骨細(xì)胞并形成胞外基質(zhì)。近年大量研究表明,多種外源性生長(zhǎng)因子可促進(jìn)ASCs向軟骨細(xì)胞分化,如TGF-β[40],骨形態(tài)發(fā)生蛋白[41],軟骨源性形態(tài)發(fā)生蛋白Ⅰ和Ⅱ(CDMP Ⅰ和Ⅱ)[42],胰島素樣生長(zhǎng)因子1(IGF-1)[43]和成纖維細(xì)胞生長(zhǎng)因子等[44]。
近年相關(guān)研究表明,與單純膠原凝膠相比,TGF-β1復(fù)合膠原凝膠對(duì)膝關(guān)節(jié)骨軟骨缺損修復(fù)和早期疼痛緩解具有更好的效果[45]。此外,還有學(xué)者[46]認(rèn)為IGF-1和BMP-2轉(zhuǎn)染的兔脂肪干細(xì)胞產(chǎn)生更多的Ⅱ型膠原,減少基質(zhì)金屬蛋白酶-3(MMP-3)的產(chǎn)生,可提高ASCs的成軟骨效能。ZHAO Y等[47]發(fā)現(xiàn),干擾素調(diào)節(jié)因子1(Interferon regulatory factor-1,IRF-1)有促進(jìn)ASCs軟骨形成的作用,缺氧誘導(dǎo)脂滴相關(guān)蛋白(Hypoxia-inducible lipid droplet-associated protein,HILPDA)與ASCs中的IRF-1結(jié)合,上調(diào)IRF-1和HILPDA水平,而過(guò)表達(dá)IRF-1和HILPDA可促進(jìn)ASCs的軟骨形成。
在誘導(dǎo)ASCs成軟骨分化的過(guò)程中,還受諸多因素的影響,如三維培養(yǎng)、機(jī)械刺激、低氧誘導(dǎo)、動(dòng)態(tài)環(huán)境和電磁場(chǎng)刺激等[48],而適當(dāng)?shù)臋C(jī)械刺激、三維培養(yǎng)環(huán)境和低氧水平可促進(jìn)其成軟骨分化。SCHNEIDER C等[49]研究表明,光生物調(diào)節(jié)(Photobiomodulation,PBM)具有增強(qiáng)或阻礙ASCs軟骨分化的作用,其中紅光的積極效果最好,負(fù)面影響較小,使其成為安全的選擇;而藍(lán)色、綠色等波長(zhǎng)較短的光源則會(huì)阻礙ASCs成軟骨分化。
4 "小結(jié)與展望
在軟骨組織工程研究及應(yīng)用方面,ASCs作為種子細(xì)胞較BMSCs更具優(yōu)勢(shì)。基于ASCs構(gòu)建的3D工程化軟骨已取得初步成功,運(yùn)用“器官組織芯片”技術(shù)(Organ-on-a-Chip)研究檢測(cè)工程化組織也已開展,但距離臨床應(yīng)用于修復(fù)關(guān)節(jié)軟骨缺損尚有較長(zhǎng)的路要走。脂肪干細(xì)胞的成軟骨誘導(dǎo)效率尚需提高,誘導(dǎo)方法需要改善;同時(shí),ASCs應(yīng)表征衰老和炎癥標(biāo)志分子,并依此篩選出相關(guān)細(xì)胞;支架方面,需要深入研究其孔徑、剛度、生物降解性及材料(如納米材料)對(duì)干細(xì)胞增殖、遷移和分化的影響,開發(fā)出新型模擬體內(nèi)微環(huán)境的3D仿生支架;如何使工程化軟骨在體內(nèi)具有相應(yīng)的生物學(xué)功能等,將是今后研究的重點(diǎn)。相信隨著相關(guān)學(xué)科的發(fā)展,基于ASCs構(gòu)建的工程化軟骨必將更加完善地解決臨床關(guān)節(jié)軟骨缺損修復(fù)的難題。
參考文獻(xiàn):
[1] "陳有榮,林霖,顏昕,等.局灶性關(guān)節(jié)軟骨缺損外科治療的研究現(xiàn)狀[J].中國(guó)矯形外科雜志,2021,29(12):1100-1104.
[2] "RAHMANI DEL BAKHSHAYESH A, BABAIE S, TAYEFI NASRABADI H, et al. An overview of various treatment strategies, especially tissue engineering for damaged articular cartilage[J]. Artif Cells Nanomed Biotechnol, 2020,48(1):1089-1104.
[3] "CORYELL P R, DIEKMAN B O, LOESER R F. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis[J]. Nat Rev Rheumatol, 2021,17(1):47-57.
[4] "ZUK P A, ZHU M, MIZUNO H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies[J]. Tissue Eng, 2001,7(2):211-228.
[5] "KRE?I? N, PRI?LIN M, VLAHOVI? D, et al. The expression pattern of surface markers in canine adipose-derived mesenchymal stem cells[J]. Int J Mol Sci, 2021,22(14):7476-7495.
[6] "BUNNELL B A. Adipose tissue-derived mesenchymal stem cells[J]. Cells, 2021,10(12):3433-3440.
[7] "HUTCHINGS G, JANOWICZ K, MONCRIEFF L, et al. The proliferation and differentiation of adipose-derived stem cells in neovascularization and angiogenesis[J]. "Int J Mol Sci, 2020,21(11):3790-3815.
[8] "PERS Y M, QUENTIN J, FEIRREIRA R, et al. Injection of adipose-derived stromal cells in the knee of patients with severe osteoarthritis has a systemic effect and promotes an anti-inflammatory phenotype of circulating immune cells[J]. Theranostics, 2018,8(20):5519-5528.
[9] "BELLO A B, KIM Y, PARK S, et al. Matrilin3/TGFβ3 gelatin microparticles promote chondrogenesis, prevent hypertrophy, and induce paracrine release in MSC spheroid for disc regeneration[J]. NPJ Regen Med, 2021,6(1):50.
[10] "KUMAR A, XU Y, YANG E, et al. Stemness and regenerative potential of corneal stromal stem cells and their secretome after long-term storage: implications for ocular regeneration[J]. Invest Ophthalmol Vis Sci, 2018,59(8):3728-3738.
[11] "ZHAO J, SUN Y, SHENG X, et al. Hypoxia-treated adipose mesenchymal stem cell-derived exosomes attenuate lumbar facet joint osteoarthritis[J]. Mol Med, 2023,29(1):120.
[12] "WU J, KUANG L, CHEN C, et al. miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis[J]. Biomaterials, 2019,206:87-100.
[13] "LI M, SUN D, ZHANG J, et al. Application and development of 3D bioprinting in cartilage tissue engineering [J]. Biomater Sci, 2022,10(19):5430-5458.
[14] "FU J N, WANG X, YANG M, et al. Scaffold-based tissue engineering strategies for osteochondral repair[J]. Front Bioeng Biotechnol, 2021,9:812383.
[15] "JEONG M, RADOMSKI K, LOPEZ D, et al. Materials and applications of 3D printing technology in dentistry: an overview [J]. Dent J, 2023,12(1):1.
[16] "ZHAN S, GUO A X Y, CAO S C, et al. 3D printing soft matters and applications: a review[J]. Int J Mol Sci, 2022,23(7):3790.
[17] "MAHMOOD A, PERVEEN F, CHEN S, et al. Polymer composites in 3D/4D printing: materials, advances, and prospects[J]. Molecules, 2024,29(2):319-351.
[18] "NEDUNCHEZIAN S, BANERJEE P, LEE C-Y, et al. Generating adipose stem cell-laden hyaluronic acid-based scaffolds using 3D bioprinting via the double crosslinked strategy for chondrogenesis[J]. Mater Sci Eng C Mater Biol Appl, 2021,124:112072.
[19] "LANDAU S, SZKLANNY A A, MACHOUR M, et al. Human-engineered auricular reconstruction (hEAR) by 3D-printed molding with human-derived auricular and costal chondrocytes and adipose-derived mesenchymal stem cells[J]. Biofabrication, 2021,14(1):15010-15024.
[20] "EFTEKHARI A, MALEKI DIZAJ S, SHARIFI S, et al. The use of nanomaterials in tissue engineering for cartilage regeneration; current approaches and future perspectives[J]. Int J Mol Sci, 2020,21(2):536-560.
[21] "SINGLA R, ABIDI S M S, DAR A I, et al. Nanomaterials as potential and versatile platform for next generation tissue engineering applications[J]. J Biomed Mater Res B Appl Biomater, 2019,107(7):2433-2449.
[22] "MALEKI M, ZAREZADEH R, NOURI M, et al. Graphene oxide: a promising material for regenerative medicine and tissue engineering[J]. Biomolecular Concepts, 2020,11(1):182-200.
[23] "WEI Z, ZHANG G, CAO Q, et al. Recent developments and current applications of organic nanomaterials in cartilage repair[J]. Bioengineering, 2022,9(8):390.
[24] "RICCI A, CATALDI A, ZARA S, et al. Graphene-oxide-enriched biomaterials: a focus on osteo and chondroinductive properties and immunomodulation[J]. Materials, 2022,15(6):2229.
[25] "AOKI K, OGIHARA N, TANAKA M, et al. Carbon nanotube-based biomaterials for orthopaedic applications[J]. J Mater Chem B, 2020,8(40):9227-9238.
[26] "ELíDóTTIR K L, SCOTT L, LEWIS R, et al. Biomimetic approach to articular cartilage tissue engineering using carbon nanotube-coated and textured polydimethylsiloxane scaffolds[J]. Ann N Y Acad Sci, 2022,1513(1):48-64.
[27] "MIRMUSAVI M H, AHMADIAN M, KARBASI S. Polycaprolactone-chitosan/multi-walled carbon nanotube: a highly strengthened electrospun nanocomposite scaffold for cartilage tissue engineering[J]. Int J Biol Macromol, 2022,209(Pt B):1801-1814.
[28] "REZVANI GHOMI E, NOURBAKHSH N, AKBARI KENARI M, et al. Collagen-based biomaterials for biomedical applications[J]. J Biomed Mater Res B Appl Biomater, 2021,109(12):1986-1999.
[29] "TANG R F, ZHOU X Z, NIU L, et al. Type I collagen scaffold with WNT5A plasmid for in situ cartilage tissue engineering[J]. Biomed Mater Eng, 2022,33(1):65-76.
[30] "KILMER C E, BATTISTONI C M, COX A, et al. Collagen type Ⅰ and Ⅱ blend hydrogel with autologous mesenchymal stem cells as a scaffold for articular cartilage defect repair[J]. ACS Biomater Sci Eng, 2020,6(6):3464-3476.
[31] "ZHANG H, CHENG J, AO Q. Preparation of alginate-based biomaterials and their applications in biomedicine[J]. Mar Drugs, 2021,19(5):264.
[32] "LIAO S, MENG H, ZHAO J, et al. Injectable adipose-derived stem cells-embedded alginate-gelatin microspheres prepared by electrospray for cartilage tissue regeneration[J]. J Orthop Translat, 2022,33:174-185.
[33] "BEIGI M H, ATEFI A, GHANAEI H R, et al. Activated platelet-rich plasma improves cartilage regeneration using adipose stem cells encapsulated in a 3D alginate scaffold[J]. J Tissue Eng Regen Med, 2018,12(6):1327-1338.
[34] "EL-HACK M EABD, EL-SAADONY M T, SHAFI M E, et al. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: a review [J]. Int J Biol Macromol, 2020, 164:2726-2744.
[35] "ZUBILLAGA V, ALONSO-VARONA A, FERNANDES S C M, et al. Adipose-derived mesenchymal stem cell chondrospheroids cultured in hypoxia and a 3D porous chitosan/chitin nanocrystal scaffold as a platform for cartilage tissue engineering[J]. Int J Mol Sci, 2020,21(3):1004-1021.
[36] "LIN I C, WANG T J, WU C L, et al. Chitosan-cartilage extracellular matrix hybrid scaffold induces chondrogenic differentiation to adipose-derived stem cells[J]. Regen Ther, 2020,14:238-244.
[37] "PETRE D G, LEEUWENBURGH S C G. The use of fibers in bone tissue engineering[J]. Tissue Eng Part B Rev, 2022,28(1):141-159.
[38] "NGUYEN H T, VU N B. A Simple method to produce engineered cartilage from human adipose-derived mesenchymal stem cells and poly ε-caprolactone scaffolds[M/OL].In: PHAM P V. Advances in Mesenchymal Stem Cells and Tissue Engineering. ICRRM 2023. Advances in Experimental Medicine and Biology. Cham: Springer. (2021-09-06)[2024-06-14]. https://doi.org/10.1007/5584_2021_669.
[39] "LI X, XU Q, JOHNSON M, et al. A chondroitin sulfate based injectable hydrogel for delivery of stem cells in cartilage regeneration[J]. Biomater Sci, 2021,9(11):4139-4148.
[40] "YAO Q, WU X, TAO C, et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets[J]. Signal Transduct Target Ther, 2023,8(1):56.
[41] "HASEEB A, KC R, ANGELOZZI M, et al. SOX9 keeps growth plates and articular cartilage healthy by inhibiting chondrocyte dedifferentiation/osteoblastic redifferentiation [J]. Proc Natl Acad Sci U S A, 2021,118(8):e2019152118.
[42] "PANTELI M, VUN J S H, POUNTOS I, et al. Biological and molecular profile of fracture non-union tissue: a systematic review and an update on current insights [J]. J Cell Mol Med, 2022,26(3):601-623.
[43] "COLLINS J A, KIM C J, COLEMAN A, et al. Cartilage-specific Sirt6 deficiency represses IGF-1 and enhances osteoarthritis severity in mice[J]. Ann Rheum Dis, 2023,82(11):1464-1473.
[44] "ZINCK N W, MCINNIS S J L, FRANZ-ODENDAAL T A. Intravitreal injection of FGF and TGF-β inhibitors disrupts cranial cartilage development[J]. Differentiation, 2023,133:51-59.
[45] "CHEN L, LIU J, GUAN M, et al. Growth factor and its polymer scaffold-based delivery system for cartilage tissue engineering[J]. Int J Nanomedicine, 2020,15:6097-6111.
[46] "AN C, CHENG Y, YUAN Q, et al. IGF-1 and BMP-2 induces differentiation of adipose-derived mesenchymal stem cells into chondrocytes-like cells[J]. Ann Biomed Eng, 2010,38(4):1647-1654.
[47] "ZHAO Y, WANG X, NIE K. IRF1 promotes the chondrogenesis of human adipose-derived stem cells through regulating HILPDA[J]. Tissue Cell, 2023,82:102046.
[48] "YOSHINOYA Y, B?CKER A H, RUHL T, et al. The effect of hyperbaric oxygen therapy on human adipose-derived stem cells[J]. Plast Reconstr Surg, 2020,146(2):309-320.
[49] "SCHNEIDER C, DUNGEL P, PRIGLINGER E, et al. The impact of photobiomodulation on the chondrogenic potential of adipose-derived stromal/stem cells[J]. J Photochem Photobiol B, 2021,221:112243-112257.
(收稿:2024 - 04 - 09) (修回:2024 - 06 - 14)
(責(zé)任編輯:敖慧斌)