• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      黑龍江地區(qū)赤松梢斑螟越冬幼蟲的耐寒性

      2025-03-13 00:00:00王雪強(qiáng)陳汝婷丁錫垚王美玲邱云騰周永亞程金藏楊志宇佳遲德富
      關(guān)鍵詞:耐寒性

      摘 要:【目的】通過測(cè)定赤松梢斑螟Dioryctria sylvestrella越冬幼蟲的抗寒能力和不同越冬階段的生理生化指標(biāo),為赤松梢斑螟的越冬行為以及在我國(guó)的潛在地理分布等研究奠定理論基礎(chǔ)?!痉椒ā客ㄟ^在越冬期剖樹檢查的方法確定赤松梢斑螟越冬幼蟲齡期,使用過冷卻點(diǎn)測(cè)定儀對(duì)赤松梢斑螟越冬幼蟲的過冷卻點(diǎn)和體液結(jié)冰點(diǎn)進(jìn)行測(cè)定,并分析和幼蟲齡期、體長(zhǎng)、質(zhì)量之間的關(guān)系,同時(shí)測(cè)定越冬期和越冬后期幼蟲體內(nèi)的抗凍保護(hù)物質(zhì)和生理指標(biāo)并進(jìn)行分析。【結(jié)果】1)越冬幼蟲主要為6齡幼蟲和少量5齡幼蟲。2)5齡幼蟲過冷卻點(diǎn)為(-19.25±0.66)℃,體液結(jié)冰點(diǎn)為(-12.44±0.60)℃。6齡幼蟲過冷卻點(diǎn)為(-14.32±0.91)℃,體液結(jié)冰點(diǎn)為(-8.00±0.72)℃。3)同蟲齡不同個(gè)體過冷卻點(diǎn)和體液結(jié)冰點(diǎn)變異均符合正態(tài)分布。4)體長(zhǎng)在[6.00,9.00)mm的赤松梢斑螟幼蟲過冷卻點(diǎn)為(-19.26±0.57)℃,體液結(jié)冰點(diǎn)為(-12.07±0.47)℃;體長(zhǎng)在[12.00,15.00)mm的赤松梢斑螟幼蟲過冷卻點(diǎn)為(-12.18±1.35)℃,體液結(jié)冰點(diǎn)為(-6.22±0.90)℃。質(zhì)量在[10.00,30.00)mg的赤松梢斑螟幼蟲過冷卻點(diǎn)為(-18.91±0.69)℃,體液結(jié)冰點(diǎn)為(-11.57±0.33)℃;質(zhì)量在[70.00,90.00)mg的赤松梢斑螟幼蟲過冷卻點(diǎn)為(-13.09±1.90)℃,體液結(jié)冰點(diǎn)為(-6.43±1.22)℃。5)幼蟲體長(zhǎng)從越冬期的(10.25±0.22)mm增加至越冬后期的(14.42±0.22)mm;質(zhì)量從(53.90±2.80)mg增至(63.20±2.30)mg;含水率從(51.14±0.02)%增至(59.58±0.02)%;甘油三酯含量從越冬期的(47.74±29.94)%降低至越冬后期的(34.18±30.19)%;總蛋白含量從越冬期的(230.06±14.82)mg/g降低至越冬后期的(73.33±13.03)mg/g;甘油含量從越冬期的(1 889.23±116.93)μg/g增加至越冬后期的(6 655.54±223.85)μg/g;過氧化物酶(POD)活性從越冬期的(68.79±10.40)U/g降低至越冬后期的(17.32±3.24)U/g;過氧化氫酶(CAT)活性從越冬期的(161 024.33±7 574.07)U/g降低至越冬后期的(134 039.69±4 308.14)U/g;超氧化物歧化酶(SOD)活性從越冬期的(380.35±24.55)U/g降低至越冬后期的(325.58±6.00)U/g?!窘Y(jié)論】赤松梢斑螟越冬幼蟲隨著幼蟲蟲齡、質(zhì)量和體長(zhǎng)的增加,其過冷卻點(diǎn)和體液結(jié)冰點(diǎn)逐漸升高,耐寒性逐漸下降;在越冬后期幼蟲體長(zhǎng)、質(zhì)量、含水率增加;甘油三酯、蛋白質(zhì)在幼蟲越冬過程中起到了供給能量的作用;甘油起到了保護(hù)細(xì)胞膜的作用;POD、CAT、SOD在赤松梢斑螟幼蟲越冬過程中發(fā)揮保護(hù)細(xì)胞的重要作用。

      關(guān)鍵詞:赤松梢斑螟;過冷卻點(diǎn);體液結(jié)冰點(diǎn);耐寒性;耐寒物質(zhì)

      中圖分類號(hào):S763.301 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1673-923X(2025)01-0070-12

      基金項(xiàng)目:“十四五”國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD1401000);黑龍江省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2023ZX02B05)。

      Cold tolerance of overwintering larvae of Dioryctria sylvestrella in Heilongjiang area

      WANG Xueqiang, CHEN Ruting, DING Xiyao, WANG Meiling, QIU Yunteng, ZHOU Yongya, CHENG Jincang, YANG Zhi, YU Jia, CHI Defu

      (College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, China)

      Abstract:【Objective】The cold resistance of overwintering larvae of Dioryctria sylvestrella and the physiological and biochemical indexes of different overwintering stages were determined to provide basis for the study of overwintering behavior of D.sylvestrella, and their potential geographical distribution in China.【Method】The overwintering larval instars of D.sylvestrella were determined by the method of tree dissection and inspection in the overwintering period. The supercooling point and freezing point of the overwintering larvae of D.sylvestrella were measured by using the supercooling point tester, and the relationship between the supercooling point and the larval instar, body length and body weight were analyzed. The antifreeze protective substances and physiological indexes of larvae in overwintering period and late overwintering period were determined and analyzed.【Result】1) The overwintering larvae were mainly 6th instar larvae and a small number of 5th instar larvae; 2) The supercooling point of the 5th instar larvae was (-19.25±0.66) ℃, and the freezing point was (-12.44±0.60) ℃. The supercooling point of the 6th instar larvae was (-14.32±0.91) ℃, and the freezing point was (-8.00±0.72) ℃; 3) The variation of supercooling point and freezing point of different individuals of the same instar conformed to normal distribution; 4) The supercooling point (SCP) and freezing point (FP) of larvae with body length of [6.00,9.00) mm were(-19.26±0.57) ℃ and (-12.07±0.47) ℃. The supercooling point of the larvae with body length of [12.00,15.00)mm was (-12.18±1.35) ℃, and the freezing point was (-6.22±0.90) °C. The supercooling point and freezing point of the larvae with body weight of [10.00,30.00)mg were (-18.91±0.69) ℃ and (-11.57±0.33) ℃.The supercooling point and freezing point of the larvae with body weight of [70.00,90.00) mg were (-13.09±1.90) ℃ and (-6.43±1.22) ℃; 5) The larval body length increased from (10.25±0.22) mm in the overwintering period to (14.42±0.22) mm in the late overwintering period. The body weight increased from (53.90±2.80) mg to (63.20±2.30) mg. The moisture content increased from 51.14%±0.02% to 59.58%±0.02%. The content of triglyceride decreased from 47.74%±29.94% in the overwintering period to 34.18%±30.19% in the late overwintering period. The total protein content decreased from (230.06±14.82) mg/g in the overwintering period to (73.33±13.03) mg/g in the late overwintering period. The content of glycerol increased from(1 889.23±116.93) μg/g in the overwintering period to (6 655.54±223.85) μg/g in the late overwintering period. POD activity decreased from (68.79±10.40) U/g in the overwintering period to (17.32±3.24) U/g in the late overwintering period. CAT activity decreased from(161 024.33±7 574.07) U/g in the overwintering period to (134 039.69±4 308.14) U/g in the late overwintering period. SOD activity decreased from (380.35±24.55) U/g in the overwintering period to (325.58±6.00) U/g in the late overwintering period.【Conclusion】With the increase of larval instar, body weight and body length, the supercooling point and freezing point of the overwintering larvae of D.sylvestris increased gradually, and the cold tolerance decreased gradually. In the late overwintering larvae body length, weight, moisture content increased; triglycerides and proteins play a role in supplying energy during the overwintering of larvae. Glycerol played a role in protecting the cell membrane; POD, CAT and SOD play an important role in protecting cells in the overwintering process of D.sylvestris larvae.

      Keywords: Dioryctria sylvestrella; supercooling point; body fluid freezing point; cold resistance; cold-resistant substances

      赤松梢斑螟Dioryctria sylvestrella隸屬于鱗翅目Lepidoptera螟蛾科Pyralidae[1]。近年來(lái),該害蟲在黑龍江省發(fā)生嚴(yán)重。在佳木斯地區(qū)調(diào)查發(fā)現(xiàn),赤松梢斑螟對(duì)紅松球果危害可達(dá)98%以上,對(duì)種子危害達(dá)到了56%以上[2-3]。經(jīng)過前期對(duì)赤松梢斑螟的生命表初步探究發(fā)現(xiàn),赤松梢斑螟常以幼蟲越冬,且越冬死亡率較高。而黑龍江省作為我國(guó)緯度最高、經(jīng)度最東的省份[4],冬天溫度一般為-35~-15 ℃,一些地域冬季最低溫度可達(dá)到-50 ℃[5]。昆蟲作為變溫動(dòng)物,溫度是其整個(gè)生命周期的關(guān)鍵生態(tài)因子。自然條件下,昆蟲種群的存活、繁殖以及種群的數(shù)量都或多或少地受到冬季溫度的限制,在長(zhǎng)期的進(jìn)化過程中,鱗翅目的許多昆蟲形成以固定蟲態(tài)越冬的習(xí)性。而昆蟲種群以何種蟲態(tài)越冬、是否能夠越冬以及越冬數(shù)量多少都與次年種群的動(dòng)態(tài)息息相關(guān)。不同種類昆蟲的耐寒性差異也較為明顯,這是由于分布范圍及越冬北界的不同所造成的,赤松梢斑螟的耐寒性也受到多種因素影響[6-8]。而赤松梢斑螟在黑龍江省的分布區(qū)內(nèi),冬季的溫度、越冬幼蟲的齡期以及其溫度耐受性決定了黑龍江省赤松梢斑螟的生存策略、種群動(dòng)態(tài)以及地理分布邊界。目前對(duì)于赤松梢斑螟幼蟲的溫度耐受性研究,可以通過測(cè)定其過冷卻點(diǎn)(Supercooling point,SCP)來(lái)推斷昆蟲能維持體液過冷卻狀態(tài)時(shí)的最低溫度[9-10],從而進(jìn)一步確定赤松梢斑螟幼蟲適宜越冬的溫度下限。

      目前國(guó)內(nèi)對(duì)于赤松梢斑螟的研究多集中在生物學(xué)特性[11]、區(qū)域分布特點(diǎn)、觸角和口器的掃描電鏡觀察[12]、不同種源紅松主干揮發(fā)物對(duì)赤松梢斑螟危害的影響[13]等方面。而國(guó)外的研究主要集中在寄主植物變化對(duì)赤松梢斑螟的抗性影響[14]、赤松梢斑螟攻擊模式與樹種多樣性的關(guān)系[15]以及赤松梢斑螟危害特性和受害松樹松脂形態(tài)及其化學(xué)組成[16]等方面,關(guān)于其耐寒性的研究較少。

      本研究通過探究不同蟲齡、質(zhì)量和體長(zhǎng)的越冬赤松梢斑螟幼蟲的過冷卻點(diǎn)和體液結(jié)冰點(diǎn),初步確定幼蟲的生理指標(biāo)與其抗寒能力間的關(guān)系;通過測(cè)定越冬期和越冬后期赤松梢斑螟越冬幼蟲體內(nèi)的含水率、甘油三酯、甘油、蛋白質(zhì)含量以及過氧化氫酶(Catalase,CAT)、過氧化物酶(Peroxidase,POD)、超氧化物歧化酶(Superoxide dismutase,SOD)的活性,探究處在越冬期的赤松梢斑螟幼蟲的主要耐寒物質(zhì)及保護(hù)酶與其越冬階段的關(guān)系,以期為赤松梢斑螟的越冬行為研究、在我國(guó)的潛在越冬地理分布以及赤松梢斑螟林間預(yù)測(cè)預(yù)報(bào)提供理論依據(jù)。

      1 材料與方法

      1.1 試驗(yàn)材料與環(huán)境溫度

      供試蟲源:于2024年1月和3月在黑龍江省七臺(tái)河市勃利縣(45°45′36″N,130°23′56″E)的人工林內(nèi)收集含有赤松梢斑螟越冬幼蟲的被害枝梢。

      實(shí)驗(yàn)儀器:SUN-V型昆蟲過冷卻點(diǎn)測(cè)定儀及配套軟件、高低溫試驗(yàn)箱(北京雅士林試驗(yàn)設(shè)備有限公司)、游標(biāo)卡尺、體式顯微鏡。

      環(huán)境溫度:本研究所用環(huán)境溫度數(shù)據(jù)均通過天氣二四網(wǎng)(https://www.tianqi24.com/)獲得。

      1.2 試驗(yàn)方法

      1.2.1 自然越冬死亡率

      于2024年3月下旬,將從枝梢中收集到的越冬幼蟲放入25 ℃恒溫箱,等待48 h后統(tǒng)計(jì)其存活率,計(jì)算越冬死亡率。

      1.2.2 越冬幼蟲蟲齡統(tǒng)計(jì)

      于2024年1月,將枝梢中的越冬幼蟲取出后,在裝有測(cè)微尺的體式顯微鏡下測(cè)量其頭殼寬[17],根據(jù)閆敦梁等[18]的方法統(tǒng)計(jì)越冬幼蟲蟲齡。頭寬值分別為:1齡,0.20~0.50 mm;2齡,0.50~0.80 mm;3齡,0.80~1.10 mm;4齡,1.10~1.40 mm;5齡,1.40~1.80 mm;6齡,1.80~2.50 mm。

      1.2.3 過冷卻點(diǎn)和體液結(jié)冰點(diǎn)

      根據(jù)牛浩等[19]的方法,對(duì)赤松梢斑螟5齡和6齡的越冬幼蟲各選取10頭以上進(jìn)行測(cè)定。參照謝殿杰等[20]的方法,采用昆蟲過冷卻點(diǎn)測(cè)定儀測(cè)定赤松梢斑螟幼蟲的過冷卻點(diǎn)和體液結(jié)冰點(diǎn)(freezing point,F(xiàn)P)。在測(cè)定前對(duì)赤松梢斑螟的越冬幼蟲進(jìn)行稱質(zhì)量,將單頭試蟲置于1.5 mL離心管中,探頭插入離心管與蟲體接觸,用脫脂棉塞滿離心管內(nèi)多余空隙,保證蟲體與探頭充分接觸。SUN-V型過冷卻點(diǎn)測(cè)定儀共有10個(gè)探頭,每次可以測(cè)定10頭供試?yán)ハx,將試蟲置于超低溫冰箱中,當(dāng)超低溫冰箱溫度從(25±1)℃開始逐漸下降到-40 ℃時(shí),蟲體溫度也隨之下降,過冷卻點(diǎn)測(cè)定儀通過軟件記錄蟲體的溫度變化,每0.5 s記錄1次蟲體溫度,直到蟲體過冷卻點(diǎn)和體液結(jié)冰點(diǎn)出現(xiàn)拐點(diǎn)后測(cè)定結(jié)束。

      1.2.4 含水率

      用電子天平(AB204-S,METTLER TOLEDO,精確至0.000 1 g)分別測(cè)定單頭幼蟲鮮質(zhì)量,然后將單頭幼蟲放入2 mL離心管中,之后放入60 ℃的烘箱中干燥72 h至恒質(zhì)量,再分別測(cè)定其干質(zhì)量。含水量(C)計(jì)算公式為:C=(WF- WD)/WF×100%。式中:WF表示幼蟲鮮質(zhì)量;WD表示幼蟲干質(zhì)量。

      1.2.5 耐寒物質(zhì)含量和保護(hù)酶活性

      分別使用裝有測(cè)微尺的體式顯微鏡、電子天平、游標(biāo)卡尺測(cè)定1月份和3月份赤松梢斑螟越冬幼蟲蟲齡、體長(zhǎng)和質(zhì)量;使用微量酶標(biāo)法試劑盒(蘇州格銳思生物科技有限公司)測(cè)定幼蟲體內(nèi)甘油三酯、甘油、蛋白質(zhì)含量,以及過氧化物酶、過氧化氫酶、超氧化物歧化酶活性,具體操作方法參照試劑盒說明書。

      1.3 數(shù)據(jù)分析

      所有數(shù)據(jù)間的差異性分析均采用SPSS 21.0軟件進(jìn)行。對(duì)不同蟲齡赤松梢斑螟越冬幼蟲過冷卻點(diǎn)與體液結(jié)冰點(diǎn)的差異顯著性和不同月份越冬幼蟲體長(zhǎng)、質(zhì)量、甘油三酯、甘油、蛋白質(zhì)、水分含量及POD、SOD、CAT活性的差異顯著性均采用獨(dú)立樣本t檢驗(yàn)分析;采用新復(fù)極差法(SSR)檢驗(yàn)不同體長(zhǎng)、質(zhì)量赤松梢斑螟越冬幼蟲過冷卻點(diǎn)與體液結(jié)冰點(diǎn)的差異顯著性。顯著水平,P<0.05;極顯著水平,P<0.01。利用單一樣本Kolmogorov-Smirnov檢驗(yàn)法檢驗(yàn)不同蟲齡幼蟲過冷卻點(diǎn)和體液結(jié)冰點(diǎn)的頻次分布特征,運(yùn)用Origin 2021軟件繪制頻次分布圖[21]。

      2 結(jié)果與分析

      2.1 自然種群越冬存活率

      2024年3月,選取200個(gè)被赤松梢斑螟危害的枝梢,共采集到幼蟲144頭。除去已經(jīng)被寄生、捕食、失水致死的幼蟲,剩余92頭越冬幼蟲。經(jīng)過48 h恒溫培養(yǎng)后,有45頭幼蟲不能復(fù)蘇,越冬死亡幼蟲占剩余幼蟲的48.91%(圖1)。因此,可知赤松梢斑螟幼蟲越冬存活率為51.09%。

      2.2 赤松梢斑螟越冬蟲齡

      2014年1月,選取100個(gè)被赤松梢斑螟危害的枝梢,共采集到幼蟲86頭,對(duì)采集到的幼蟲進(jìn)行蟲齡判定,其中5齡幼蟲10頭,占比為11.63%;6齡幼蟲74頭,占比為86.05%;而其他蟲齡幼蟲僅有2頭(表1)。因此,可初步確定赤松梢斑螟主要以6齡幼蟲和少量5齡幼蟲越冬。

      2.3 赤松梢斑螟越冬幼蟲過冷卻點(diǎn)和體液結(jié)冰點(diǎn)

      2.3.1 過冷卻點(diǎn)與結(jié)冰點(diǎn)之間差異

      由表2可知,赤松梢斑螟5齡幼蟲過冷卻點(diǎn)為(-19.25±0.66)℃,6齡幼蟲過冷卻點(diǎn)為(-14.32±0.91)℃,且二者之間呈極顯著差異(自由度為32.908,t=-4.376,P<0.01)。因此,赤松梢斑螟5、6齡越冬幼蟲會(huì)隨著蟲齡的增加,其過冷卻點(diǎn)逐漸升高,抗寒性與過冷卻點(diǎn)呈負(fù)相關(guān)關(guān)系。

      赤松梢斑螟5、6齡幼蟲的體液結(jié)冰點(diǎn)之間呈極顯著差異(自由度為30.741,t=-4.748,P<0.01)。5齡幼蟲體液結(jié)冰點(diǎn)最低,為(-12.44±0.60)℃,顯著低于6齡幼蟲體液結(jié)冰點(diǎn),6齡幼蟲體液結(jié)冰點(diǎn)為(-8.00±0.72)℃。體液結(jié)冰點(diǎn)隨著蟲齡的增加而逐漸升高,進(jìn)而影響其抗寒性。

      2.3.2 過冷卻點(diǎn)和體液結(jié)冰點(diǎn)頻次分布

      通過SPSS正態(tài)性檢驗(yàn),赤松梢斑螟5、6齡越冬幼蟲的過冷卻點(diǎn)和體液結(jié)冰點(diǎn)頻次均符合正態(tài)分布,不同蟲齡赤松梢斑螟個(gè)體的過冷卻點(diǎn)和體液結(jié)冰點(diǎn)存在不同程度變異。由圖2可知,赤松梢斑螟5齡幼蟲的過冷卻點(diǎn)范圍較窄,為-23.30~-16.50 ℃;6齡幼蟲的過冷卻點(diǎn)分布范圍較寬,為-20.80~-5.50 ℃。赤松梢斑螟5齡幼蟲的體液結(jié)冰點(diǎn)范圍較窄,為-16.80~-10.50 ℃;6齡幼蟲的體液結(jié)冰點(diǎn)分布范圍較寬,為-15.50~-2.00 ℃。

      2.4 不同體長(zhǎng)赤松梢斑螟過冷卻點(diǎn)和體液結(jié)冰點(diǎn)的差異

      由表3可知,體長(zhǎng)為6.00~9.00 mm的赤松梢斑螟越冬幼蟲過冷卻點(diǎn)為(-19.26±0.57)℃,體長(zhǎng)為12.00~15.00 mm的赤松梢斑螟越冬幼蟲過冷卻點(diǎn)為(-12.18±1.35)℃,且二者之間呈顯著差異(自由度為2或28,F(xiàn)=4.085,P<0.05)。因此,赤松梢斑螟越冬幼蟲會(huì)隨著體長(zhǎng)的增加,其過冷卻點(diǎn)逐漸升高,抗寒性與幼蟲體長(zhǎng)呈負(fù)相關(guān)關(guān)系。

      體長(zhǎng)為6.00~9.00 mm的赤松梢斑螟越冬幼蟲體液結(jié)冰點(diǎn)為(-12.07±0.47)℃,體長(zhǎng)為12.00~15.00 mm的赤松梢斑螟越冬幼蟲體液結(jié)冰點(diǎn)為(-6.22±0.90)℃,且二者之間呈顯著差異(自由度為2或28,F(xiàn)=4.506,P<0.05)。因此,赤松梢斑螟越冬幼蟲會(huì)隨著體長(zhǎng)的增加,其體液結(jié)冰點(diǎn)逐漸升高,抗寒性與幼蟲體長(zhǎng)呈負(fù)相關(guān)關(guān)系。

      2.5 不同質(zhì)量赤松梢斑螟幼蟲過冷卻點(diǎn)和體液結(jié)冰點(diǎn)的差異

      由表4可知,質(zhì)量為10.00~30.00 mg的赤松梢斑螟幼蟲過冷卻點(diǎn)為(-18.91±0.69)℃,質(zhì)量為70.00~90.00 mg的赤松梢斑螟幼蟲過冷卻點(diǎn)為(-13.09±1.90)℃,且二者之間呈顯著差異(自由度為3或32,F(xiàn)=2.050,P<0.05);其他各質(zhì)量幼蟲過冷卻點(diǎn)之間顯著不差異。赤松梢斑螟越冬幼蟲會(huì)隨著質(zhì)量的增加,其過冷卻點(diǎn)逐漸升高,抗寒性與幼蟲質(zhì)量呈負(fù)相關(guān)關(guān)系。質(zhì)量為10.00~30.00 mg的赤松梢斑螟幼蟲過冷卻點(diǎn)最低,其抗寒性最強(qiáng),質(zhì)量為70.00~90.00 mg的赤松梢斑螟幼蟲過冷卻點(diǎn)最高,其抗寒性最弱。

      質(zhì)量為10.00~30.00 mg的赤松梢斑螟幼蟲體液結(jié)冰點(diǎn)為(-11.57±0.33)℃,質(zhì)量為70.00~90.00 mg的赤松梢斑螟幼蟲體液結(jié)冰點(diǎn)為(-6.43±1.22)℃,且二者之間呈顯著差異(自由度為3或32,F(xiàn)=2.448,P<0.05);其他各質(zhì)量幼蟲體液結(jié)冰點(diǎn)之間差異不顯著。因此,赤松梢斑螟越冬幼蟲會(huì)隨著質(zhì)量的增加,其體液結(jié)冰點(diǎn)逐漸升高,抗寒性與幼蟲質(zhì)量呈負(fù)相關(guān)關(guān)系。質(zhì)量為10.00~30.00 mg的赤松梢斑螟幼蟲體液結(jié)冰點(diǎn)最低,其抗寒性最強(qiáng),質(zhì)量為70.00~90.00 mg的赤松梢斑螟幼蟲體液結(jié)冰點(diǎn)最高,其抗寒性最弱。

      2.6 越冬階段對(duì)6齡幼蟲生理生化的影響

      2.6.1 越冬階段對(duì)幼蟲體長(zhǎng)、質(zhì)量、含水率的影響

      采集地點(diǎn)1月份(赤松梢斑螟越冬期)平均氣溫為-17.50 ℃,1月份平均最低氣溫-23.00 ℃,為全年最低。3月份(赤松梢斑螟越冬后期)平均氣溫為-4.50 ℃,3月份平均最低氣溫為-10.00 ℃。

      由圖3可知,越冬期幼蟲和越冬后期幼蟲的體長(zhǎng)(自由度為40,t=-12.936,P<0.01)存在極顯著差異,質(zhì)量(自由度為49,t=-2.586,P<0.05)、含水率(自由度為23,t=-3.480,P<0.05)均存在顯著差異。體長(zhǎng)從越冬期的(10.26±0.20)mm增加至越冬后期的(14.42±0.22)mm;質(zhì)量從(53.92±2.83)mg增至(63.19±2.26)mg;含水率從(51.14±0.02)%增至(59.58±0.02)%。因此,赤松梢斑螟幼蟲在越冬后期階段,其體長(zhǎng)、質(zhì)量、含水率均逐漸增加。

      2.6.2 越冬階段對(duì)幼蟲體內(nèi)甘油三酯、蛋白質(zhì)、甘油的影響

      由圖4可知,赤松梢斑螟越冬期幼蟲和越冬后期幼蟲體內(nèi)甘油三酯(自由度為4,t=3.189,P<0.05)差異顯著,甘油三酯從越冬期的(47.74±29.94)%降至越冬后期的(34.18±30.19)%。越冬期幼蟲和越冬后期幼蟲蛋白質(zhì)(自由度為10,t=7.943,P<0.01)、甘油(自由度為9,t=-17.715,P<0.01)均存在極顯著差異。蛋白質(zhì)從(230.06±14.82)mg/g減少至(73.33±13.03) mg/g;甘油從(1 889.23±116.93) μg/g增加至(6 655.54±223.85) μg/g。因此,赤松梢斑螟幼蟲在越冬階段,幼蟲體內(nèi)甘油三酯、總蛋白含量逐漸降低,但幼蟲體內(nèi)甘油含量逐漸升高。

      2.6.3 越冬階段對(duì)幼蟲體內(nèi)保護(hù)酶活性(POD、CAT、SOD)的影響

      結(jié)果(圖5)表明,越冬期赤松梢斑螟幼蟲和越冬后期幼蟲的POD活性(自由度為4,t=4.725,P<0.05)和CAT活性(自由度為5, t=3.318,P<0.05)均存在顯著差異。POD活性從(68.79±10.40) U/g降低至(17.32±3.24)U/g,CAT活性從(161 024.33±7 574.07)U/g降低至(134 039.69±4 308.14)U/g。因此,赤松梢斑螟幼蟲在越冬階段,其POD、CAT活性逐漸降低。

      然而,越冬期幼蟲和越冬后期幼蟲SOD活性(自由度為4,t=2.167,P>0.05)差異不顯著,SOD活性從越冬期的(380.35±24.55)U/g降至越冬后期的(325.58±6.00)U/g。但仍可看出,在赤松梢斑螟幼蟲越冬階段,SOD活性在逐漸降低。

      3 討 論

      3.1 過冷卻點(diǎn)與赤松梢斑螟越冬期幼蟲耐寒性

      生活在溫帶的昆蟲要經(jīng)歷漫長(zhǎng)的冬季,而越冬期昆蟲過冷卻點(diǎn)的高低是衡量昆蟲耐寒能力的重要指標(biāo)[22]。過冷卻點(diǎn)可以反映昆蟲能夠存活的最低溫度[23-26],研究發(fā)現(xiàn)昆蟲的過冷卻點(diǎn)越低,其耐寒能力就越強(qiáng),在低溫下的存活率就越高[27]。例如,巴氏新小綏螨Neoseiulus barkeri的常溫品系和耐高溫品系的SCP最低值分別為-24.72和-23.80 ℃,均可承受重慶地區(qū)冬季低溫,具備越冬潛力[28]。魏建榮等[29]發(fā)現(xiàn)河北省秦皇島市的花絨寄甲Dastarcus helophoroides野生種群過冷卻點(diǎn)平均為-23.90 ℃,最低可達(dá)到-27.30 ℃,表明花絨寄甲在我國(guó)大多數(shù)地區(qū)可以順利越冬。赤松梢斑螟幼蟲較耐低溫,老熟幼蟲在野外大多于木質(zhì)部或樹皮深處越冬。本研究以野外越冬種群赤松梢斑螟幼蟲為研究對(duì)象,對(duì)其幼蟲的過冷卻點(diǎn)和結(jié)冰點(diǎn)變化進(jìn)行探究,發(fā)現(xiàn)幼蟲過冷卻點(diǎn)與蟲齡、體長(zhǎng)、質(zhì)量之間呈正相關(guān)關(guān)系。5齡幼蟲過冷卻點(diǎn)為(-19.25±0.66)℃,6齡幼蟲過冷卻點(diǎn)為(-14.32±0.91)℃,最低過冷卻點(diǎn)為-23.00 ℃。在黑龍江省大多數(shù)區(qū)域,冬季的溫度都會(huì)降到-23.00 ℃以下,雖然樹體內(nèi)溫度較外界通常會(huì)高2.30~4.00 ℃[29],但仍低于赤松梢斑螟越冬幼蟲的過冷卻點(diǎn),因此赤松梢斑螟幼蟲在該地區(qū)的越冬死亡率較高。而本研究也證明了赤松梢斑螟越冬期幼蟲在七臺(tái)河市的越冬存活率僅為51.09%。根據(jù)目前赤松梢斑螟在黑龍江省的分布[30-31],結(jié)合黑龍江省各市冬季氣溫變化可以推斷在齊齊哈爾市、牡丹江市、哈爾濱市赤松梢斑螟幼蟲越冬存活率可能達(dá)到51.09%以上,而在伊春市、佳木斯市、大興安嶺地區(qū)、鶴崗市赤松梢斑螟幼蟲越冬死亡率可能達(dá)到50%以上。在大慶市、雞西市、雙鴨山市、黑河市以及綏化市雖未報(bào)道有赤松梢斑螟為害,但從其冬季氣溫變化可以推測(cè),赤松梢斑螟在大慶市、雞西市、雙鴨山市的越冬存活率高于51.09%,而在黑河市和綏化市的越冬死亡率可能達(dá)到50%以上。

      通過本研究調(diào)查發(fā)現(xiàn),赤松梢斑螟常以老熟幼蟲越冬,這與牛豪杰等[32]的研究結(jié)果一致。過冷卻點(diǎn)作為昆蟲能耐受的生理低溫下限,是反映昆蟲越冬抗寒的重要生物學(xué)特性,過冷卻點(diǎn)越低,表明昆蟲的耐寒性越強(qiáng)[33]。耿書寶等[34]關(guān)于茶銀尺蠖Scopula subpunctaria的報(bào)道中發(fā)現(xiàn),幼蟲過冷卻點(diǎn)和體液結(jié)冰點(diǎn)從1齡到5齡逐漸升高,抗寒性減弱。這與本研究發(fā)現(xiàn)類似,5齡越冬幼蟲的過冷卻點(diǎn)和體液冰點(diǎn)最低,其次為6齡幼蟲。隨著幼蟲齡期的增加,過冷卻點(diǎn)和體液結(jié)冰點(diǎn)逐漸升高,抗寒性降低,5齡幼蟲相對(duì)于6齡幼蟲對(duì)低溫的適應(yīng)能力更強(qiáng)。

      赤松梢斑螟幼蟲5、6齡越冬幼蟲過冷卻點(diǎn)和體液結(jié)冰點(diǎn)均符合正態(tài)分布。過冷卻點(diǎn)和體液結(jié)冰點(diǎn)的頻次分布表明,同一蟲態(tài)不同個(gè)體之間的耐寒性存在差異[21]。這種差異現(xiàn)象也反映出變溫動(dòng)物對(duì)環(huán)境的適應(yīng)策略,當(dāng)遭受突變的寒冷氣候時(shí),抗寒性強(qiáng)的個(gè)體也能存活,保證種群不致毀滅[35]。

      3.2 質(zhì)量、體長(zhǎng)與赤松梢斑螟越冬幼蟲耐寒性

      研究發(fā)現(xiàn),不同體長(zhǎng)赤松梢斑螟幼蟲過冷卻點(diǎn)和體液結(jié)冰點(diǎn)之間也存在顯著差異,體長(zhǎng)越長(zhǎng),過冷卻能力越弱。Hahn等[36]發(fā)現(xiàn),紅火蟻Solenopsis invicta的工蟻SCP取決于螞蟻的體型(即較小工蟻的SCP低于較大的工蟻)。而趙靜等[37]對(duì)異色瓢蟲Harmonia axyridis的研究也發(fā)現(xiàn),成蟲體型大小與過冷卻能力呈現(xiàn)負(fù)相關(guān)關(guān)系,兩者都與本試驗(yàn)結(jié)論一致。這可能是因?yàn)殡S著體型的增加,體內(nèi)會(huì)形成較大的冰晶使過冷卻能力降低[38]。休眠昆蟲的特征是很少或根本不進(jìn)食,因此它們?cè)诤艽蟪潭壬匣蛲耆蕾囉谶M(jìn)入休眠之前的能量?jī)?chǔ)備[39]。因此大多數(shù)的昆蟲在越冬后由于能量消耗和水分減少導(dǎo)致體型變小,而本研究發(fā)現(xiàn),越冬后期的赤松梢斑螟幼蟲體長(zhǎng)顯著高于越冬期赤松梢斑螟幼蟲。有研究發(fā)現(xiàn)一些昆蟲能夠在休眠期間以較低的速率覓食,或者在休眠被打破后以高速率覓食[40]。Mercer等[41]發(fā)現(xiàn)在過去30年里從12月1日到3月31日,肯塔基州中部的日平均最高氣溫為6.3 ℃,因此越冬的瓢蟲Hippodamia convergens有機(jī)會(huì)在肯塔基州覓食。所以越冬后期赤松梢斑螟體長(zhǎng)增加可能是由于隨著氣溫的升高,幼蟲在短暫解除休眠后會(huì)補(bǔ)充能量,繼續(xù)緩慢生長(zhǎng)[42],也可能與上文中得出的結(jié)論越冬后期含水率升高有關(guān)系,隨著越冬階段的推移,赤松梢斑螟幼蟲體長(zhǎng)不斷增加。

      本研究表明,不同質(zhì)量的赤松梢斑螟幼蟲其過冷卻點(diǎn)和結(jié)冰點(diǎn)之間呈顯著差異,隨著質(zhì)量的增加,幼蟲過冷卻點(diǎn)和體液結(jié)冰點(diǎn)均升高,與此同時(shí)其抗寒性逐漸降低。而徐偉等[43]在對(duì)大豆食心蟲Leguminivora glycinivorella的越冬存活率研究中也發(fā)現(xiàn),按質(zhì)量分組的大豆食心蟲越冬幼蟲,在相同深度土層中其存活率隨質(zhì)量降低而升高,且大、小幼蟲間存活率差異顯著。這可能是由于質(zhì)量大的幼蟲應(yīng)對(duì)寒冷脅迫時(shí),需更大幅度地降低過冷卻點(diǎn)。在同樣受到低溫脅迫時(shí),質(zhì)量小的幼蟲由于體內(nèi)水分的減少,其過冷卻點(diǎn)也隨之降低,其次是腸道內(nèi)含物少,降低了冰核成核劑水平,減少了細(xì)胞內(nèi)冰晶的形成,降低了對(duì)細(xì)胞內(nèi)部的機(jī)械損傷[44],所以質(zhì)量小的幼蟲過冷卻能力強(qiáng)于質(zhì)量大的幼蟲。楊海博等[45]的研究結(jié)果發(fā)現(xiàn),重陽(yáng)木錦斑蛾Histia flabellicornis越冬幼蟲質(zhì)量在越冬期間逐漸下降。而本研究結(jié)果表明在越冬后期赤松梢斑螟幼蟲的質(zhì)量顯著高于越冬期幼蟲,可能是冬后隨著環(huán)境溫度的升高,越冬幼蟲逐漸解除休眠,幼蟲的生理代謝作用逐漸增強(qiáng),體內(nèi)的水分代謝也逐漸恢復(fù)[46]。幼蟲在短暫解除休眠后從環(huán)境中補(bǔ)充了水分和能量,增強(qiáng)體內(nèi)有機(jī)物質(zhì)的活性,從而增加了質(zhì)量,為化蛹作好準(zhǔn)備,這是昆蟲在長(zhǎng)期的自然進(jìn)化過程中對(duì)低溫的一種適應(yīng)[47]。

      3.3 體內(nèi)生化物質(zhì)與赤松梢斑螟越冬幼蟲耐寒性

      越冬期昆蟲會(huì)貯藏大量營(yíng)養(yǎng)物質(zhì),以滿足越冬需求[48],大多數(shù)昆蟲會(huì)通過降低體內(nèi)水分含量、儲(chǔ)存脂肪等增強(qiáng)抗寒能力,如桑螟Diaphania pyloalis越冬幼蟲體內(nèi)含水量隨氣溫下降逐漸減少,而過冷卻能力卻隨之增強(qiáng)[49]。但也有研究表明在越冬過程中,含水率上升,如美國(guó)白蛾Hyphantrian cunea越冬蛹在越冬過程中體內(nèi)總含水量隨溫度的下降而增加,且高于非越冬期蛹[50];越冬二化螟幼蟲體內(nèi)含水率在9月份至來(lái)年2月份下降,在3月份時(shí)又開始上升,并接近越冬前的水平[39],均與本研究結(jié)果相似,赤松梢斑螟幼蟲從越冬期到越冬后期體內(nèi)含水率上升明顯,說明水分可能對(duì)赤松梢斑螟幼蟲越冬有重要影響。這可能與幼蟲的休眠、體內(nèi)其他耐寒物質(zhì)的變化,以及越冬過程中幼蟲體內(nèi)組織的分解和形成等有關(guān)[50]。普通黃蜂Vespula vulgaris的成年蜂王在冬季休眠期間的存活是通過在脂肪體內(nèi)沉積大量甘油三酯來(lái)實(shí)現(xiàn)的[51]。在本研究中,越冬期幼蟲體內(nèi)甘油三酯含量顯著高于越冬后期幼蟲,而甘油三酯作為主要的脂肪種類,其含量也反映了總脂肪的變化。這說明了赤松梢斑螟幼蟲在越冬期可以通過消耗脂肪來(lái)進(jìn)行代謝從而維持生存。

      昆蟲在越冬期體內(nèi)會(huì)聚集大量小分子抗凍保護(hù)劑[52],目前已知的小分子抗寒物質(zhì)有甘油、五碳多元醇、甘露醇、山梨醇、葡萄糖、海藻糖、果糖以及一些氨基酸和脂肪酸[53-55]。紅脂大小蠹Dendroctonus valens越冬期幼蟲體內(nèi)脂肪、甘油、海藻糖和山梨醇含量均顯著高于非越冬期幼蟲[56];長(zhǎng)角血蜱Haemaphysalis longicornis滯育卵越冬抗凍保護(hù)劑主要是山梨醇和甘油[57];但朱騰冉[58]的研究發(fā)現(xiàn)長(zhǎng)角直斑腿蝗Stenocatantops splendens雌雄成蟲在越冬期間的甘油變化并不明顯。而油松毛蟲Dendrolimus tabulaeformis在9—11月甘油含量下降,但是從11月開始到翌年5月甘油含量持續(xù)上升[59];中華蜜蜂Apis cerana cerana在越冬過程中甘油含量持續(xù)增加[60]。二者均與本研究結(jié)果相似,在越冬后期幼蟲體內(nèi)甘油含量較越冬期上升,表明赤松梢斑螟幼蟲為了抵御越冬期低溫環(huán)境使體內(nèi)甘油水平得到了積累[60]。甘油在耐寒過程中起到了保護(hù)細(xì)胞的作用,昆蟲中的甘油可以降低SCP,并保護(hù)承受低溫脅迫的生物膜和蛋白質(zhì)[61-63],因而甘油可能是赤松梢斑螟幼蟲越冬的主要耐寒物質(zhì)。

      蛋白質(zhì)作為昆蟲生命的物質(zhì)基礎(chǔ),也是昆蟲越冬的重要耐寒物質(zhì)[64]。例如重陽(yáng)木錦斑蛾[45]、赤松毛蟲[65]等昆蟲在越冬前期蛋白質(zhì)含量較低,越冬期含量最高,隨后含量呈下降趨勢(shì);而本研究結(jié)果與其相似,赤松梢斑螟從越冬期到越冬后期蛋白質(zhì)含量顯著下降,說明蛋白質(zhì)在赤松梢斑螟幼蟲越冬過程中起到重要作用。

      持續(xù)的低溫脅迫會(huì)誘使昆蟲細(xì)胞內(nèi)產(chǎn)生大量的乳酸、含氮廢物等有毒代謝廢物和O2-、OH·等活性自由基,若其在蟲體內(nèi)達(dá)到一定濃度或未得到及時(shí)清除,可能會(huì)破壞昆蟲許多生物分子的結(jié)構(gòu)和功能,并引起新陳代謝的紊亂[66]。因此昆蟲在長(zhǎng)期適應(yīng)環(huán)境的進(jìn)化過程中體內(nèi)產(chǎn)生了相應(yīng)的酶系統(tǒng),可及時(shí)清除有毒物質(zhì)、活性氧自由基和其他過氧化物,避免其對(duì)機(jī)體的毒害。比如超氧化物歧化酶(SOD)、過氧化物酶(POD)、過氧化氫酶(CAT)是昆蟲體內(nèi)重要的3種保護(hù)酶,對(duì)昆蟲的新陳代謝起著非常重要的保護(hù)作用。SOD是一種能夠防御活性氧及其他過氧化物傷害細(xì)胞膜系統(tǒng)的保護(hù)酶,維持昆蟲等生物細(xì)胞正常的生命活動(dòng)。由過氧化氫參與的氧化還原反應(yīng)會(huì)產(chǎn)生對(duì)細(xì)胞有侵害的毒性物質(zhì),POD的作用主要是將細(xì)胞內(nèi)的過氧化氫水解以保護(hù)細(xì)胞。CAT能夠清除昆蟲細(xì)胞內(nèi)的羥自由基,以免對(duì)機(jī)體細(xì)胞造成毒害作用[67]。趙建淇[28]的研究發(fā)現(xiàn),低溫脅迫可以在短時(shí)內(nèi)誘導(dǎo)巴氏新小綏螨體內(nèi)抗氧化酶的表達(dá),巴氏新小綏螨兩種溫度品系雌成螨體內(nèi)SOD、POD和CAT的活性均顯著上調(diào)。付雪蓮[68]的研究發(fā)現(xiàn)茶淡黃刺蛾Darna trima在-5 ℃低溫脅迫2 h后,SOD、POD和CAT活性均顯著上升,后隨時(shí)間的增加又逐漸降低。本研究結(jié)果表明,從越冬期到越冬后期幼蟲體內(nèi)POD、CAT活性均顯著下降,而SOD活性則下降不明顯。通過以上現(xiàn)象可以推測(cè),赤松梢斑螟老熟幼蟲在冬季低溫條件下產(chǎn)生了大量的過氧化氫和羥自由基,因而有大量相應(yīng)的保護(hù)酶參與反應(yīng),而在越冬后期,蟲體內(nèi)過氧化氫和羥自由基等物質(zhì)含量減少,相應(yīng)的保護(hù)酶活性降低,因此,POD、CAT可能是赤松梢斑螟幼蟲越冬的主要保護(hù)酶,在耐寒過程中發(fā)揮重要作用;SOD活性下降不顯著,可能是因?yàn)樵谠蕉笃谟紫x體內(nèi)活性氧及其他過氧化物的含量降低較少有關(guān),所以SOD可能也是赤松梢斑螟幼蟲越冬的主要保護(hù)酶,在耐寒過程中發(fā)揮重要作用。

      本研究探明了赤松梢斑螟野外種群過冷卻點(diǎn)和體液結(jié)冰點(diǎn),為推測(cè)其在黑龍江省地理分布提供了一定的理論基礎(chǔ);揭示了過冷卻點(diǎn)與蟲齡、質(zhì)量、體長(zhǎng)之間關(guān)系以及越冬期間體內(nèi)耐寒物質(zhì)、保護(hù)酶含量變化,為赤松梢斑螟在黑龍江地區(qū)生存策略和越冬類型提供了一定的依據(jù)。此次結(jié)果為后續(xù)赤松梢斑螟的抗寒性研究奠定了基礎(chǔ)。

      參考文獻(xiàn):

      [1] GUO H R, JIA N Y, CHEN H W, et al. Preliminary analysis of transcriptome response of Dioryctria sylvestrella (Lepidoptera: Pyralidae) larvae infected with Beauveria bassiana under shortterm starvation[J]. Insects,2023,14(5):409.

      [2] 呂春鶴,劉超,張美麗,等.三種無(wú)公害殺蟲劑無(wú)人機(jī)施藥防治赤松梢斑螟效果對(duì)比試驗(yàn)[J].中國(guó)森林病蟲,2021,40(6): 40-43. LYU C H, LIU C, ZHANG M L, et al. Effect contrast test of spraying three kinds of pollution-free pesticides against Dioryctria sylvestrella by drone[J]. Forest Pest and Disease,2021,40(6): 40-43.

      [3] 周彪,宋小雙,毛子軍,等.赤松梢斑螟防治技術(shù)的研究[J].防護(hù)林科技,2006(6):34-35. ZHOU B, SONG X S, MAO Z J, et al. Control Techniques of Dioryctria sylvestrella[J]. Protection Forest Science and Technology,2006(6):34-35.

      [4] WU Z C, LI M Z, WANG B, et al. Analysis of factors related to forest fires in different forest ecosystems in China[J]. Forests, 2022,13(7):1021.

      [5] 趙玉潔,常誠(chéng),柏才音,等.漠河極端氣溫氣候特征及其變化[J].氣象,2009,35(3):94-98. ZHAO Y J, CHANG C, BAI C Y, et al. Climatic characteristic and change of Mohe extreme temperature[J]. Meteorological Monthly,2009,35(3):94-98.

      [6] GONZáLEZ‐TOKMAN D, CóRDOBA‐AGUILAR A, DáTTILO W, et al. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world[J]. Biological Reviews of the Cambridge Philosophical Society,2020,95(3):802-821.

      [7] 王雁楠,張玉,趙紫華.六種外來(lái)入侵昆蟲在我國(guó)分布范圍及自然越冬北界的預(yù)測(cè)[J].植物保護(hù)學(xué)報(bào),2020,47(5):1155-1156. WANG Y N, ZHANG Y, ZHAO Z H. Forecasted distribution and natural overwintering north boundary of six alien invasive insects in China[J]. Journal of Plant Protection,2020,47(5):1155-1156.

      [8] SKEND?I? S, ZOVKO M, ?IVKOVI? I P, et al. The impact of climate change on agricultural insect pests[J]. Insects,2021,12(5): 440.

      [9] PAN X K, CHEN S Y, PENG Q Y, et al. Cold tolerance and cold-resistant substances in two Tomicus species during critical transferring periods[J]. Agriculture,2023,13(1):14.

      [10] KHABIR M, IZADI H, MAHDIAN K. The supercooling point depression is the leading cold tolerance strategy for the variegated ladybug, [Hippodamia variegata (Goezel)][J]. Frontiers in Physiology,2023,14:1323701.

      [11] 唐曉琴,盧杰,李照青,等.赤松梢斑螟在藏東南高山松上的生物學(xué)特性[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2020,48(1):119-125. TANG X Q, LU J, LI Z Q, et al. Biological characteristics of Dioryctria sylvestrella on Pinus densata in southeast Xizang[J]. Journal of Northwest A F University (Natural Science Edition), 2020,48(1):119-125.

      [12] 莊宇彤.兩種梢斑螟幼蟲食物譜差異與消化器官及相應(yīng)酶關(guān)系分析[D].哈爾濱:東北林業(yè)大學(xué),2022. ZHUANG Y T. Analysis on the relationship between the difference of food spectrum and digestive organs and corresponding enzymes in the two species of Dioryctria larvae (Lepidoptera: Pyralidae) [D]. Harbin: Northeast Forestry University,2022.

      [13] 解丹,宋效惠,王海峰,等.不同種源紅松主干揮發(fā)物對(duì)赤松梢斑螟危害的影響[J].東北林業(yè)大學(xué)學(xué)報(bào),2021,49(5): 115-119. XIE D, SONG X H, WANG H F, et al. Effects of volatiles from the tunk of Pinus koraiensis of different provenances on the damage of Dioryctria sylvestrella[J]. Journal of Northeast Forestry University,2021,49(5):115-119.

      [14] POEYDEBAT C, CASTAGNEYROL B, VAN HALDER I, et al. Changes in host basal area explain associational resistance of mixed forests to primary pests[J]. Forest Ecology and Management,2021,495:119374.

      [15] JACTEL H, POEYDEBAT C, VAN HALDER I, et al. Interactive effects of tree mixing and drought on a primary forest pest[J]. Frontiers in Forests and Global Change,2019,2:77.

      [16] ?Z M, DENIZ ?, OKAN O T, et al. Chemical composition of Oleoresin and larvae gallery resin of Pinus brutia attacked by Dioryctria sylvestrella Ratz.[J]. Drvna Industrija,2015,66(3): 179-188.

      [17] CHEN Y, SEYBOLD S J. Application of a frequency distribution method for determining instars of the beet armyworm(Lepidoptera: Noctuidae) from widths of cast head capsules[J]. Journal of Economic Entomology,2013,106(2):800-806.

      [18] 閆敦梁,焦書山,李文艷.樟子松梢斑螟幼蟲眾數(shù)齡數(shù)及生活史的初步研究[J].防護(hù)林科技,2018(11):42-44. YAN D L, JIAO S S, LI W Y. Age and life history of larvae of Dioryctria mongolicella[J]. Protection Forest Science and Technology,2018(11):42-44.

      [19] 牛浩,蘭珍珍,牛通,等.草地貪夜蛾室內(nèi)種群過冷卻點(diǎn)和結(jié)冰點(diǎn)的測(cè)定[J].寧夏大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,43(4):387-390,399. NIU H, LAN Z Z, NIU T, et al. Determination of supercooling point and freezing point of laboratory populations of Spodoptera frugiperda[J]. Journal of Ningxia University (Natural Science Edition),2022,43(4):387-390,399.

      [20] 謝殿杰,張蕾,程云霞,等.不同飼養(yǎng)溫度對(duì)草地貪夜蛾過冷卻點(diǎn)和體液冰點(diǎn)的影響[J].植物保護(hù),2020,46(2):62-71. XIE D J, ZHANG L, CHENG Y X, et al. Effects of different feeding temperature on the supercooling points and freezing points of fall armyworm, Spodoptera frugiperda[J]. Plant Protection,2020,46(2):62-71.

      [21] 羿超群,謝佼昕,劉曉旭,等.多異瓢蟲不同發(fā)育階段過冷卻點(diǎn)及體液結(jié)冰點(diǎn)的測(cè)定[J].植物保護(hù),2022,48(2):106-110,117. YI C Q, XIE J X, LIU X X, et al. Determination of supercooling point and freezing point of hymolymph in Hippodamia variegata(Coleoptera: Coccinellidae) at different developmental stages[J]. Plant Protection,2022,48(2):106-110,117.

      [22] S?MME L. The physiology of cold hardiness in terrestrialar thropods[J]. European Journal of Entomology,1999,96(1):1-10.

      [23] LI Z X, SHI J R, YANG L Y, et al. Diapause induction, color changes, and supercooling point of diapause larvae of Tetrastichus septentrionalis Yang (Hymenoptera: Eulophidae)[J]. Insects, 2023,14(10):826.

      [24] PEI J H, LI C C, REN L L, et al. Factors influencing cold hardiness during overwintering of Streltzoviella insularis(Lepidoptera: Cossidae)[J]. Journal of Economic Entomology, 2020,113(3):1254-1261.

      [25] DANECK H, BARTH M B, GECK M, et al. Super cooling point phenotypes and cold resistance in Hyles euphorbiae hawk moths from different climate zones[J]. Diversity,2021,13(5):207.

      [26] ZHANG Q K, WU S Y, WANG H H, et al. Overwintering, cold tolerance and supercooling capacity comparison between Liriomyza sativae and L. trifolii, two invasive leafminers in China[J]. Journal of Pest Science,2022,95(2):881-888.

      [27] XU X R, ZHU M M, LI L L, et al. Cold hardiness characteristic of the overwintering pupae of fall webworm Hyphantria cunea(Drury) (Lepidoptera: Arctiidae) in the northeast of China[J]. Journal of Asia-Pacific Entomology,2015,18(1):39-45.

      [28] 趙建淇.巴氏新小綏螨不同溫度品系的耐寒性及越冬潛力研究[D].重慶:西南大學(xué),2023.ZHAO J Q. Cold hardiness and overwintering potential of different temperature strains of Neoseiulus barkeri[D]. Chongqing: Southwest University,2023.

      [29] 魏建榮,王素英,牛艷玲,等.花絨寄甲耐寒性研究[J].中國(guó)森林病蟲,2010,29(5):19-20,46. WEI J R, WANG S Y, NIU Y L, et al. Cold tolerance of Dastarcus helophoroides[J]. China Forest Pathogens,2010,29(5):19-20,46.

      [30] 張郁泉,王琪,牛豪杰,等.冷杉梢斑螟和赤松梢斑螟幼蟲形態(tài)特征的差異[J].東北林業(yè)大學(xué)學(xué)報(bào),2021,49(9):119-123,133. ZHANG Y Q, WANG Q, NIU H J, et al. Differences in larval morphological characteristics between Dioryctria abietella and Dioryctria sylvestrella[J]. Journal of Northeast Forestry University, 2021,49(9):119-123,133.

      [31] 馮德剛,姚小平,夏樹東,等.赤松梢斑螟空間分布型的研究[J].林業(yè)科技,1997,22(3):26-28. FENG D G, YAO X P, XIA S D, et al. Study on the spatial distribution pattern of Dioryctria sylvestrella[J]. Forestry Science Technology,1997,22(3):26-28.

      [32] 牛豪杰,王琪,嚴(yán)善春.紅松人工純林3種梢斑螟成蟲種群動(dòng)態(tài)分析[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2020,40(1):59-66. NIU H J, WANG Q, YAN S C, et al. Analysis on population dynamics of three Dioryctria of Pinus koraiensis plantation[J]. Journal of Central South University of Forestry Technology, 2020,40(1):59-66.

      [33] LIU H, WANG X Y, CHEN Z H, et al. Characterization of cold and heat tolerance of Bactrocera tau (Walker)[J]. Insects, 2022,13(4):329.

      [34] 耿書寶,侯賀麗,洪楓,等.不同蟲態(tài)茶銀尺蠖過冷卻點(diǎn)和結(jié)冰點(diǎn)的測(cè)定[J].植物保護(hù)學(xué)報(bào),2022,49(4):1180-1186. GENG S B, HOU H L, HONG F, et al. Determination of the supercooling point and freezing point of tea silvery geometrid Scopula subpunctaria at different stages[J]. Journal of Plant Protection, 2022,49(4):1180-1186.

      [35] 張智,鄭喬,張?jiān)苹郏?草地貪夜蛾室內(nèi)種群抗寒能力測(cè)定[J].植物保護(hù),2019,45(6):43-49,69. ZHANG Z, ZHENG Q, ZHANG Y H, et al.Cold hardiness of laboratory populations of Spodoptera frugiperda[J]. Plant Protection,2019,45(6):43-49,69.

      [36] HAHN D A, MARTIN A R, PORTER S D. Body size, but not cooling rate, affects supercooling points in the red imported fire ant, Solenopsis invicta[J]. Environmental Entomology, 2008,37(5):1074-1080.

      [37] 趙靜,崔寧寧,張帆,等.異色瓢蟲成蟲體型及體內(nèi)脂肪含量對(duì)其耐寒能力的影響[J].昆蟲學(xué)報(bào),2010,53(11):1213-1219. ZHAO J, CUI N N, ZHANG F, et al. Effects of body size and body fat content on cold tolerance in adults of Harmonia axyridis(Pallas) (Coleoptera: Coccinellidae)[J]. Acta Entomologica Sinica,2010,53(11):1213-1219.

      [38] LEE R E Jr, COSTANZO J P. Biological ice nucleation and ice distribution in cold-hardy ectothermic animals[J]. Annual Review of Physiology,1998,60(1):55-72.

      [39] HAHN D A, DENLINGER D L. Meeting the energetic demands of insect diapause: nutrient storage and utilization[J]. Journal of Insect Physiology,2007,53(8):760-773.

      [40] ROBERTS K T, SZEJNER-SIGAL A, LEHMANN P. Seasonal energetics: are insects constrained by energy during dormancy?[J]. Journal of Experimental Biology,2023,226(21): jeb245782.

      [41] MERCER N H, TEETS N M, BESSIN R T, et al. Supplemental foods affect energetic reserves, survival, and spring reproduction in overwintering adult Hippodamia convergens (Coleoptera: Coccinellidae)[J]. Environmental Entomology,2020,49(1):1-9.

      [42] ENRIQUEZ T, VISSER B. The importance of fat accumulation and reserves for insect overwintering[J]. Current Opinion in Insect Science,2023,60:101118.

      [43] 徐偉,秦昊東,高宇,等.大豆食心蟲越冬幼蟲過冷卻點(diǎn)及其體內(nèi)小分子內(nèi)含物分析[J].植物保護(hù)學(xué)報(bào),2018,45(4): 697-704. XU W, QIN H D, GAO Y, et al. Analysis of supercooling point and low-molecular weight compounds in overwintering soybean pod borer Leguminivora glycinivorella larvae[J]. Journal of Plant Protection,2018,45(4):697-704.

      [44] TOXOPEUS J, SINCLAIR B J. Mechanisms underlying insect freeze tolerance[J]. Biological Reviews of the Cambridge Philosophical Society,2018,93(4):1891-1914.

      [45] 楊海博,胡鎮(zhèn)杰,董鈞鋒,等.重陽(yáng)木錦斑蛾越冬幼蟲的耐寒性變化[J].昆蟲學(xué)報(bào),2019,62(8):979-986. YANG H B, HU Z J, DONG J F, et al. Changes in the cold hardiness of overwintering larvae of Histia rhodope ( Lepidoptera: Zygaenidae)[J]. Acta Entomologica Sinica,2019,62(8): 979-986.

      [46] 張擁軍.二化螟越冬幼蟲耐寒性及其機(jī)理研究[D].武漢:華中農(nóng)業(yè)大學(xué),2007. ZHANG Y J. Studies on the cold hardiness and mechanism of over wintering larva of Chilo supperssalis (Walker)[D]. Wuhen: Huazhong Agricultural University,2007.

      [47] 林煒.不同二化螟越冬幼蟲種群抗寒性的差異及其機(jī)理研究[D].長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué),2008. LIN W. Differences in cold-hardiness of over-wintering larval populations of the rice stem borer, Chilo suppressalis Walker(Lepidoptera: Pyralidae) and their underlying mechanisms[D]. Hunan Agricultural University,2008.

      [48] WASIELEWSKI O, WOJCIECHOWICZ T, GIEJDASZ K, et al. Overwintering strategies in the red mason solitary bee: physiological correlates of midgut metabolic activity and turnover of nutrient reserves in females of Osmia bicornis[J]. Apidologie, 2013,44(6):642-656.

      [49] 陳永杰,孫緒艮,張衛(wèi)光,等.桑螟越冬幼蟲體內(nèi)蛋白質(zhì)、氨基酸、碳水化合物的變化與抗寒性的關(guān)系[J].蠶業(yè)科學(xué), 2005,31(2):111-116. CHEN Y J, SUN X G, ZHANG W G, et al. Relationship between variation of protein, amino acid, low-molecular carbohydrate in over-wintering Diaphania pyloalis walker larvae and coldhardiness[J]. Acta Sericologica Sinica,2005,31(2):111-116.

      [50] 鞠珍,李明貴,刁志娥,等.美國(guó)白蛾越冬蛹的過冷卻能力、體內(nèi)水分及脂肪含量[J].應(yīng)用生態(tài)學(xué)報(bào),2009,20(11): 2763-2767. JU Z, LI M G, DIAO Z E, et al. Super-cooling ability and its relations to body’s water and fat contents of overwintering Hyphantria cunea (Lepidoptera: Arcidae) pupae[J]. Chinese Journal of Applied Ecology,2009,20(11):2763-2767.

      [51] BELL G D, CORPS N, MORTIMER D, et al. Visualising fat reserves in an insect: a method using X-ray micro-computerised tomography of the common wasp (Vespula vulgaris)[J]. Zoology,2023,158:126092.

      [52] HASANVAND H, IZADI H, MOHAMMADZADEH M. Overwintering physiology and cold tolerance of the sunn pest, Eurygaster integriceps, an emphasis on the role of cryoprotectants[J]. Frontiers in Physiology,2020,11:321.

      [53] XIE Z F, XU L C, ZHAO J, et al. Rapid cold hardening and cold acclimation promote cold tolerance of oriental fruit fly, Bactrocera dorsalis (Hendel) by physiological substances transformation and cryoprotectants accumulation[J]. Bulletin of Entomological Research, 2023,113(4):574-586.

      [54] KACZMAREK A, BOGU? M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance[J]. PeerJ,2021,9:e12563.

      [55] ZENG B P, WANG S S, LI Y, et al. Effect of long-term cold storage on trehalose metabolism of pre-wintering Harmonia axyridis adults and changes in morphological diversity before and after wintering[J]. PLoS One,2020,15(3):e0230435.

      [56] 董亞新,裴佳禾,邵鈺瑩,等.紅脂大小蠹幼蟲和成蟲耐寒能力及耐寒物質(zhì)的研究[J].環(huán)境昆蟲學(xué)報(bào),2021,43(4):978-985. DONG Y X, PEI J H, SHAO Y Y, et al. Cold tolerance and cold tolerant substances of larva and adult of Dendroctonus valens LeConte[J]. Journal of Environmental Entomology,2021,43(4): 978-985.

      [57] YU Z J, LU Y L, YANG X L, et al. Cold hardiness and biochemical response to low temperature of the unfed bush tick Haemaphysalis longicornis (Acari: Ixodidae)[J]. Parasites Vectors,2014,7:346.

      [58] 朱騰冉.長(zhǎng)角直斑腿蝗雌雄成蟲相異耐寒件的生化機(jī)制[D].長(zhǎng)沙:中南林業(yè)科技大學(xué),2020. ZHU T R. Biochemical mechanisms of different cold tolerance between male and female Stenocatantops splendens[D]. Changsha:Central South University of Forestry Technology, 2020.

      [59] SHAO Y Y, FENG Y Q, TIAN B, et al. Cold hardiness of larvae of Dendrolimus tabulaeformis (Lepidoptera: Lasiocampidae) at different stages during the overwintering period[J]. European Journal of Entomology,2018,115:198-207.

      [60] 蘇曉玲,陳道印,趙東緒,等.中華蜜蜂越冬期抗寒生理生化指標(biāo)研究[J].環(huán)境昆蟲學(xué)報(bào),2022,44(3):586-594. SU X L, CHEN D Y, ZHAO D X, et al. Study on physiological and biochemical indexes of cold resistance of Apis cerana cerana during overwintering period[J]. Journal of Environmental Entomology,2022,44(3):586-594.

      [61] ZHOU X R, LI Y Y, LI N, et al. Relationship between supercooling capability and cryoprotectant content in eggs of Pararcyptera microptera meridionalis (Orthoptera: Acrypteridae)[J]. Cryo Letters,2015,36(4):270-277.

      [62] PARK Y, KIM Y. RNA interference of glycerol biosynthesis suppresses rapid cold hardening of the beet armyworm, Spodoptera exigua[J]. Journal of Experimental Biology, 2013,216(22):4196-4203.

      [63] LI N G. Relationships between cold hardiness, and ice nucleating activity, glycerol and protein contents in the hemolymph of caterpillars, Aporia crataegi L[J]. Cryo Letters, 2012,33(2):135-143.

      [64] DURAK R, DEPCIUCH J, KAPUSTA I, et al. Changes in chemical composition and accumulation of cryoprotectants as the adaptation of anholocyclic aphid Cinara tujafilina to overwintering[J]. International Journal of Molecular Sciences, 2021,22(2):511.

      [65] 韓瑞東,孫緒艮,許永玉,等.赤松毛蟲越冬幼蟲生化物質(zhì)變化與抗寒性的關(guān)系[J].生態(tài)學(xué)報(bào),2005,25(6):1352-1356. HAN R D, SUN X G, XU Y Y, et al. The biochemical mechanism of cold-hardiness in overwintering larva of Dendrolimus spectabilis Butler (Lepidoptera:Lasiocampidae)[J]. Acta Ecologica Sinica,2005,25(6):1352-1356.

      [66] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry,2010,48(12):909-930.

      [67] 劉聰鶴.暗黑鰓金龜耐寒性及其機(jī)理的研究[D].哈爾濱:東北農(nóng)業(yè)大學(xué),2017. LIU C H. Research on cold resistance and mechanism of Holotrichia parallela Motschulsky[D]. Harbin: Northeast Agricultural University, 2017.

      [68] 付雪蓮.茶淡黃刺蛾生物學(xué)特性及在溫度脅迫下抗氧化反應(yīng)研究[D].雅安:四川農(nóng)業(yè)大學(xué),2017. FU X L. Study on biological characteristics and antioxidant systems to temperature stress of Darna trima (Moore)[D]. Ya’an: Sichuan Agricultural University,2017.

      [本文編校:謝榮秀]

      猜你喜歡
      耐寒性
      荷花品種“西湖秋韻”和“湘湖秋韻”的培育與擴(kuò)繁應(yīng)用
      自然條件下耐寒月季資源的篩選
      菊方翅網(wǎng)蝽越冬種群過冷卻點(diǎn)測(cè)定研究
      低溫脅迫下的油茶品種耐寒性評(píng)價(jià)
      紅醋栗嫩枝扦插育苗及高產(chǎn)栽培技術(shù)
      凍融及堿性鹽脅迫下紫花苜蓿幼苗的生理響應(yīng)
      甜玉米自交系萌芽期耐寒性的鑒定和篩選(內(nèi)文第22~26頁(yè))圖版
      利用電導(dǎo)法測(cè)定雀舌黃楊和大葉黃楊的耐寒性
      美洲斑潛蠅蛹的耐寒性研究
      澳洲堅(jiān)果不同品種耐寒特性的探討
      巨野县| 威信县| 封开县| 肇州县| 临沭县| 九龙坡区| 鄂伦春自治旗| 公主岭市| 阿克苏市| 鄄城县| 开原市| 房山区| 吴忠市| 新邵县| 冷水江市| 璧山县| 甘洛县| 盐边县| 依兰县| 利川市| 巩留县| 宁都县| 泸溪县| 呼和浩特市| 洱源县| 合水县| 务川| 曲麻莱县| 广州市| 马龙县| 克拉玛依市| 金湖县| 安化县| 灵川县| 韶关市| 通海县| 云浮市| 宾阳县| 新营市| 西乡县| 云阳县|