摘要:肝內(nèi)膽管癌是一種預(yù)后極差的惡性腫瘤,其發(fā)病機(jī)制復(fù)雜且尚未完全明確。近年來,越來越多的研究聚焦于膽-腸軸在肝內(nèi)膽管癌發(fā)生發(fā)展中的作用。膽-腸軸是指膽汁和腸道微生物群之間的復(fù)雜交互作用,包括膽鹽代謝、微生物群的動(dòng)態(tài)變化、炎癥反應(yīng)以及免疫系統(tǒng)的調(diào)節(jié)等多方面內(nèi)容。本文系統(tǒng)闡述了膽-腸軸在肝內(nèi)膽管癌中的潛在機(jī)制,特別是微生物群失調(diào)、膽鹽代謝異常、慢性炎癥反應(yīng)及免疫系統(tǒng)交互作用等方面,旨在為未來研究提供新的視角和可能的治療靶點(diǎn),推動(dòng)肝內(nèi)膽管癌的早期診斷和有效治療。
關(guān)鍵詞:膽管上皮癌;膽-腸軸;胃腸道微生物組;膽鹽代謝;炎癥
基金項(xiàng)目:上海市衛(wèi)生健康委員會(huì)青年人才計(jì)劃(2022YQ037);上海市普陀區(qū)衛(wèi)生健康系統(tǒng)科技創(chuàng)新項(xiàng)目計(jì)劃(ptkwws202210);上海市普陀區(qū)中心醫(yī)院臨床匠才計(jì)劃(2022-RCJC-07)
Mechanism of action of bile-gut axis in the development and progression of intrahepatic cholangiocarcinoma
YU Xue a ,SHEN Tianhao a ,ZHOU Cheng a ,LIU Yu a ,LI Wei b ,JIANG Tinghui a ,ZHU Yongqiang
a ,LIU Yan a a. Department of Interventional Oncology,b. Department of Hepatobiliary Minimally Invasive Surgery,Putuo Hospital,Shanghai University of Traditional Chinese Medicine,Shanghai 200062,China
Corresponding author:LIU Yan,liuyan3491542@shutcm.edu.cn (ORCID:0000-0001-7205-1569)
Abstract:Intrahepatic cholangiocarcinoma is a malignant tumor with an extremely poor prognosis,and its pathogenesis is complex and remains unclear. In recent years,more and more studies have focused on the role of bile-gut axis in the development and progression of intrahepatic cholangiocarcinoma. Bile-gut axis refers to the complex interaction between bile and gut microbiota,including bile salt metabolism,dynamic changes of microbiota,inflammatory response,and immune system regulation. This article elaborates on the potential mechanisms of bile-gut axis in intrahepatic cholangiocarcinoma,especially gut microbiota dysbiosis,abnormal bile salt metabolism,chronic inflammatory response,and immune system interaction,this article aims to provide new perspectives and possible therapeutic targets for future research and promote the early diagnosis and effective treatment of intrahepatic cholangiocarcinoma.
Key words:Cholangiocarcinoma;Bile-Gut Axis;Gastrointestinal Microbiome;Bile Salt Metabolism;Inflammation
Research funding:Talent Program of Shanghai Municipal Health Commission (2022YQ037);Shanghai Putuo District Health System Science and Technology Innovation Project Plan (ptkwws202210);Shanghai Putuo Central Hospital Clinical Talent Program (2022-RCJC-07)
肝內(nèi)膽管癌是一類惡性程度高、腫瘤異質(zhì)性強(qiáng)、預(yù)后極差的消化道惡性腫瘤,5年生存率僅為5%左右,中位生存期不足1年[1]。近年來全球發(fā)病率有所增加,我國每年的新發(fā)病率達(dá)12.5/10 000[2-4]。肝內(nèi)膽管癌表現(xiàn)出高度的侵襲性,70%的患者會(huì)發(fā)生淋巴結(jié)轉(zhuǎn)移、肝轉(zhuǎn)移、血管侵襲、神經(jīng)周圍轉(zhuǎn)移甚至遠(yuǎn)處轉(zhuǎn)移,這也是導(dǎo)致肝內(nèi)膽管癌死亡的主要原因[5-9]。因此,深入了解肝內(nèi)膽管癌的發(fā)生發(fā)展機(jī)制,對提高早期診斷率和改善預(yù)后具有重要意義。
膽-腸軸的概念最早源于對膽汁和腸道微生物群相互作用的研究。膽汁不僅在脂肪消化和吸收中起重要作用,還通過調(diào)節(jié)腸道微生物群的組成和功能,影響宿主的代謝和免疫反應(yīng)[10]。腸道微生物群是指存在于腸道內(nèi)的各種微生物,包括細(xì)菌、病毒、真菌等,與宿主之間存在復(fù)雜的相互作用,參與多種生理功能的調(diào)節(jié)[11]。越來越多的證據(jù)表明,膽-腸軸的失調(diào)可能在肝內(nèi)膽管癌的發(fā)生和發(fā)展中起關(guān)鍵作用。腸道微生物群的失調(diào)、膽鹽代謝的異常、炎癥反應(yīng)的調(diào)節(jié)失衡以及免疫系統(tǒng)的異常反應(yīng)等,均可能通過不同的機(jī)制促進(jìn)肝內(nèi)膽管癌的發(fā)生[12]。
首先,腸道微生物群的失調(diào)與肝內(nèi)膽管癌的相關(guān)性已被多項(xiàng)研究證實(shí)。特定微生物的致癌機(jī)制可能包括產(chǎn)生致癌物質(zhì)、誘導(dǎo)慢性炎癥反應(yīng)以及影響宿主免疫系統(tǒng)等途徑[13]。其次,膽鹽代謝的變化在腫瘤微環(huán)境中也起著重要作用。膽鹽不僅參與脂肪的消化吸收,還通過與腸道微生物群的相互作用,影響腸道屏障功能和宿主的代謝狀態(tài)[14]。炎癥反應(yīng)在肝內(nèi)膽管癌中的調(diào)節(jié)作用同樣不可忽視。膽-腸軸失調(diào)引發(fā)的炎癥反應(yīng)可能通過多種途徑影響腫瘤微環(huán)境,促進(jìn)癌細(xì)胞的增殖和轉(zhuǎn)移[15]。此外,免疫系統(tǒng)在膽-腸軸與肝內(nèi)膽管癌的交互作用中也扮演著重要角色。免疫細(xì)胞在腫瘤微環(huán)境中的功能失調(diào)可能導(dǎo)致免疫逃逸,從而促進(jìn)腫瘤的發(fā)生和發(fā)展[16]。
綜上所述,膽-腸軸在肝內(nèi)膽管癌發(fā)生發(fā)展中的多維角色為臨床研究提供了新視角和可能的治療靶點(diǎn)。通過對當(dāng)前研究成果的綜合分析,可以更好地理解肝內(nèi)膽管癌的發(fā)病機(jī)制,并為未來的研究和臨床治療提供指導(dǎo)。
1 膽-腸軸的生物學(xué)基礎(chǔ)
1.1 膽汁的組成及其功能 膽汁是由肝臟產(chǎn)生并儲(chǔ)存在膽囊中的一種消化液,主要由膽鹽、膽固醇、磷脂和膽色素組成[17]。膽鹽是膽汁的主要成分,具有乳化脂肪的功能,從而促進(jìn)脂肪和脂溶性維生素的吸收。膽固醇和磷脂在膽汁中形成混合膠束,幫助膽鹽在腸道中運(yùn)輸和功能發(fā)揮。膽色素則是紅細(xì)胞破壞后的代謝產(chǎn)物,主要包括膽紅素,其在腸道中被細(xì)菌轉(zhuǎn)化為尿膽素原,部分被重吸收并通過腎臟排出體外[18]。膽汁的分泌和排放受多種因素調(diào)節(jié),包括神經(jīng)系統(tǒng)和激素的作用,如膽囊收縮素和促胰液素。這些成分和調(diào)節(jié)機(jī)制共同作用,確保膽汁在消化過程中發(fā)揮其重要功能。
1.2 腸道微生物群的組成及其作用 腸道微生物群是指存在于消化道中的各種微生物,包括細(xì)菌、病毒、真菌和原生動(dòng)物等。人體腸道內(nèi)的微生物數(shù)量龐大,種類繁多,主要分布在大腸中[19]。這些微生物在維持腸道健康、促進(jìn)食物消化、合成維生素和調(diào)節(jié)免疫系統(tǒng)等方面發(fā)揮著重要作用。腸道微生物群的組成受多種因素影響,包括飲食、年齡、地理位置和健康狀況等。研究表明,腸道微生物群的失調(diào)與多種疾病的發(fā)生密切相關(guān),如炎癥性腸病、肥胖、糖尿病和癌癥[20]。通過調(diào)節(jié)腸道微生物群,可以改善這些疾病的癥狀,甚至預(yù)防其發(fā)生。
1.3 膽-腸軸的信號(hào)傳導(dǎo)機(jī)制 膽-腸軸是指膽汁和腸道微生物群之間的相互作用及其在調(diào)節(jié)腸道功能和整體健康中的作用。膽汁通過其成分(如膽鹽)直接影響腸道微生物群的組成和功能[21]。膽鹽具有抗菌作用,可以抑制某些有害菌的生長,同時(shí)促進(jìn)有益菌的繁殖。此外,腸道微生物群也能通過代謝膽鹽,生成次級(jí)膽鹽,這些次級(jí)膽鹽在調(diào)節(jié)宿主代謝和免疫反應(yīng)中發(fā)揮重要作用[22]。膽-腸軸的信號(hào)傳導(dǎo)機(jī)制還包括通過腸道屏障、免疫系統(tǒng)和神經(jīng)系統(tǒng)的相互作用(圖1),調(diào)節(jié)腸道的炎癥反應(yīng)和免疫功能,從而影響整體健康[23]。這些復(fù)雜的相互作用構(gòu)成了膽-腸軸的生物學(xué)基礎(chǔ),對理解肝內(nèi)膽管癌等疾病的發(fā)生發(fā)展具有重要意義。
2 微生物群在肝內(nèi)膽管癌中的作用
2.1 微生物群失調(diào)與肝內(nèi)膽管癌的相關(guān)性 微生物群失調(diào),即腸道微生物群的組成和功能發(fā)生紊亂,已被證明與多種癌癥的發(fā)生和發(fā)展密切相關(guān)。研究表明,肝內(nèi)膽管癌患者的膽道微生物群與健康個(gè)體存在顯著差異。
例如,一項(xiàng)研究通過對肝內(nèi)膽管癌患者和膽結(jié)石患者的膽道液進(jìn)行16S rRNA測序,發(fā)現(xiàn)肝內(nèi)膽管癌患者的膽道微生物群中,厚壁菌門水平較低,而擬桿菌門水平較高[24]。此外,肝內(nèi)膽管癌患者的膽道微生物群中,腸球菌、鏈球菌、擬桿菌和克雷伯菌等菌屬的豐度顯著增加[25]。另有研究通過分析肝外肝內(nèi)膽管癌患者、膽結(jié)石患者和正常健康患者糞便菌群變化,發(fā)現(xiàn)肝外肝內(nèi)膽管癌患者腸道菌群發(fā)生了明顯改變,且菌群改變與肝外肝內(nèi)膽管癌患者肝功能和藥物的使用密切相關(guān)[26]。
2.2 特定微生物的致癌機(jī)制 特定微生物可能通過多種機(jī)制促進(jìn)肝內(nèi)膽管癌的發(fā)生和發(fā)展。例如,某些細(xì)菌可以通過產(chǎn)生致癌物質(zhì)或誘導(dǎo)慢性炎癥來促進(jìn)癌癥的發(fā)生。研究發(fā)現(xiàn),幽門螺桿菌感染與胃癌的發(fā)生密切相關(guān),其致癌機(jī)制包括通過炎癥介質(zhì)破壞胃黏膜屏障,誘導(dǎo)細(xì)胞增殖和基因突變[27]。類似地,肝內(nèi)膽管癌患者的膽道微生物群中,某些細(xì)菌如擬桿菌和腸球菌可能通過產(chǎn)生毒素或誘導(dǎo)炎癥反應(yīng)來促進(jìn)癌癥的發(fā)展[28]。此外,研究還發(fā)現(xiàn),高脂飲食誘導(dǎo)的腸道微生物群失調(diào)可以通過激活單核細(xì)胞趨化蛋白1/CC趨化因子受體2信號(hào)軸,促進(jìn)腫瘤相關(guān)巨噬細(xì)胞的極化,從而加速腸道腺瘤-腺癌序列的進(jìn)展[29]。
2.3 微生物群作為潛在的生物標(biāo)志物 微生物群的組成和功能變化可以作為肝內(nèi)膽管癌的潛在生物標(biāo)志物,用于早期診斷和預(yù)后評(píng)估。研究表明,某些特定的微生物群落變化可以作為肝內(nèi)膽管癌的診斷標(biāo)志物。例如,研究發(fā)現(xiàn),肝內(nèi)膽管癌患者的膽道微生物群中,擬桿菌、地?zé)峋⒅袦鼐蛥捬跹挎邨U菌等菌屬的豐度顯著增加[24]。此外,研究還發(fā)現(xiàn),腸道微生物群失調(diào)與結(jié)直腸癌的發(fā)生密切相關(guān),某些特定的細(xì)菌如梭菌和雙歧桿菌的豐度變化可以作為結(jié)直腸癌的診斷標(biāo)志物[30]。
3 膽鹽代謝與肝內(nèi)膽管癌的關(guān)系
3.1 膽鹽的合成與代謝途徑 膽鹽是由膽固醇在肝臟中合成的,其代謝途徑包括初級(jí)膽鹽和次級(jí)膽鹽的生成。初級(jí)膽鹽如膽酸和鵝脫氧膽酸在肝臟中合成后,通過膽汁分泌進(jìn)入腸道。在腸道中,初級(jí)膽鹽在腸道菌群的作用下轉(zhuǎn)化為次級(jí)膽鹽,如脫氧膽酸和石膽酸。這些次級(jí)膽鹽可以被重新吸收進(jìn)入肝臟,形成肝腸循環(huán)[31]。膽鹽的合成和代謝途徑不僅在維持脂質(zhì)消化和吸收中起關(guān)鍵作用,還通過調(diào)節(jié)腸道菌群和腸道屏障功能,影響腸道和肝臟的健康狀態(tài)[32]。膽鹽代謝的異常可能導(dǎo)致膽汁淤積、肝損傷及相關(guān)疾病的發(fā)生。
3.2 膽鹽在腫瘤微環(huán)境中的作用 膽鹽在腫瘤微環(huán)境中扮演著復(fù)雜的角色。研究表明,膽鹽可以通過多種機(jī)制影響腫瘤的發(fā)生和發(fā)展。首先,膽鹽具有促炎作用,可以激活 NF-κB 等炎癥信號(hào)通路,促進(jìn)炎癥介質(zhì)的釋放,從而促進(jìn)腫瘤的生長和轉(zhuǎn)移[31]。其次,膽鹽還可以通過誘導(dǎo)氧化應(yīng)激和DNA損傷,直接促進(jìn)腫瘤細(xì)胞的增殖和存活[32]。此外,膽鹽還可以通過調(diào)節(jié)腸道菌群的組成和功能,間接影響腫瘤微環(huán)境的形成和發(fā)展[31]。膽鹽在腫瘤微環(huán)境中的作用是多方面的,深入理解其機(jī)制對于開發(fā)新的治療策略具有重要意義。
3.3 膽鹽代謝異常與膽-腸軸之間的關(guān)系 膽鹽代謝是指膽鹽在肝臟合成、分泌、腸道吸收和再循環(huán)的過程。膽-腸軸是指膽鹽通過肝臟、腸道及其微生物群與大腦之間的雙向信號(hào)傳遞通路。膽鹽不僅在脂質(zhì)消化和吸收中發(fā)揮重要作用,還通過與腸道微生物群的相互作用,影響宿主的代謝和免疫功能,進(jìn)而影響膽-腸軸的平衡。研究表明,膽鹽可以通過激活特定受體(如法尼醇X受體)來調(diào)節(jié)腸道微生物群,從而影響膽-腸軸,導(dǎo)致多種疾病的發(fā)生,如肥胖、糖尿病、非酒精性脂肪性肝病,以及肝內(nèi)膽管癌、肝癌等腫瘤的發(fā)生。
3.4 膽鹽代謝異常的致癌機(jī)制 膽鹽代謝異常是肝內(nèi)膽管癌發(fā)生的重要機(jī)制之一。膽鹽代謝異??梢酝ㄟ^多種途徑促進(jìn)肝內(nèi)膽管癌的發(fā)生和發(fā)展。首先,膽鹽代謝異常可以導(dǎo)致膽汁淤積,增加膽管上皮細(xì)胞暴露于高濃度膽鹽的機(jī)會(huì),從而誘導(dǎo)細(xì)胞損傷和炎癥反應(yīng)[32]。其次,膽鹽代謝異常還可以通過改變腸道菌群的組成和功能,影響腸道屏障功能和免疫反應(yīng),從而促進(jìn)腫瘤的發(fā)生[31,33]。此外,膽鹽代謝異常還可以通過調(diào)節(jié)腫瘤微環(huán)境中的信號(hào)通路,促進(jìn)腫瘤細(xì)胞的增殖、侵襲和轉(zhuǎn)移[32]。膽鹽代謝異常在肝內(nèi)膽管癌的發(fā)生和發(fā)展中具有重要作用,深入研究其機(jī)制對于開發(fā)新的預(yù)防和治療策略具有重要意義。
4 炎癥反應(yīng)在肝內(nèi)膽管癌中的調(diào)節(jié)作用
4.1 慢性炎癥與肝內(nèi)膽管癌的關(guān)系 慢性炎癥在肝內(nèi)膽管癌的發(fā)生和發(fā)展中起著至關(guān)重要的作用。研究表明,慢性炎癥可以通過多種機(jī)制促進(jìn)肝內(nèi)膽管癌的發(fā)生和進(jìn)展,包括誘導(dǎo)基因突變、促進(jìn)細(xì)胞增殖和抑制細(xì)胞凋亡[34]。例如,慢性肝病患者中,膽管上皮細(xì)胞長期暴露于炎癥環(huán)境中,導(dǎo)致細(xì)胞內(nèi)信號(hào)傳導(dǎo)異常,進(jìn)而引發(fā)癌變[35]。此外,慢性炎癥還可以通過激活NF-κB和信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活因子3等炎癥通路,促進(jìn)腫瘤細(xì)胞的增殖和存活[36]。慢性炎癥不僅是肝內(nèi)膽管癌發(fā)生的危險(xiǎn)因素,還在其進(jìn)展過程中發(fā)揮了重要作用。
4.2 膽-腸軸引發(fā)的炎癥反應(yīng) 膽-腸軸在肝內(nèi)膽管癌的炎癥反應(yīng)中扮演著重要角色。膽-腸軸的失調(diào)可以導(dǎo)致腸道微生物群的變化和腸道屏障功能的破壞,從而引發(fā)系統(tǒng)性炎癥反應(yīng)[37]。膽汁酸可以促進(jìn)參與調(diào)節(jié)炎癥反應(yīng)的相關(guān)T淋巴細(xì)胞的分化和活性,同時(shí)腸道微生物在膽汁酸轉(zhuǎn)化為免疫信號(hào)分子過程中起重要作用。這為調(diào)節(jié)腸道炎癥反應(yīng)提供了一種潛在的治療途徑。Treg和Th17可各自通過抑制或促進(jìn)炎癥反應(yīng)來調(diào)節(jié)免疫反應(yīng)。其中,Th17會(huì)引發(fā)炎癥反應(yīng)來抑制腸道感染,之后Treg則會(huì)抑制炎癥反應(yīng)。若不加控制,Th17的活性還可以導(dǎo)致異常炎癥反應(yīng),從而促進(jìn)自身免疫性疾病并損害腸道[38-39]。而腸道微生物群失調(diào)會(huì)導(dǎo)致腸道通透性增加,使得細(xì)菌及其代謝產(chǎn)物進(jìn)入血液循環(huán),進(jìn)而引發(fā)肝臟和膽管的炎癥反應(yīng)[40]。因此,膽-腸軸、免疫調(diào)節(jié)和炎癥反應(yīng)三者之間存在相互作用。此外,膽鹽代謝的異常也會(huì)通過激活炎癥反應(yīng)通路,促進(jìn)肝內(nèi)膽管癌的發(fā)生和發(fā)展[41]。
4.3 炎癥介質(zhì)對腫瘤微環(huán)境的影響 研究表明,炎癥介質(zhì)如細(xì)胞因子和趨化因子可以通過多種途徑影響腫瘤微環(huán)境,從而促進(jìn)腫瘤的生長和轉(zhuǎn)移[40]。例如,TAM在腫瘤微環(huán)境中可以分泌多種促炎細(xì)胞因子,如 IL-6 和TNF-α,這些細(xì)胞因子不僅可以促進(jìn)腫瘤細(xì)胞的增殖和存活,還可以通過抑制抗腫瘤免疫反應(yīng),促進(jìn)腫瘤的免疫逃逸[41]。此外,炎癥介質(zhì)還可以通過促進(jìn)血管生成和上皮-間質(zhì)轉(zhuǎn)化,進(jìn)一步促進(jìn)腫瘤的侵襲和轉(zhuǎn)移[42]。炎癥介質(zhì)在肝內(nèi)膽管癌的腫瘤微環(huán)境中發(fā)揮了多重作用,是腫瘤進(jìn)展的重要推動(dòng)因素。
5 免疫系統(tǒng)在膽-腸軸與肝內(nèi)膽管癌中的交互作用
5.1 免疫細(xì)胞在肝內(nèi)膽管癌中的角色 免疫細(xì)胞在肝內(nèi)膽管癌的發(fā)生和發(fā)展中扮演著關(guān)鍵角色[43]。研究表明,肝內(nèi)膽管癌的腫瘤微環(huán)境中存在多種免疫細(xì)胞,包括 T淋巴細(xì)胞、NK細(xì)胞、DC等[44-45]。其中 CD8 + 效應(yīng) T淋巴細(xì)胞的高密度與肝內(nèi)膽管癌患者的較好預(yù)后相關(guān),而 Treg的高密度則與較差的預(yù)后相關(guān)[46]。此外,TAM在肝內(nèi)膽管癌中也具有重要作用,M1型巨噬細(xì)胞通常具有抗腫瘤作用,而M2型巨噬細(xì)胞則促進(jìn)腫瘤生長和免疫逃逸[47]。因此,免疫細(xì)胞在肝內(nèi)膽管癌的進(jìn)展中既有促進(jìn)作用也有抑制作用,具體取決于細(xì)胞類型及其在腫瘤微環(huán)境中的功能。
5.2 膽-腸軸對免疫反應(yīng)的調(diào)節(jié) 膽-腸軸通過多種機(jī)制調(diào)節(jié)免疫反應(yīng),從而影響肝內(nèi)膽管癌的發(fā)生和發(fā)展。首先,膽鹽代謝產(chǎn)物可以直接影響免疫細(xì)胞的功能。例如,膽鹽可以通過與法尼醇X受體和G蛋白偶聯(lián)受體5結(jié)合,調(diào)節(jié)腸道和肝臟的免疫反應(yīng)[48]。其次,腸道微生物群的組成變化也會(huì)影響免疫系統(tǒng)的功能。研究發(fā)現(xiàn),腸道微生物群失調(diào)可以通過產(chǎn)生代謝物和炎癥介質(zhì),影響肝臟和膽管的免疫微環(huán)境[49]。此外,膽-腸軸還可以通過調(diào)節(jié)腸道屏障功能和腸道免疫系統(tǒng),間接影響肝臟和膽管的免疫反應(yīng)[50]。
5.3 潛在的免疫療法研究方向 基于免疫系統(tǒng)在肝內(nèi)膽管癌中的重要作用,免疫療法成為一種有前景的治療策略。當(dāng)前的研究主要集中在免疫檢查點(diǎn)抑制劑(如PD-1/PD-L1抑制劑)和CAR-T細(xì)胞療法[51-52]。免疫檢查點(diǎn)抑制劑通過解除免疫抑制,增強(qiáng)T淋巴細(xì)胞的抗腫瘤活性,已在多種癌癥中顯示出療效[53]。此外,CAR-T細(xì)胞療法通過基因工程改造T淋巴細(xì)胞,使其能夠特異性識(shí)別和殺傷腫瘤細(xì)胞,也顯示出良好的應(yīng)用前景[54]。未來的研究方向還包括開發(fā)新的免疫調(diào)節(jié)劑,如靶向TAM和Treg的藥物,以及結(jié)合其他治療手段(如化療和放療)的綜合治療策略[55]。這些研究方向有望為肝內(nèi)膽管癌患者提供更多的治療選擇,提高治療效果和生存率。
6 小結(jié)與展望
本文全面解析了膽-腸軸在肝內(nèi)膽管癌發(fā)生發(fā)展中的多維角色,凸顯了其在惡性腫瘤中的重要性。通過對膽-腸軸的基本概念、微生物群的影響、膽鹽代謝的變化、炎癥反應(yīng)的調(diào)節(jié)、免疫系統(tǒng)的作用以及代謝途徑的交互作用等方面的總結(jié)探討,發(fā)現(xiàn)膽-腸軸不僅在肝內(nèi)膽管癌的病理過程中扮演了關(guān)鍵角色,還為潛在的治療策略提供了新的視角。
盡管當(dāng)前研究取得了顯著進(jìn)展,但仍存在一定的局限性。例如,具體機(jī)制的闡述尚不全面,臨床應(yīng)用仍需大量驗(yàn)證。未來的研究應(yīng)聚焦于多維數(shù)據(jù)的整合和大樣本臨床試驗(yàn),以證實(shí)膽-腸軸在肝內(nèi)膽管癌中的作用機(jī)制,并探索其作為治療靶點(diǎn)的可行性。
綜上所述,膽-腸軸在肝內(nèi)膽管癌中的研究不僅深化了對該疾病的理解,也為未來的臨床應(yīng)用和治療策略提供了重要的理論基礎(chǔ)和研究方向。隨著研究的不斷深入,相信膽-腸軸這一復(fù)雜系統(tǒng)將在肝內(nèi)膽管癌的早期診斷、預(yù)防和治療中發(fā)揮更加重要的作用。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻(xiàn)聲明:劉艷負(fù)責(zé)課題設(shè)計(jì),擬定寫作思路,指導(dǎo)及撰寫文章;俞雪負(fù)責(zé)分析資料及撰寫文章;沈天皓、周誠、劉雨負(fù)責(zé)收集文獻(xiàn),分析資料;李煒、蔣霆輝、朱永強(qiáng)負(fù)責(zé)指導(dǎo)寫作思路并最后定稿。
參考文獻(xiàn):
[1] FERLAY J, COLOMBET M, SOERJOMATARAM I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods[J]. Int J Cancer, 2019, 144(8): 1941-1953. DOI:10.1002/ijc.31937.
[2] AN L, ZHENG RS, ZHANG SW, et al. Hepatocellular carcinoma and intrahepatic cholangiocarcinoma incidence between 2006 and 2015in China: Estimates based on data from 188 population-based can?cer registries[J]. Hepatobiliary Surg Nutr, 2023, 12(1): 45-55. DOI:10.21037/hbsn-21-75.
[3] SIEGEL RL, MILLER KD, WAGLE NS, et al. Cancer statistics, 2023[J]. CA A Cancer J Clin, 2023, 73(1): 17-48. DOI: 10.3322/caac.21763.
[4] WEI WQ, ZENG HM, ZHENG RS, et al. Cancer registration in China and its role in cancer prevention and control[J]. Lancet Oncol, 2020,21(7): e342-e349. DOI: 10.1016/S1470-2045(20)30073-5.
[5] KHAN AS, DAGEFORDE LA. Cholangiocarcinoma[J]. Surg Clin North Am, 2019, 99(2): 315-335. DOI: 10.1016/j.suc.2018.12.004.
[6] KNITTER S, RASCHZOK N, HILLEBRANDT KH, et al. Short-term postoperative outcomes of lymphadenectomy for cholangiocarci?noma, hepatocellular carcinoma and colorectal liver metastases in the modern era of liver surgery: Insights from the StuDoQ|Liver regis?try[J]. Eur J Surg Oncol, 2024, 50(4): 108010. DOI: 10.1016/j.ejso.2024.108010.
[7] LI ML, LIU FT, ZHANG F, et al. Genomic ERBB2/ERBB3 mutations promote PD-L1-mediated immune escape in gallbladder cancer: A whole-exome sequencing analysis[J]. Gut, 2019, 68(6): 1024-1033.DOI: 10.1136/gutjnl-2018-316039.
[8] SAHU S, SUN WJ. Targeted therapy in biliary tract cancers-current limitations and potentials in the future[J]. J Gastrointest Oncol, 2017,8(2): 324-336. DOI: 10.21037/jgo.2016.09.16.
[9] TOLEDO B, DEIANA C, SCIANò F, et al. Treatment resistance in pancreatic and biliary tract cancer: Molecular and clinical pharma?cology perspectives[J]. Expert Rev Clin Pharmacol, 2024, 17(4):323-347. DOI: 10.1080/17512433.2024.2319340.
[10] COSGROVE DP, REESE ES, FULCHER NM, et al. Real-world out?comes among patients with advanced or metastatic biliary tract can?cers initiating second-line treatment[J]. Cancer Med, 2023, 12(4):4195-4205. DOI: 10.1002/cam4.5282.
[11] SATO K, HAYASHI M, ABE K, et al. Pembrolizumab-induced scle?rosing cholangitis in a lung adenocarcinoma patient with a remark?able response to chemotherapy: A case report[J]. Clin J Gastroen?terol, 2020, 13(6): 1310-1314. DOI: 10.1007/s12328-020-01178-5.
[12] MAWSON AR, CROFT AM, GONZALEZ-FERNANDEZ F. Liver dam?age and exposure to toxic concentrations of endogenous retinoids in the pathogenesis of COVID-19 disease: Hypothesis[J]. Viral Im?munol, 2021, 34(6): 376-379. DOI: 10.1089/vim.2020.0330.
[13] HU YF, LI SX, LIU HL, et al. Precirrhotic primary biliary cholangitis with portal hypertension: Bile duct injury correlate[J]. Gut Liver, 2024,18(5): 867-876. DOI: 10.5009/gnl230468.
[14] XIE LJ, RUAN DD, ZHANG JH, et al. Mutational analysis of a familial adenomatous polyposis pedigree with bile duct polyp phenotype[J]. Can J Gastroenterol Hepatol, 2021, 2021: 6610434. DOI: 10.1155/2021/6610434.
[15] OVERI D, CARPINO G, CRISTOFERI L, et al. Role of ductular reac?tion and ductular-canalicular junctions in identifying severe primary biliary cholangitis[J]. JHEP Rep, 2022, 4(11): 100556. DOI: 10.1016/j.jhepr.2022.100556.
[16] LIN CA, WANG YW, LIU CY, et al. Regulatory T cells in inflamed liver are dysfunctional in murine primary biliary cholangitis[J]. Clin Exp Immunol, 2024, 215(3): 225-239. DOI: 10.1093/cei/uxad117.
[17] ARREAZA-GIL V, ESCOBAR-MARTíNEZ I, MUGUERZA B, et al. The effects of grape seed proanthocyanidins in Cafeteria diet-induced obese Fischer 344 rats are influenced by faecal microbiota in a pho?toperiod dependent manner[J]. Food Funct, 2022, 13(16): 8363-8374. DOI: 10.1039/d2fo01206e.
[18] FARSHBAFNADI M, AGAH E, REZAEI N. The second brain: The connection between gut microbiota composition and multiple scle?rosis[J]. J Neuroimmunol, 2021, 360: 577700. DOI: 10.1016/j.jneuroim.2021.577700.
[19] SOTTAS C, SCHMIEDOVá L, KREISINGER J, et al. Gut microbiota in two recently diverged passerine species: Evaluating the effects of species identity, habitat use and geographic distance[J]. BMC Ecol Evol, 2021, 21(1): 41. DOI: 10.1186/s12862-021-01773-1.
[20] GU SM, XIE Q, CHEN C, et al. Gut microbial signatures associated with peanut allergy in a BALB/c mouse model[J]. Foods, 2022, 11(10): 1395. DOI: 10.3390/foods11101395.
[21] KIM JK, CHOI MS, KIM JY, et al. Ginkgo biloba leaf extract sup?presses intestinal human breast cancer resistance protein expres?sion in mice: Correlation with gut microbiota[J]. Biomed Pharmaco?ther, 2021, 140: 111712. DOI: 10.1016/j.biopha.2021.111712.
[22] VERHAAR BJH, MOSTERD CM, COLLARD D, et al. Sex differences in associations of plasma metabolites with blood pressure and heart rate variability: The HELIUS study[J]. Atherosclerosis, 2023, 384:117147. DOI: 10.1016/j.atherosclerosis.2023.05.016.
[23] MIHAJLOVIC J, LEUTNER M, HAUSMANN B, et al. Combined hor?monal contraceptives are associated with minor changes in compo?sition and diversity in gut microbiota of healthy women[J]. Environ Microbiol, 2021, 23(6): 3037-3047. DOI: 10.1111/1462-2920.15517.
[24] SAAB M, MESTIVIER D, SOHRABI M, et al. Characterization of biliary microbiota dysbiosis in extrahepatic cholangiocarcinoma[J]. PLoS One, 2021, 16(3): e0247798. DOI: 10.1371/journal.pone.0247798.
[25] LIU XJ, CHENG Y, ZANG D, et al. The role of gut microbiota in lung cancer: From carcinogenesis to immunotherapy[J]. Front Oncol,2021, 11: 720842. DOI: 10.3389/fonc.2021.720842.
[26] LI T, WANG PL, YUAN ZB, et al. Changes in intestinal flora in patients with extrahepatic cholangiocarcinoma[J]. J Clin Hepatol, 2021, 37(12): 2883-2889. DOI: 10.3969/j.issn.1001-5256.2021.12.029.李濤, 王盼梁, 袁梓博, 等. 肝外肝內(nèi)膽管癌患者腸道菌群變化分析[J].臨床肝膽病雜志, 2021, 37(12): 2883-2889. DOI: 10.3969/j.issn.1001-5256.2021.12.029.
[27] HUANG H, ZHONG W, WANG XJ, et al. The role of gastric micro?ecological dysbiosis in gastric carcinogenesis[J]. Front Microbiol,2023, 14: 1218395. DOI: 10.3389/fmicb.2023.1218395.
[28] MADSEN C. The role of oral health in gastrointestinal malignancies[J]. J Gastrointest Oncol, 2021, 12(Suppl 2): S311-S315. DOI: 10.21037/jgo.2020.02.03.
[29] LIU TY, GUO ZX, SONG XL, et al. High-fat diet-induced dysbiosis mediates MCP-1/CCR2 axis-dependent M2 macrophage polariza?tion and promotes intestinal adenoma-adenocarcinoma sequence[J]. J Cell Mol Med, 2020, 24(4): 2648-2662. DOI: 10.1111/jcmm.14984.
[30] FAN XY, JIN YL, CHEN G, et al. Gut microbiota dysbiosis drives the development of colorectal cancer[J]. Digestion, 2021, 102(4): 508-515. DOI: 10.1159/000508328.
[31] CUI H, LIAN J, XU BG, et al. Identification of a bile acid and bile salt metabolism-related lncRNA signature for predicting prognosis and treatment response in hepatocellular carcinoma[J]. Sci Rep, 2023,13(1): 19512. DOI: 10.1038/s41598-023-46805-6.
[32] CAMILLERI M. Bile acid detergency: Permeability, inflammation, and effects of sulfation[J]. Am J Physiol Gastrointest Liver Physiol, 2022,322(5): G480-G488. DOI: 10.1152/ajpgi.00011.2022.
[33] WANG N, YU XH, XU L. Intestinal flora and cholangiocarcinoma: Re?search progress[J]. Chin J Microecol, 2018, 30(11): 1339-1342. DOI:10.13381/j.cnki.cjm.201811024.王寧, 于興華, 許琳. 腸道菌群的研究進(jìn)展及與肝內(nèi)膽管癌的關(guān)系分析[J]. 中國微生態(tài)學(xué)雜志, 2018, 30(11): 1339-1342. DOI: 10.13381/j.cnki.cjm.201811024.
[34] BRUNEAU A, HUNDERTMARK J, GUILLOT A, et al. Molecular and cellular mediators of the gut-liver axis in the progression of liver dis?eases[J]. Front Med (Lausanne), 2021, 8: 725390. DOI: 10.3389/fmed.2021.725390.
[35] WANG DH, ZHANG XS, DU HW. Inflammatory bowel disease: A potential pathogenic factor of Alzheimer’s disease[J]. Prog Neuro?psychopharmacol Biol Psychiatry, 2022, 119: 110610. DOI: 10.1016/j.pnpbp.2022.110610.
[36] ZOU ZJ, LIN HF, LI MS, et al. Tumor-associated macrophage polar?ization in the inflammatory tumor microenvironment[J]. Front Oncol,2023, 13: 1103149. DOI: 10.3389/fonc.2023.1103149.
[37] LI LH, YU R, CAI TG, et al. Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment[J]. Int Immunopharmacol, 2020, 88: 106939. DOI: 10.1016/j.intimp.2020.106939.
[38] SAHOO DK, BORCHERDING DC, CHANDRA L, et al. Differential transcriptomic profiles following stimulation with lipopolysaccharide in intestinal organoids from dogs with inflammatory bowel disease and intestinal mast cell tumor[J]. Cancers (Basel), 2022, 14(14):3525. DOI: 10.3390/cancers14143525.
[39] VIGNJEVI? PETRINOVI? S, MILO?EVI? MS, MARKOVI? D, et al. In?terplay between stress and cancer-a focus on inflammation[J].Front Physiol, 2023, 14: 1119095. DOI: 10.3389/fphys.2023.1119095.
[40] AL-RAJABI R, SUN WJ. Immunotherapy in cholangiocarcinoma[J].Curr Opin Gastroenterol, 2021, 37(2): 105-111. DOI: 10.1097/MOG.0000000000000715.
[41] WITSCHEN PM, CHAFFEE TS, BRADY NJ, et al. Tumor cell associ?ated hyaluronan-CD44 signaling promotes pro-tumor inflammation in breast cancer[J]. Cancers (Basel), 2020, 12(5): 1325. DOI: 10.3390/cancers12051325.
[42] TAN ZF, XUE HB, SUN YL, et al. The role of tumor inflammatory micro?environment in lung cancer[J]. Front Pharmacol, 2021, 12: 688625.DOI: 10.3389/fphar.2021.688625.
[43] LIU GL, DOU J, MENG HJ, et al. Value of immune-inflammatory factors in predicting intrahepatic cholangiocarcinoma[J]. J Clin Hepa?tol, 2023, 39(9): 2231-2236. DOI: 10.3969/j.issn.1001-5256.2023.09.030.劉桂玲, 竇杰, 孟慧娟, 等. 免疫炎癥因子在肝內(nèi)肝內(nèi)膽管癌中的預(yù)測價(jià)值[J]. 臨床肝膽病雜志, 2023, 39(9): 2231-2236. DOI: 10.3969/j.issn.1001-5256.2023.09.030.
[44] SCIMECA M, ROVELLA V, PALUMBO V, et al. Programmed cell death pathways in cholangiocarcinoma: Opportunities for targeted therapy[J]. Cancers (Basel), 2023, 15(14): 3638. DOI: 10.3390/cancers15143638.
[45] CHEN S, WANG J. Advances in tumor microenvironment and immu?notherapy of Cholangiocarcinoma[J]. J Clin Hepatol, 2022, 38(10):2428-2432. DOI: 10.3969/j.issn.1001-5256.2022.10.044.陳順, 王俊. 肝內(nèi)膽管癌腫瘤微環(huán)境與免疫治療[J]. 臨床肝膽病雜志,2022, 38(10): 2428-2432. DOI: 10.3969/j. issn. 1001-5256.2022.10.044.
[46] XIA T, LI KY, NIU N, et al. Immune cell atlas of cholangiocarcinomas reveals distinct tumor microenvironments and associated prognoses[J]. J Hematol Oncol, 2022, 15(1): 37. DOI: 10.1186/s13045-022-01253-z.
[47] ALVISI G, TERMANINI A, SOLDANI C, et al. Multimodal single-cell profiling of intrahepatic cholangiocarcinoma defines hyperactivated Tregs as a potential therapeutic target[J]. J Hepatol, 2022, 77(5):1359-1372. DOI: 10.1016/j.jhep.2022.05.043.
[48] ZHANG ZJ, HUANG YP, LIU ZT, et al. Identification of immune re?lated gene signature for predicting prognosis of cholangiocarci?noma patients[J]. Front Immunol, 2023, 14: 1028404. DOI: 10.3389/fimmu.2023.1028404.
[49] ZHOU GY, LIESHOUT R, van TIENDEREN GS, et al. Modelling im?mune cytotoxicity for cholangiocarcinoma with tumour-derived or?ganoids and effector T cells[J]. Br J Cancer, 2022, 127(4): 649-660.DOI: 10.1038/s41416-022-01839-x.
[50] GRETEN TF, SCHWABE R, BARDEESY N, et al. Immunology and im?munotherapy of cholangiocarcinoma[J]. Nat Rev Gastroenterol Hepa?tol, 2023, 20(6): 349-365. DOI: 10.1038/s41575-022-00741-4.
[51] CAZZETTA V, FRANZESE S, CARENZA C, et al. Natural killer-den?dritic cell interactions in liver cancer: Implications for immuno?therapy[J]. Cancers (Basel), 2021, 13(9): 2184. DOI: 10.3390/cancers13092184.
[52] CHEN ZM, CHEN JH. Advances in precision diagnosis and treat?ment of cholangiocarcinoma[J]. Chin J Clin Pharmacol Ther, 2025,30(2): 159-170. DOI: 10.12092/j.issn.1009-2501.2025.02.002.陳禎美, 陳進(jìn)宏. 肝內(nèi)膽管癌精準(zhǔn)診療進(jìn)展及前沿[J]. 中國臨床藥理學(xué)與治 療 學(xué) , 2025, 30(2): 159-170. DOI: 10.12092/j. issn. 1009-2501.2025.02.002.
[53] YU XZ, ZHU LL, WANG T, et al. Immune microenvironment of chol?angiocarcinoma: Biological concepts and treatment strategies[J].Front Immunol, 2023, 14: 1037945. DOI: 10.3389/fimmu.2023.1037945.
[54] CHIANG NJ, HOU YC, TAN KT, et al. The immune microenviron?ment features and response to immunotherapy in EBV-associated lymphoepithelioma-like cholangiocarcinoma[J]. Hepatol Int, 2022,16(5): 1137-1149. DOI: 10.1007/s12072-022-10346-3.
[55] KIDA A, MIZUKOSHI E, KITAHARA M, et al. Effects of adoptive T-cell immunotherapy on immune cell profiles and prognosis of pa?tients with unresectable or recurrent cholangiocarcinoma[J]. Int J Cancer, 2024, 154(4): 738-747. DOI: 10.1002/ijc.34716.
收稿日期:2024-08-01;錄用日期:2024-09-23
本文編輯:王瑩
引證本文:YU X, SHEN TH, ZHOU C, et al. Mechanism of action of bile-gut axis in the development and progression of intrahepatic cholangiocarcinoma[J]. J Clin Hepatol, 2025, 41(3): 588-593.
俞雪, 沈天皓, 周誠, 等. 膽-腸軸在肝內(nèi)膽管癌發(fā)生發(fā)展中的作用機(jī)制[J]. 臨床肝膽病雜志, 2025, 41(3): 588-593.