行波
- 配電網(wǎng)網(wǎng)絡(luò)式故障行波測(cè)距可行性分析及應(yīng)用研究
基于故障暫態(tài)量的行波測(cè)距法主要指,以捕獲故障產(chǎn)生的行波到達(dá)時(shí)刻為基礎(chǔ)的故障定位方法[2]?;?span id="j5i0abt0b" class="hl">行波的故障測(cè)距已廣泛應(yīng)用于跨區(qū)跨省的高壓和超高壓線路上,實(shí)際運(yùn)行經(jīng)驗(yàn)表明,行波故障測(cè)距精度可達(dá)±300m,大幅減輕了供電公司巡線的工作量和人力成本。近年來,一些機(jī)構(gòu)和公司嘗試將行波故障測(cè)距技術(shù)引入到配電網(wǎng)中,擬解決拓?fù)浣Y(jié)構(gòu)復(fù)雜、分支線路多、架空—電纜混合等條件下的配電線路精確故障定位問題。圍繞配電線路行波故障測(cè)距技術(shù),文獻(xiàn)[3]對(duì)配電網(wǎng)故障行波傳輸特性以及配電變壓
電力設(shè)備管理 2023年20期2023-11-10
- 輸電線路保護(hù)與行波測(cè)距一體化裝置關(guān)鍵技術(shù)研究
方法(阻抗法)和行波測(cè)距方法進(jìn)行故障測(cè)距,傳統(tǒng)的故障分析測(cè)距方法基于穩(wěn)態(tài)量和阻抗原理,容易受到過渡電阻、衰減直流分量、線路參數(shù)誤差和信號(hào)測(cè)量誤差的影響,其中單端測(cè)距方法還容易受到系統(tǒng)運(yùn)行方式的影響,因此,很難實(shí)現(xiàn)準(zhǔn)確的故障定位。行波測(cè)距法是一種利用電壓行波或電流進(jìn)行故障定位的新方法,它可有效克服傳統(tǒng)測(cè)距方法的缺陷,具有不受CT飽和影響、不受系統(tǒng)振蕩影響、不受長(zhǎng)線分布電容影響等獨(dú)特的優(yōu)點(diǎn),被廣泛應(yīng)用。1 輸電線路保護(hù)行波測(cè)距一體化裝置的系統(tǒng)設(shè)計(jì)輸電線路繼電保
電器工業(yè) 2023年1期2023-02-13
- 基于保護(hù)信息的變電站行波測(cè)距可靠性提升
保護(hù)信息的變電站行波測(cè)距可靠性提升武占國1喬宇峰1李慧勇2徐曉春3黃 濤3(1. 內(nèi)蒙古電力(集團(tuán))有限責(zé)任公司,呼和浩特 010020; 2. 內(nèi)蒙古電力(集團(tuán))有限責(zé)任公司烏蘭察布電業(yè)局,內(nèi)蒙古 烏蘭察布 012000; 3. 南京南瑞繼保工程技術(shù)有限公司,南京 211102)行波測(cè)距具有精度高、受系統(tǒng)運(yùn)行方式影響小等優(yōu)點(diǎn),但是獨(dú)立的行波測(cè)距易受噪聲干擾、可靠性不足;傳統(tǒng)交流線路保護(hù)技術(shù)成熟、抗擾能力強(qiáng)、可靠性非常高,因而利用保護(hù)信息來提高行波測(cè)距可靠
電氣技術(shù) 2021年8期2021-08-27
- 三種群競(jìng)爭(zhēng)合作非局部擴(kuò)散時(shí)滯系統(tǒng)行波解的存在性
衡點(diǎn)E1和E2的行波解的存在性問題。1 行波解的存在性本節(jié),我們考慮系統(tǒng)(2)行波解的存在性問題。事實(shí)上,如果向量函數(shù)ξ=x+ct,ξ∈R,c>0,且滿足如下方程(3)及邊界條件(4)其中,則稱Φ(ξ)是系統(tǒng)(2)的連接E1和E2的行波解。(5)則系統(tǒng)(2)存在連接平衡點(diǎn)E1和E2的行波解對(duì)應(yīng)于系統(tǒng)(5)存在連接平衡點(diǎn)(0, 0, 0)和(k1,k2, 1)的行波解。經(jīng)變量替換后,邊值問題(3)-(4)相應(yīng)的轉(zhuǎn)化為如下邊值問題(6)及(7)其中,因此,我們
- 一種應(yīng)用于線路保護(hù)裝置的嵌入式行波測(cè)距方法
不高。與之相比,行波測(cè)距技術(shù)能夠不受上述因素的影響,具有較高的測(cè)距精度。但目前變電站內(nèi)運(yùn)行的集中式行波測(cè)距裝置存在較多的缺點(diǎn),如雙端行波測(cè)距裝置需配置專用的光纖通信通道,行波波形無法結(jié)合故障波形進(jìn)行分析,區(qū)內(nèi)高阻故障時(shí)行波啟動(dòng)靈敏度不足,行波測(cè)距無法與區(qū)內(nèi)故障關(guān)聯(lián),雙端行波測(cè)距裝置2 個(gè)變電站本對(duì)側(cè)需配置同一個(gè)廠家設(shè)備,容易導(dǎo)致壟斷格局等。本文提出一種新的嵌入式行波測(cè)距方案,將行波測(cè)距模塊化,并以獨(dú)立插件的方式集成到線路間隔保護(hù)裝置中,完成本線路間隔的行波
浙江電力 2020年3期2020-04-14
- PCB電壓行波傳感器精確故障定位仿真
圖1:PCB電壓行波傳感器高頻暫態(tài)仿真模型電網(wǎng)在發(fā)生故障、雷擊、操作時(shí)均會(huì)產(chǎn)生暫態(tài)行波信號(hào),行波信號(hào)會(huì)在輸電線路中以光速進(jìn)行傳播,在波阻抗不連續(xù)的地方會(huì)存在折射和反射現(xiàn)象。行波信號(hào)因其特殊性,為一種高頻信號(hào),其檢測(cè)的關(guān)鍵是檢測(cè)行波信號(hào)突變波頭的時(shí)刻。帶鐵芯的電磁式互感器存在磁飽和以及不能有效傳變高頻行波信號(hào)的特點(diǎn),使得無法有效檢測(cè)故障行波信號(hào)。這對(duì)行波傳感器的要求提出了很高的要求,需要能高效傳變故障行波信號(hào)的傳感器。為解決行波信號(hào)精確檢測(cè)的難題,本文在原有
電子技術(shù)與軟件工程 2019年18期2019-11-18
- Gray-Scott系統(tǒng)的精確行波解
非線性偏微分方程行波解的研究是許多領(lǐng)域的重要課題,行波解是偏微分方程及其耦合系統(tǒng)的一種精確解,國內(nèi)外諸多文獻(xiàn)成果也表明對(duì)方程和耦合系統(tǒng)進(jìn)行行波解考慮也是有意義的。國內(nèi)外學(xué)者們給出許多有效的求解行波精確解的方法,比如,逆散射變換法[1]、Hirota's法[2]、Backlund[3]and Darboux變換法[4]、齊次平衡法[5]、待定系數(shù)法[6]等等。并且借助這些方法給出了許多偏微分方程和發(fā)展方程的精確孤波解、精確行波解的顯式表達(dá)式[7-9]。本文主
遵義師范學(xué)院學(xué)報(bào) 2019年2期2019-05-08
- 行波特性分析及行波差動(dòng)保護(hù)技術(shù)挑戰(zhàn)與展望
,而電壓、電流和行波是電場(chǎng)、磁場(chǎng)和電磁波在電力線路上的集中體現(xiàn),因此無論是正常運(yùn)行還是發(fā)生干擾后,電力線路上的電壓和電流始終由行波構(gòu)成。電力線路行波差動(dòng)保護(hù)是根據(jù)線路上行波傳輸特性構(gòu)成的一種差動(dòng)保護(hù)原理。線路沒有故障時(shí),行波可以完好地從一端傳播到另一端,而線路故障時(shí),故障點(diǎn)的存在使得行波不能完好地從一端傳播到另一端。行波的運(yùn)動(dòng)過程本質(zhì)上是線路分布電感中的磁能和分布電容中的電能之間的轉(zhuǎn)換過程,行波差動(dòng)保護(hù)利用行波構(gòu)成差動(dòng)判據(jù),天然地包含了分布電容電流和傳輸時(shí)
電力系統(tǒng)自動(dòng)化 2018年19期2018-10-10
- 基于行波傳播路徑的不等長(zhǎng)雙回線路單端行波測(cè)距
1)0 引言單端行波測(cè)距能否實(shí)現(xiàn)自動(dòng)化的關(guān)鍵是故障點(diǎn)反射波的可靠檢測(cè)、有效表征、準(zhǔn)確甄別以及精確標(biāo)定[1-5]。文獻(xiàn)[1]提出利用初始行波與第2個(gè)反向行波得到的初步距離建立特征波對(duì),根據(jù)特征波對(duì)之間的極性關(guān)系可以識(shí)別第 2 個(gè)反向行波的來源。文獻(xiàn)[2]提出采用雙端法實(shí)現(xiàn)故障點(diǎn)反射波與對(duì)端母線反射波的辨識(shí)。文獻(xiàn)[3]提出了利用行波信號(hào)的 Lipschitz指數(shù)將行波信號(hào)的時(shí)頻特性聯(lián)系起來,運(yùn)用最小二乘法擬合檢測(cè)到的第2個(gè)行波波頭的Lipschitz指數(shù),并據(jù)
電力系統(tǒng)自動(dòng)化 2018年17期2018-09-18
- 輸電線路故障行波的研究
菊生輸電線路故障行波的研究安徽理工大學(xué) 唐菊生本文首先介紹了輸電線路行波的基本概念,產(chǎn)生原理,相關(guān)參量的計(jì)算方法.接著對(duì)輸電線路行波進(jìn)行仿真,利用Matlab/Simulink建立了系統(tǒng)仿真模型,得出故障點(diǎn)的三相電壓電流波形.最后進(jìn)行故障行波的提取,得到仿真后得到提取后的正向行波和反向行波的波形.輸電線路;故障行波;Matlab/Simulink1 引言隨著電力系統(tǒng)的不斷發(fā)展,基于工頻電氣量的保護(hù)在一些方面已經(jīng)不能滿足現(xiàn)場(chǎng)的要求.當(dāng)前,電力系統(tǒng)故障保護(hù)方面
電子世界 2017年21期2017-11-17
- Periodic Travelling Wave Solution in a Diffusive Predator-prey System
-食餌系統(tǒng)的周期行波解宋永利1,徐 周2(1.杭州師范大學(xué)理學(xué)院,浙江 杭州 310036; 2.同濟(jì)大學(xué)數(shù)學(xué)系,上海 200092)研究一般的擴(kuò)散捕食-食餌系統(tǒng)中周期行波解的存在性.首先,給出了波方程組中Hopf分支發(fā)生的條件;然后,以擴(kuò)散系數(shù)為分支參數(shù),推導(dǎo)出了周期行波解發(fā)生的臨界值;最后,應(yīng)用所得的理論結(jié)果研究了一個(gè)具有群體效應(yīng)的捕食-食餌系統(tǒng),獲得了周期行波解存在的條件, 并利用數(shù)值模擬例證了所得的理論結(jié)果.捕食-食餌系統(tǒng);周期行波解;Hopf分支
- 基于SR-ITD的故障行波檢測(cè)方法
保證[1-2]。行波信號(hào)的檢測(cè)準(zhǔn)確度直接影響故障行波定位的準(zhǔn)確性和行波保護(hù)的可靠性,行波信號(hào)的精確檢測(cè)技術(shù)成為行波定位與保護(hù)技術(shù)發(fā)展的關(guān)鍵。國內(nèi)外專家對(duì)行波檢測(cè)技術(shù)進(jìn)行了深入研究,取得了大量的研究成果。文獻(xiàn)[3-4]采用小波變換提取行波信號(hào),該方法可以在一定程度的噪聲中有效提取行波信號(hào),但小波變換需要人為選取小波基的種類、分解層數(shù),不具有自適應(yīng)性,而不同的小波基和分解尺度會(huì)得到不同結(jié)果,在多點(diǎn)同步檢測(cè)行波信號(hào)時(shí)易出現(xiàn)檢測(cè)結(jié)果不一致的情況,影響故障定位精度與
電力自動(dòng)化設(shè)備 2017年2期2017-05-24
- 基于行波的輸電線路保護(hù)綜述
性的要求[1]。行波保護(hù)是利用故障初期出現(xiàn)的電壓行波、電流行波或兩者中含有的故障信息進(jìn)行故障檢測(cè),能在極短時(shí)間內(nèi)檢出故障并可靠出口。早期的行波保護(hù)裝置有出口短路死區(qū),無法區(qū)分故障、雷擊和操作等干擾,存在快速性、靈敏性和可靠性之間的平衡問題。自1983年以來,行波保護(hù)的新動(dòng)向主要有:P.A.Crossly等人提出了行波距離保護(hù)[2];A.T.Johns等人提出了利用噪聲的保護(hù)[3],主要利用80kHz左右行波分量;國內(nèi)學(xué)者提出了基于工頻變化量的方向保護(hù)和快速
電氣開關(guān) 2015年6期2015-05-29
- 基于振幅方程組的行波對(duì)流的數(shù)值模擬
模擬,對(duì)雙局部進(jìn)行波的研究進(jìn)一步進(jìn)行了擴(kuò)充,并研究了具有較弱Soret效應(yīng)下,附加一個(gè)微小的溫度擾動(dòng)作為擾動(dòng)源的中等長(zhǎng)高比腔體內(nèi)混合流體對(duì)流系統(tǒng)中時(shí)空結(jié)構(gòu)的發(fā)展[10-12]。郝建武在長(zhǎng)高比Γ=40、分離比ψ=-0.6的條件下,得到了一種新的現(xiàn)象,即單側(cè)缺陷擺動(dòng)對(duì)傳行波,并對(duì)其形成機(jī)理與特性作了進(jìn)一步探討[13]。在弱非線性的假定下,在分歧點(diǎn)附近通過級(jí)數(shù)展開等方法,人們已建立了各種模型方程或振幅方程。這些方程包括:Ginzbarg-Landau(GL)方程
西安理工大學(xué)學(xué)報(bào) 2014年2期2014-03-26
- 求非線性發(fā)展方程行波解的(G′/G)展開法
用廣泛, 關(guān)于其行波解的研究目前已有許多方法, 如齊次平衡法[1]、 雙曲函數(shù)法[2]、 正切函數(shù)法[3-4]、 雙線性方法[5]、F-展開法[6]等, 但這些方法求解速度均不理想, (G′/G)展開法[7]則很好地解決了該問題.本文基于齊次平衡法和(G′/G)展開法求解KdV-mKdV方程和Zhiber-Shabat方程的行波解. 結(jié)果表明, (G′/G)展開法求解非線性方程行波解簡(jiǎn)明、 有效.1 KdV-mKdV方程考慮如下形式的KdV-mKdV方程:
吉林大學(xué)學(xué)報(bào)(理學(xué)版) 2013年2期2013-12-03
- 利用一般tanh函數(shù)法和(G′/G)函數(shù)擴(kuò)展法求非線性波動(dòng)方程的行波解及其一致性分析
泛的求非線性方程行波解[1]的方法就是tanh方法和(G′/G)擴(kuò)展法[2]. 本文運(yùn)用tanh方法和(G′/G)擴(kuò)展法求一般的非線性方程行波解,通過對(duì)解最后表達(dá)形式的分析,表明兩種方法具有一致性. tanh方法是最早用于求行波解的方法[3-5];(G′/G)擴(kuò)展法是建立在tanh方法基礎(chǔ)上對(duì)行波解進(jìn)行更一般形式的討論[6-11],引進(jìn)了更多的未知系數(shù),得到了更廣泛的行波解.考慮如下一般的非線性波動(dòng)方程:utt+αuxx+βu+γu3=0,(1)其中:α1
吉林大學(xué)學(xué)報(bào)(理學(xué)版) 2013年3期2013-12-03
- 輸電線路兩相短路故障行波分析
位顯得十分重要。行波理論應(yīng)用于輸電線路故障測(cè)距國內(nèi)外己做了大量研究[1-4]。故障行波分析是行波故障定位的基礎(chǔ),對(duì)于輸電線路單相接地故障的行波分析已經(jīng)有很多研究[1,5],但對(duì)于兩相短路的研究相對(duì)而言較少。本文采用凱倫貝爾矩陣進(jìn)行相模變換,對(duì)三相互相耦合的系統(tǒng)進(jìn)行解耦,將其分解為互相獨(dú)立的3個(gè)模量系統(tǒng)進(jìn)行分析。分析了輸電線路兩相短路時(shí),故障行波初始的產(chǎn)生過程,研究了線路發(fā)生兩相短路故障時(shí)產(chǎn)生的暫態(tài)行波特征及與波阻抗、過渡電阻的關(guān)系,以及故障點(diǎn)的折、發(fā)射行波
山東電力高等??茖W(xué)校學(xué)報(bào) 2012年1期2012-07-19
- 含非線性色散項(xiàng)的Kadomtsev-Petrishvili方程的破缺行波解*
非線性發(fā)展方程的行波解的動(dòng)力學(xué)行為進(jìn)行了研究,發(fā)現(xiàn)一些非線性發(fā)展方程的環(huán)狀孤波解不是一個(gè)真正的解,它是由三個(gè)破缺行波解所組成,并給出了一些非線性發(fā)展方程破缺行波解的參數(shù)表示。1970年,Kadomtsev等[ 11-12 ]首次提出如下二維的KdV方程,即KP方程(ut+uux+uxxx)x+εuyy=0(1)它是一個(gè)重要的非線性偏微分方程, 該方程有著廣泛的物理背景,常用來描述二維小振幅弱色散波,如二維淺水波、未磁化等離子體聲波等,在流體力學(xué)、等離子體物
- 基于電壓行波原理故障測(cè)距的相關(guān)問題研究
準(zhǔn)。近年來,故障行波測(cè)距技術(shù)得到了較快的發(fā)展,出現(xiàn)了許多行波故障測(cè)距算法和原理,隨著行波理論和小波變換技術(shù)的不斷完善,以及電子制造技術(shù)的發(fā)展,電力故障行波測(cè)距技術(shù)已進(jìn)入快速實(shí)用化階段。故障行波測(cè)距技術(shù)的推廣應(yīng)用將徹底解決距離測(cè)距原理測(cè)距不準(zhǔn)確的問題。1 電流和電壓原理的行波測(cè)距的比較現(xiàn)階段應(yīng)用的行波測(cè)距裝置分為電流型和電壓型兩種原理,其中大多數(shù)為電流型行波故障測(cè)距。一般認(rèn)為高壓線路上廣泛采用的電容式電壓互感器(CVT),其行波傳變特性不佳,電壓行波故障測(cè)距
電氣技術(shù) 2011年12期2011-06-22