支 軍
首先,我們來(lái)探究,原函數(shù)對(duì)稱時(shí),導(dǎo)函數(shù)的對(duì)稱性如何?
若函數(shù)f(x)關(guān)于x=a對(duì)稱且可導(dǎo),則f(x)=f(2a-x).
根據(jù)復(fù)合函數(shù)導(dǎo)數(shù)的性質(zhì)易得:
f ′(x)=-f ′(2a-x),所以導(dǎo)函數(shù)f ′(x)關(guān)于點(diǎn)(a,0)對(duì)稱.
同理可得:若函數(shù)f(x)關(guān)于點(diǎn)(h,k)對(duì)稱且可導(dǎo),則導(dǎo)函數(shù)f ′(x)關(guān)于直線x=h對(duì)稱.
因此,我們得到如下結(jié)論:
定理1 若函數(shù)f(x)關(guān)于x=a對(duì)稱且可導(dǎo),則導(dǎo)函數(shù)f ′(x)關(guān)于點(diǎn)(a,0)對(duì)稱.若函數(shù)f(x)關(guān)于點(diǎn)(h,k)對(duì)稱且可導(dǎo),則導(dǎo)函數(shù)f ′(x)關(guān)于直線x=h對(duì)稱.
推論 若函數(shù)f(x)為偶函數(shù)且可導(dǎo),則導(dǎo)函數(shù)f ′(x)為奇函數(shù);若函數(shù)f(x)為奇函數(shù)且可導(dǎo),則導(dǎo)函數(shù)f ′(x)為偶函數(shù).
下面我們來(lái)探究導(dǎo)函數(shù)對(duì)稱時(shí),原函數(shù)的對(duì)稱性如何.
“本文中所涉及到的圖表、注解、公式等內(nèi)容請(qǐng)以PDF格式閱讀原文”