邱國(guó)榮 徐曉陽(yáng) 謝敏豪
摘要:就運(yùn)動(dòng)中活性氧誘導(dǎo)肌原性IL-6產(chǎn)生的機(jī)制等問題做綜述。IL-6是運(yùn)動(dòng)過程中變化非常明顯的一種細(xì)胞因子,其變化幅度與運(yùn)動(dòng)時(shí)間和運(yùn)動(dòng)強(qiáng)度關(guān)系密切。研究表明,運(yùn)動(dòng)中生成的IL-6主要來源于收縮的骨骼肌,骨骼肌在運(yùn)動(dòng)過程中產(chǎn)生的自由基,尤其是活性氧是運(yùn)動(dòng)中誘導(dǎo)IL-6產(chǎn)生的一個(gè)主要原因。
關(guān)鍵詞:運(yùn)動(dòng)生物化學(xué);運(yùn)動(dòng);活性氧;肌源性IL-6;綜述
中圖分類號(hào):G804.7文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1006-7116(2009)05-0108-05
Review of signal transduction channels for active oxygen to induce the production of interleukin-6 originating from muscles during exercising
QIU Guo-rong1,2,XU Xiao-yang1,XIE Min-hao3
(1.School of Physical Education,South China Normal University,Guangzhou 510006,China;
2.Department of Physical Education,Chongqing University of Arts And Sciences,Yongchuan 402160,China;
3.Sport Science School,Beijing Sport University,Beijing 100086,China)
Abstract: The authors gave an overview of such issues as the mechanism for active oxygen to induce the production of interleukin-6 (IL-6) originating from muscles during exercising. IL-6 is a type of cytokine that changes very significantly in the process of exercising; its changing magnitude is closely related to exercise time and exercise intensity. Via their study the authors revealed the following findings: IL-6 produced during exercising originates primarily from contracting skeletal muscle; free radicals produced by skeletal muscle in the process of exercising, especially active oxygen, are a major cause for inducing the production of IL-6 during exercising.
Key words: sports biochemistry;exercising; active oxygen;muscle-originated IL-6;overview
從20世紀(jì)90年代中期發(fā)現(xiàn)運(yùn)動(dòng)中機(jī)體可以產(chǎn)生大量IL-6到現(xiàn)在,短短10余年時(shí)間,IL-6作為運(yùn)動(dòng)中變化最明顯的細(xì)胞因子[1],受到人們極大的關(guān)注。對(duì)于運(yùn)動(dòng)中產(chǎn)生的IL-6的功能已經(jīng)有了較為廣泛而深入的研究。如今,已不再簡(jiǎn)單地將IL-6定義為運(yùn)動(dòng)損傷的指標(biāo)[2],對(duì)于運(yùn)動(dòng)中IL-6的來源比較統(tǒng)一的認(rèn)識(shí)是IL-6是由運(yùn)動(dòng)中的骨骼肌分泌而來[3-4]。已有的研究表明,肌原性IL-6在運(yùn)動(dòng)中機(jī)體能量代謝、內(nèi)分泌和骨骼肌收縮等過程中扮演重要角色[5-6]。但對(duì)于引起IL-6在運(yùn)動(dòng)中大量分泌的因素卻尚無定論。近期的研究表明,IL-6的產(chǎn)生與自由基代謝關(guān)系緊密,尤其與活性氧產(chǎn)生有關(guān)[7]。
活性氧的產(chǎn)生在需氧生物生命過程中是一個(gè)正?,F(xiàn)象[8]。生理?xiàng)l件下,這些自由基大多數(shù)可以被細(xì)胞內(nèi)的抗氧化系統(tǒng)清除。當(dāng)機(jī)體處于運(yùn)動(dòng)等氧化應(yīng)激狀態(tài)時(shí),活性氧生成速度大于抗氧化系統(tǒng)的清除速度,造成活性氧在體內(nèi)的累積,對(duì)組織和細(xì)胞產(chǎn)生危害。不同刺激誘導(dǎo)細(xì)胞產(chǎn)生的內(nèi)源性活性氧可以作為第二信使,通過改變氧化還原狀態(tài)調(diào)節(jié)與細(xì)胞增殖、分化及凋亡相關(guān)?的信號(hào)轉(zhuǎn)導(dǎo)通路中多種靶分子的活性,最終決定細(xì)胞的命運(yùn)[9]。
1IL-6含量與活性氧的關(guān)系
運(yùn)動(dòng)導(dǎo)致活性氧水平在血液中和肌肉中都有所增加,細(xì)胞內(nèi)活性氧生成的主要來源是通過線粒體電子傳遞鏈、細(xì)
胞質(zhì)中的NADH氧化酶、黃嘌呤氧化酶、膜結(jié)合酶如NADPH氧化酶等引起?;钚匝跏菑V泛的信號(hào)轉(zhuǎn)導(dǎo)通路的中介,能夠引起各種細(xì)胞類型中的細(xì)胞因子產(chǎn)生[10-12],運(yùn)動(dòng)中由肌肉產(chǎn)生的大量的IL-6與活性氧也有密切關(guān)系。
1.1抗氧化劑補(bǔ)充與IL-6
Theodoros V等[13]對(duì)5名健康的非運(yùn)動(dòng)員服用復(fù)合抗氧化劑VC、VE、VA、別嘌呤醇和N-乙酰半胱氨酸發(fā)現(xiàn),服用抗氧化劑前進(jìn)行70%最大攝氧量強(qiáng)度的自行車運(yùn)動(dòng)后其血液標(biāo)本中的IL-6含量是運(yùn)動(dòng)前的6倍左右,而在服用抗氧化劑后再進(jìn)行相同強(qiáng)度的運(yùn)動(dòng),IL-6在血液中的含量在運(yùn)動(dòng)前后變化明顯平緩,研究者認(rèn)為服用了抗氧化劑減少了運(yùn)動(dòng)誘導(dǎo)的活性氧水平,繼而減少了由活性氧介導(dǎo)的IL-6的產(chǎn)生。
Christian P等[14]對(duì)健康男性進(jìn)行單盲法安慰對(duì)照設(shè)計(jì),隨機(jī)對(duì)年輕的健康男性受試者進(jìn)行口服聯(lián)合補(bǔ)充VC、VE或安慰劑,28 d后,受試者在各自的50%最大輸出功率下完成3 h兩腿膝關(guān)節(jié)伸膝運(yùn)動(dòng)后發(fā)現(xiàn),補(bǔ)充抗氧化性維生素組和對(duì)照組的肌肉IL-6mRNA水平和蛋白水平在運(yùn)動(dòng)中都升高。同時(shí)發(fā)現(xiàn),服用維生素組的血漿IL-6純釋放量變化無顯著性差異,而對(duì)照組IL-6純釋放量明顯增加。研究者認(rèn)為,補(bǔ)充維生素可以減少運(yùn)動(dòng)中IL-6的生成,其主要途徑是通過抑制IL-6蛋白質(zhì)從收縮的骨骼肌中釋放。
David C等[15]研究發(fā)現(xiàn),補(bǔ)充VC兩周后,進(jìn)行90 min不間斷的折返跑,跑后補(bǔ)充VC組血漿IL-6水平明顯低于未補(bǔ)充組。Thompson D等[16]的研究也支持前者的研究結(jié)果,說明補(bǔ)充抗氧化劑可以減少運(yùn)動(dòng)誘導(dǎo)的IL-6的產(chǎn)生。
在運(yùn)動(dòng)中補(bǔ)充抗氧化劑以減少運(yùn)動(dòng)產(chǎn)生的活性氧的作用已得到了較為肯定的結(jié)果,通過補(bǔ)充抗氧化劑可以增強(qiáng)機(jī)體的抗氧化功能,增加抗氧化系統(tǒng)的儲(chǔ)備,減少運(yùn)動(dòng)導(dǎo)致的氧化應(yīng)激,從而減少活性氧的生成[17-19]。那么,從運(yùn)動(dòng)中活性氧的變化與IL-6的變化呈一致性這一特質(zhì)可以推測(cè),運(yùn)動(dòng)中產(chǎn)生的內(nèi)源性的活性氧是誘導(dǎo)運(yùn)動(dòng)中IL-6產(chǎn)生的原因之一。
1.2IL-6含量與活性氧濃度的關(guān)系
C2C12細(xì)胞是小鼠骨骼肌肌母細(xì)胞,可以分化生成肌管,其生成的肌管具有與骨骼肌類似的收縮功能[20],具有興奮性[21],能產(chǎn)生興奮-收縮偶聯(lián)[22]。Ioanna Kosmidou等[7]在離體培養(yǎng)分化后的C2C12中,加入不同濃度的H2O2對(duì)細(xì)胞進(jìn)行孵育,細(xì)胞上清液中IL-6量隨H2O2濃度增加呈依賴性增加。研究驗(yàn)證了分化的C2C12細(xì)胞在活性氧的誘導(dǎo)下可以產(chǎn)生IL-6,且其產(chǎn)生量與活性氧濃度呈正相關(guān)性。同時(shí),該研究小組對(duì)IL-6mRNA在H2O2孵育下的變化進(jìn)行了研究,結(jié)果發(fā)現(xiàn),在活性氧孵育下的IL-6mRNA水平提高,說明在C2C12細(xì)胞中,活性氧是通過轉(zhuǎn)錄依賴性機(jī)制刺激IL-6的產(chǎn)生。
在運(yùn)動(dòng)過程中,隨著運(yùn)動(dòng)強(qiáng)度和運(yùn)動(dòng)時(shí)間的變化,機(jī)體產(chǎn)生的活性氧隨之改變。研究發(fā)現(xiàn),其量的變化與運(yùn)動(dòng)強(qiáng)度呈正相關(guān)[23],這與實(shí)驗(yàn)中不同濃度的活性氧的狀態(tài)極其相似,實(shí)驗(yàn)結(jié)果也驗(yàn)證了運(yùn)動(dòng)中補(bǔ)充抗氧化劑得出的推測(cè),證明了在肌細(xì)胞中活性氧可以誘導(dǎo)IL-6的產(chǎn)生,說明運(yùn)動(dòng)中大量IL-6產(chǎn)生的主要誘因之一是活性氧。
2活性氧誘導(dǎo)IL-6生成的信號(hào)轉(zhuǎn)導(dǎo)通路
氧化應(yīng)激-敏感性信號(hào)轉(zhuǎn)導(dǎo)通路利用ROS從胞質(zhì)中向細(xì)胞核傳遞信號(hào)來刺激細(xì)胞生長(zhǎng)、分化、增殖和凋亡[24]。這些信號(hào)轉(zhuǎn)導(dǎo)通路包括NF-κB、絲裂原活化蛋白激酶(mitogen-activated proteinkinases,MAPKs)、磷酸肌醇3-激酶(PI3-K)/Akt途徑、P53激活和熱應(yīng)激反應(yīng)。雖然這些路徑在調(diào)節(jié)氧化-抗氧化平衡穩(wěn)態(tài)方面都很重要,但NF-κB和MAPKs被認(rèn)為是在氧化應(yīng)激中對(duì)細(xì)胞最關(guān)鍵的途徑[25]。
2.1NF-κB通路
NF-κB是一個(gè)多聚體的轉(zhuǎn)錄因子,由Rel家族中的成員組成。在哺乳動(dòng)物中,這些蛋白包括p50(NF-κB1)、p52(NF-κB2)、p65(RelA)、RelB、c-Rel、p105和p100。在生理狀態(tài)下,NF-κB結(jié)合一個(gè)抑制性亞單位I-κB,以非活性狀態(tài)存在于細(xì)胞質(zhì)中。NF-κB可以被各種外部刺激激活,包括H2O2、致炎性細(xì)胞因子、LPS、紫外線照射、病毒感染和佛波酯十四烷酸和佛波醇形成的酯(phorbol esters)。這些信號(hào)能導(dǎo)致細(xì)胞內(nèi)ROS升高,可能作為基礎(chǔ)的信使激活NF-κB級(jí)聯(lián)上游區(qū)關(guān)鍵激酶[26]。
運(yùn)動(dòng)作為氧化應(yīng)激,使機(jī)體內(nèi)產(chǎn)生過多的活性氧,可激活NF-κB通路,使NF-κB移位入核,調(diào)節(jié)基因表達(dá)[27]。當(dāng)受到外界刺激時(shí),由兩個(gè)亞單位(IKKα和IKKβ)和一個(gè)調(diào)節(jié)的IKKγ亞基磷酸化IκBα的絲氨酸殘基,使它普遍在蛋白化并使蛋白體降解[28]。釋放NF-κB二聚體(主要是p50和p65),促進(jìn)它們的核轉(zhuǎn)運(yùn)和NF-κB介導(dǎo)的基因轉(zhuǎn)錄[29]。NF-ΚB激活可以通過給予抗氧化劑的方法被抑制[30]。
Espen E等[31]通過對(duì)小鼠進(jìn)行20周訓(xùn)練發(fā)現(xiàn),運(yùn)動(dòng)誘導(dǎo)的IL-6增加是通過激活NF-KB通路介導(dǎo)的。Ioanna Kosmidou等[17]在實(shí)驗(yàn)中用H2O2刺激C2C12肌管顯示,ROS可以增加IκB-α磷酸化和降解,用ROS-生成因子處理C2C12增加AP-1和NF-κB-依賴性啟動(dòng)因子。用NF-κB的抑制劑孵育肌管或用IκB-α突變體瞬時(shí)轉(zhuǎn)染肌管,可以抑制ROS誘導(dǎo)肌管產(chǎn)生的IL-6釋放。提示ROS刺激肌管產(chǎn)生IL-6是通過轉(zhuǎn)錄激活I(lǐng)L-6基因,通過NF-KB依賴性途徑完成的。
2.2MAPKs通路
MAPKs是信號(hào)從細(xì)胞表面?zhèn)鲗?dǎo)到細(xì)胞核內(nèi)部的重要傳遞者。目前,已在哺乳動(dòng)物細(xì)胞克隆和鑒定了細(xì)胞外信號(hào)調(diào)節(jié)蛋白激酶(extracellular2signalregulated protein kinase,ErK),c2Jun 氨基末端激酶(c2Jun amino2terminal kinase,JNK)、p38和ERK5PBMK1(big MAP kinase 1)等4個(gè)MAPK亞族[32]。在MAPKs通路中有一個(gè)共同點(diǎn),就是有3個(gè)高度保守的關(guān)鍵蛋白激酶:即MAPKKK、MAPKK、MAPK。細(xì)胞外刺激通過某些中間環(huán)節(jié)激活MAPKKK(MAP激酶激酶激酶、MAP3K、MEKK、MKKK),然后MAPKKK激活MAPKK(MAP激酶激酶、MAP2K、MEK、MKK);再由MAPKK通過對(duì)蘇氨酸和酪氨酸雙位點(diǎn)磷酸化激活MAPK,最后激活轉(zhuǎn)錄因子,調(diào)節(jié)特定基因的表達(dá)[33]。盡管每個(gè)蛋白激酶具有相似的激活機(jī)制,但每條途徑都有其特異的上游激活物和相應(yīng)底物,最終產(chǎn)生不同的生物效應(yīng)。在運(yùn)動(dòng)中,MAPKs家族中的ERK1/2、p38和JNK3個(gè)亞族都可被激活[34],但與活性氧關(guān)系密切的,研究較為深入的當(dāng)屬p38MAPK。
p38MAPK與運(yùn)動(dòng)中氧化應(yīng)激關(guān)系密切,可被應(yīng)激刺激(Uv、H2O2、熱休克和缺氧等)、炎性因子(TNF-α、IL-1和FGF(成纖維細(xì)胞生長(zhǎng)因子)等)、LPS和革蘭氏陽(yáng)性細(xì)菌細(xì)胞壁成分激活[35-37],激活p38的磷酸化級(jí)聯(lián)反應(yīng)是通過MEKKs/TAK-MKK6/MKK3-p38MAPK進(jìn)行的。p38MAPK家族中的激酶可通過磷酸化酶(MKPs)的去磷酸化作用恢復(fù)基態(tài)。
Mari-Carmen等[38]對(duì)小鼠進(jìn)行力竭性運(yùn)動(dòng)后,通過補(bǔ)充別嘌呤(抗氧化劑)可減少NF-ΚB活性和MAPK活性,通過MAPKs通路中的ErK1/2和p38通路,激活NF-ΚB,使核因子入細(xì)胞核,調(diào)節(jié)基因表達(dá)。在心肌細(xì)胞中,IL-6轉(zhuǎn)錄是由p38MAPK通路中的MKK6介導(dǎo)的,MKK6還誘導(dǎo)IL-6的釋放,通過激活p38途徑,活化NF-ΚB,調(diào)節(jié)IL-6產(chǎn)生[39-40]。運(yùn)動(dòng)后小鼠骨骼肌p38MAPK通路被激活,通過MEKKS/TAK-MKK3/6-p38MAPK通路激活NF-κB,繼而調(diào)節(jié)由活性氧誘導(dǎo)產(chǎn)生的IL-6[41]。
通過對(duì)這條信號(hào)轉(zhuǎn)導(dǎo)通路的研究表明,在運(yùn)動(dòng)中,活性氧可以通過激活p38MAPK,進(jìn)而使I-κB磷酸化,活化NF-κB,活化后的NF-κB移位入細(xì)胞核,在轉(zhuǎn)錄和轉(zhuǎn)錄后水平調(diào)節(jié)IL-6基因表達(dá)。但氧化應(yīng)激通路是否都要經(jīng)過活化NF-κB,才能夠?qū)L-6基因進(jìn)行調(diào)節(jié)似乎還沒有定論。有研究表明,活性氧可誘導(dǎo)p38MAPK通路激活,且存在時(shí)間和劑量依賴性關(guān)系,活性氧也可溫和地刺激NF-κB轉(zhuǎn)位進(jìn)入細(xì)胞核,但使用抑制劑抑制了MAPK通路后,對(duì)活性氧誘導(dǎo)的NF-κB的核轉(zhuǎn)位或是磷酸化IκB沒有影響,這說明在氧化應(yīng)激中,NF-κB轉(zhuǎn)錄到細(xì)胞核和MAPKs激活之間沒有直接關(guān)系[42]。
3IL-6對(duì)活性氧介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)通路的復(fù)調(diào)節(jié)作用
Christian P. Fischer等[43]用敲除IL-6基因的小鼠和野生類型小鼠作對(duì)比實(shí)驗(yàn)發(fā)現(xiàn),運(yùn)動(dòng)誘導(dǎo)的肌肉纖維中的IL-6受體轉(zhuǎn)運(yùn)很可能是通過IL-6依賴性機(jī)制進(jìn)行的,這個(gè)結(jié)論在注射人重組IL-6研究中也被證實(shí),該研究認(rèn)為,在IL-6受體的轉(zhuǎn)運(yùn)過程中,IL-6可能是通過在轉(zhuǎn)錄后水平增加IL-6受體的方式對(duì)IL-6受體進(jìn)行調(diào)節(jié)。
Pernille Keller等[44]報(bào)道,在受試者股靜脈中持續(xù)注射人重組IL-6 3 h后,肌肉中IL-6mRNA水平大幅度提高,說明IL-6有自分泌調(diào)節(jié)功能,并且是通過基因轉(zhuǎn)錄完成的。類似的實(shí)驗(yàn)在脂肪細(xì)胞和血管內(nèi)皮的平滑肌細(xì)胞中也得到了驗(yàn)證。
骨骼肌衍生的細(xì)胞因子如IL-6可能激活I(lǐng)KKα/β作為運(yùn)動(dòng)和肌肉收縮的回應(yīng)。IKKα/β的活性與NF-κB活性緊密相伴[27]。在激活過程中,NF-κB依靠p38通路激活,IL-6首先通過減少IκBα濃度誘導(dǎo)NF-κB-DNA結(jié)合活化,其次,可能激活p65-NF-κB,然后進(jìn)入細(xì)胞核對(duì)基因進(jìn)行轉(zhuǎn)錄和調(diào)節(jié)[45]。
這些研究表明,運(yùn)動(dòng)中IL-6可以通過自分泌進(jìn)行調(diào)節(jié),它不僅只是活性氧誘導(dǎo)機(jī)體通過NF-κB通路產(chǎn)生的下游產(chǎn)物,很可能也是NF-κB通路的上游信號(hào)分子,通過再次激活NF-κB通路,對(duì)活性氧介導(dǎo)的肌原性IL-6的產(chǎn)生起到復(fù)調(diào)節(jié)的作用。
在運(yùn)動(dòng)中,隨著運(yùn)動(dòng)時(shí)間和強(qiáng)度的增加,活性氧和IL-6之間的相關(guān)性研究表明機(jī)體產(chǎn)生的活性氧可以通過激活MAPKs通路和NF-κB通路誘導(dǎo)肌原性IL-6的產(chǎn)生,增加的IL-6是對(duì)活性氧這種信號(hào)分子在信號(hào)轉(zhuǎn)導(dǎo)中產(chǎn)生的應(yīng)答反應(yīng),這種狀態(tài)下IL-6的作用已超出了單純的免疫應(yīng)答因子的作用,而是在機(jī)體運(yùn)動(dòng)過程中參與調(diào)節(jié)機(jī)體能量物質(zhì)和內(nèi)分泌的代謝平衡,使機(jī)體在運(yùn)動(dòng)應(yīng)激狀態(tài)下達(dá)到新的穩(wěn)定狀態(tài)。在此過程中,IL-6不僅是活性氧介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)通路中的下游產(chǎn)物,對(duì)于信號(hào)轉(zhuǎn)導(dǎo)通路同樣可能起到復(fù)調(diào)節(jié)的作用。當(dāng)然,在運(yùn)動(dòng)中發(fā)現(xiàn)的IL-6增加的現(xiàn)象可能由許多因素引起,但活性氧無疑是其中重要的影響因素之一。
參考文獻(xiàn):
[1] Ostrowski K,Rohde T,Zacho M,et al. Evidence that IL-6 is produced in skeletal muscle during prolonged running[J]. J Physiol,1998,508(3):949-953.
[2] Jonsdottir I H,Schjerling P. Muscle contractions induce interleukin-6 mRNA production in rat skeletal muscles[J]. J Physiol,2000,528(1):157-163.
[3] Adam Steensberg. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6[J]. J Physiol,2000,529:237-242.
[4] Steensberg A,Gvan Hall,Osada T,et al. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content[J]. J Physiol,2001,537(2):633-639.
[5] Pedersen,F(xiàn)ischer C P. Physiological roles of muscle-derived interleukin-6 in response to exercise[J]. Curr Opin Clin Nutr Metab Care,2007,10(3):265-271.
[6] Bente K P,F(xiàn)ebbraio M. Muscle-derived interleukin-6—A possible link between skeletal muscle,adipose tissue,liver,and brain[J]. Brain Behav Immun,2005,19(5):371-376.
[7] Ioanna K,Theodoros V,Angeliki X,et al. Production of interleukin-6 by skeletal myotubes-role of Reactive Oxygen species[J]. Am J Respir Cell Mol Biol,2002,26(5):587-593.
[8] Banerjee A K,Mandal A,Chanda D,et al. Oxidant,antioxidant and physical exercise[J]. Molecular and Cellular Biochemistry,2003,253(1-2):307-312.
[9] 景亞武,易靜,高飛,等. 活性氧從毒性分子到信號(hào)分子——活性氧與細(xì)胞的增殖、分化和凋亡及其信號(hào)轉(zhuǎn)導(dǎo)途徑[J]. 細(xì)胞生物學(xué)雜志,2003,25(4):197-202.
[10] Haddad J J,Safieh-Garabedian B,Saade N E,et al. Thiol regulation of pro-inflammatory cytokines reveals a novel immunopharmacological potential of glutathione in the alveolar epithelium[J]. The Journal of Pharmacology and Experimental Therapeutics,2001,296:996-1005.
[11] Ali M H,Schlidt S A,Chandel N S,et al. Endothelial permeability and IL-6 production during hypoxia: role of ROS in signal transduction[J]. Am J Physiol,1999,277:L1057–L1065.
[12] Yoshida Y,Maruyama T,F(xiàn)ujita T,et al. Reactive oxygen intermediates stimulate interleukin-6 production in human bronchial epithelial cells[J]. Am J Physiol,1999,276:L900–L908.
[13] Theodoros V,Katsaounou P,Karatza M H,et al. Strenuous resistive breathing induces plasma cytokines role of antioxidants and monocytes[J]. American Journal of Respiratory and Critical Care Medicine,2002,166:1572-1578.
[14] Christian P F,Hiscock N J,Penkowa M,et al. Supplementation with vitamins c and e inhibits the release of interleukin-6 from contracting human skeletal muscle[J]. The Journal of Physiology,2004,558(2):633–664.
[15] David C,Peters E M,Henson D A,et al. Influence of vitamin C supplementation on cytokine changes following an ultramarathon[J]. Journal of Interferon & Cytokine Research,2000,20(11):1029-1035.
[16] Thompson D,Williams C,McGregor S J,et al. Prolonged vitamin C supplementation and recovery from demanding exercise[J]. Int J Sport Nutr Exerc Metab,2001,1(4):466-481.
[17] Kanter M M,Nolte L A,Holloszy J O. Effects of an antioxidant vitamin mixture on lipid peroxidation at rest and post exercise [J]. J Appl Physiol,1993,74:965-969.
[18] Goldfarb,Rjbloomer,Mckenzie M J. Combined antioxidant treatment effects on blood oxidative stress after eccentric exercise[J]. Medicine & Science in Sports & Exercise,2005,37(2):234-239.
[19] Sacheck,Blumberg J B. Role of vitamin E and oxidative stress in exercise[J]. Nutrition,2001,17(10):809-814.
[20] Gauthier-Rouviere C,Vandromme M,Tuil D,et al. Expression and activity of serum response factor is required for expression of the muscle-determining factor MyoD in both dividing and differentiating mouse C2C12 myoblasts[J]. Mol Biol Cell,1996,7(5):719-729.
[21] Dennis R G,Dow D E. Excitability of skeletal muscle during development [J]. Tissue Eng,2007,13(10):2395-2404.
[22] Maccallini,Pietrangelo T,Mancinelli R,et al. The excitation-contraction coupling on C2C12 skeletal muscle myotubes was modulated by NO-donor ester of gemfibrozil[J]. Nitric Oxide,2008,18(3):168-175.
[23] Andreas Michael Niess,Simon P. Response and adaptation of skeletal muscle to exercise–the role of reactive oxygen species [J]. Frontiers in Bioscience,2007,2:4826-4838.
[24] Meyer,Pahl H L,Bauerle P A. Regulation of the transcription factors NF-κB and AP-1 by redox changes[J]. Chemico-Biol. Interact,1994,91,91-100.
[25] Henning F. Kramer. Exercise,MAPK,and NF-κB signaling in skeletal muscle[J]. J Appl Physiol,2007,103:388-395.
[26] JI L L. Acute exercise activates nuclear factor (NF-κB )signaling pathway in rat skeletal muscle[J]. The FASEB Journal,2004,18:1499-1506.
[27] Richard C H,Hirshman M F,Y Li,et al. Regulation of IκB kinase and NF-κB in contracting adult rat skeletal muscle[J]. Am J Physiol Cell Physiol,2005,289:C794-C801.
[28] Zandi E,Rothwarf D M,Delhase M,et al. The IκB kinase complex (IKK) contains two kinase subunits,IKKα and IKKβ,necessary for IκB phosphorylation and NF-κB activation[J]. Cell,1997,91:243-252.
[29] Muller J M,Krauss B,Kaltschmidt C,et al. Hypoxia induces c-fos transcription via a mitogen-activated protein kinase-dependent pathway[J]. J Biol Chem,1997,272:23435–23439.
[30] Respir J. The role of nuclear factor-κB in cytokine gene regulation[J]. Am Cell Mol Biol,1997,17:3-9.
[31] Spangenburg E E,Brown D A,Johnson M S,et al. Exercise increases SOCS-3 expression in rat skeletal muscle:potential relationship to IL-6 expression[J]. J Physiol,2006,572(3):839-848.
[32] 姜勇,龔小衛(wèi). MAPK信號(hào)轉(zhuǎn)導(dǎo)通路對(duì)炎癥反應(yīng)的調(diào)控[J]. 生理學(xué)報(bào),2000,52(4):267-271.
[33] 陳曄光,張傳茂,陳佺. 分子細(xì)胞生物學(xué)[M]. 北京:清華大學(xué)出版社,2006.
[34] Goodyear L J,Chang P Y,Sherwood D J,et al. Effects of exercise and insulin on mitogen-activated protein kinase signaling pathways in rat skeletal muscle[J]. Am J Physiol-Endocrinology And Metabolism,1996,271:E403-E408.
[35] Boder A J. Uv-light induces p38 MAPK-dependent phosphorylation of Bel[J]. Biochem Biophys Res Commun,2003,301(4):923-926.
[36] Taro M,Turesson I,Book M,et al. p38MAPK kinase negatively regulates engothelial cell surviva,proliferation,and differentiation in FGF-2-stimulated angiogenesis[J]. J Cell Biology,2002,156(1):149-160.
[37] Chakravortty D,Kato Y,Koide N,et al. Extrancellular matrix components prevent lipopolysaccharide-induced bovine arterial endothelial cell injury by inhibiting p38 mitogen-activated protein kinase [J]. Thromb Res,2000,98(2):187-189.
[38] Mari-Carmen,Borras C,Pallardo F V,et al. Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats[J]. J Physiol,2005,567(1):113-120.
[39] Craig R,Larkin A,Mingo A M,et al. p38 MAPK and NF-κB collaborate to induce interleukin-6 gene expression and release:Evidence for a cytoprotective autocrine signaling pathway in a cardiac myocyte model system[J]. J Biol Chem,2000,275:23814-23824.
[40] Craig. p38 Mitogen-activated protein kinase and nuclear factor-κB collaborate to induce interleukin-6 Gene expression and release:evidence for a cytoprotective anticrime signaling pathway in a cardiac myocyte model system[J]. J Biol Chem,2000,275:23814-23824.
[41] Motoaki Sano,Ukuda K F,Sato T,et al. ERK and p38 MAPK,but not NF-κB,are critically involved in reactive Oxygen species–mediated induction of IL-6 by angiotensin II in cardiac fibroblasts[J]. Circulation Research,2001,89:661.
[42] Eirini Kefaloyianni,Gaitanaki C,Beis I. ERK1/2 and p38-MAPK signalling pathways,through MSK1,are involved in NF-κB transactivation during oxidative stress in skeletal myoblasts[J]. Cellular Signalling,2006,18(12):2238-2251.
[43] Keller P,Penkowa M,Keller C,et al. Interleukin-6 receptor expression in contracting humanskeletal muscle:Regulating role of IL-6[J]. The FASEB Journal,2005,19:1181-1183.
[44] Keller P,Keller C. Interleukin-6 production by contracting human skeletalmuscle: Autocrine regulation by IL-6[J]. Biochemical and Biophysical Research Communications,2003,310:550-554.
[45] Bernat Baeza-Raja,P Munoz-Canoves-Molecular.p38MAPK-induced nuclear factor-κB activity is required for skeletal muscle differentiation:role of interleukin-6[J].
Molecular Biology of the Cell,2004,15(4):2013-2026.
[編輯:鄭植友]