一群人開舞會,每人頭上都戴著一頂帽子。帽子只有黑白兩種,黑的至少有一頂。每個人都能看到其他人帽子的顏色,卻看不到自己的。主持人先讓大家看看別人頭上戴的是什么帽子,然后關燈,如果有人認為自己戴的是黑帽子,就拍手。第一次關燈,沒有聲音。于是再開燈,大家再看一遍,關燈時仍然鴉雀無聲。一直到第三次關燈,才有劈劈啪啪的聲音響起。
問有多少人戴著黑帽子?
答案:3個人戴黑帽子。
分析:假設戴黑帽子的是A、B、C三人,以A的角度思考,A看到B、C戴黑帽子,A認為:第一次關燈時B看到C戴黑帽子,已滿足“黑的至少有一頂”,所以B不能確定自己是否黑帽子,不會拍手,并且如果只有C戴黑帽子,第一次關燈時c就會拍手。但第一次關燈時c沒拍手,這代表C也在等別人拍手,B就知道自己也戴了黑帽子,第二次關燈時B、C就都會拍手。但第二次關燈時也沒拍手,這代表B、C也各自看到2頂黑帽子,A由此推出自己帶了黑帽子。B、C邏輯推理也是如此,其他戴白帽子的人都是如此推理,在第三次關燈時會等著A、B、C拍手,于是第三次關燈時有且僅有三個人會拍手。