汪禮坤, 匡 銘, 彭寶崗, 何 強(qiáng), 李紹強(qiáng), 華赟鵬, 陳 斌, 王 曄
(中山大學(xué)附屬第一醫(yī)院肝膽外科,廣東廣州510080)
肝細(xì)胞癌(hepatocellular carcinoma,HCC)發(fā)病率居世界最常見癌癥第5位,居最常見癌癥死亡原因第3位。目前早期肝細(xì)胞癌傳統(tǒng)的治療方法包括外科手術(shù)切除、肝臟移植和局部消融(射頻消融或無水酒精注射),其5年生存率達(dá)到50%-70%,但較高的復(fù)發(fā)率影響手術(shù)切除和局部消融的療效,輔助治療難以預(yù)防復(fù)發(fā),且肝臟移植仍存在供體短缺問題[1]。
肝細(xì)胞癌免疫治療方法包括過繼免疫活性細(xì)胞、應(yīng)用呈遞腫瘤抗原的樹突狀細(xì)胞或腫瘤疫苗等措施,臨床應(yīng)用表明可產(chǎn)生不同程度的免疫效應(yīng),影響肝癌病人的復(fù)發(fā)率和生存率[2]。然而腫瘤免疫抑制微環(huán)境與腫瘤抗原弱免疫原性不利于免疫效應(yīng)細(xì)胞發(fā)揮作用和激發(fā)產(chǎn)生抗腫瘤免疫反應(yīng)。臨床研究顯示小肝癌局部腫瘤浸潤淋巴細(xì)胞(tumor infiltrating lymphocytes,TILs)高濃度的患者肝切除術(shù)后的復(fù)發(fā)率顯著低于腫瘤局部無淋巴細(xì)胞浸潤者[3],而調(diào)節(jié)性T細(xì)胞(regulatory T cells,Tregs)使TILs功能低下[4]。CD4+CD25+Foxp3+Treg不僅調(diào)節(jié)自體免疫耐受[5],而且通過其免疫抑制作用影響抗腫瘤免疫反應(yīng)的產(chǎn)生,促進(jìn)腫瘤進(jìn)展,維持腫瘤免疫耐受微環(huán)境,影響臨床免疫治療療效[6,7]。腫瘤病人存在免疫抑制現(xiàn)象,腫瘤引起機(jī)體免疫耐受和抑制抗腫瘤免疫效應(yīng)的產(chǎn)生及機(jī)制有待闡明。許多證據(jù)表明腫瘤引流淋巴結(jié)(tumor-draining lymph nodes,TDLNs)體積雖小,卻是一個(gè)免疫特惠/耐受位點(diǎn),TDLNs內(nèi)抗原提呈細(xì)胞(APCs)的表型和功能發(fā)生活性改變,呈遞腫瘤抗原偏向于耐受產(chǎn)生,在產(chǎn)生和維持腫瘤抗原獲得性外周耐受進(jìn)而導(dǎo)致全身耐受中發(fā)揮重要作用。已知TDLNs內(nèi)Treg數(shù)量增加且抑制活性增強(qiáng)[8],Tregs可能是影響TDLNs免疫狀態(tài)的關(guān)鍵因素,然而其確切機(jī)制尚未闡明。本研究旨在通過建立小鼠肝癌TDLNs模型,探討TDLNs內(nèi)Tregs影響機(jī)體全身免疫耐受狀態(tài)和抑制特異性抗腫瘤免疫反應(yīng)的作用及機(jī)制。
RPMI-1640培養(yǎng)基和Trizol試劑購自Invitrogen,細(xì)菌脂多糖(LPS,L2880)購自Sigma,免疫組化Ⅰ抗 rabbit anti-mouse Foxp3、rat anti-mouse CD4、rat anti-mouse CD8均購自Biolegend,兔二步法和大鼠二步法檢測試劑盒(Ⅱ抗)購自北京中杉金橋。流式細(xì)胞術(shù)抗體APC-conjugated anti-mouse Foxp3、FITC-conjugated anti-mouse CD4和PE-conjugated anti-mouse CD25均購自eBioscience。RT-PCR kit和SYBR green realtime PCR master mix購自Toyobo。Anti-CD3抗體(clone:145-2C11)購自eBioscience。小鼠IFN-γ酶聯(lián)免疫斑點(diǎn)法(enzyme-linked immunosorbent spot technique,ELISPOT)試劑盒購自R&D Systems。
Hepa1-6肝癌細(xì)胞株來源于C57BL/6J小鼠的化學(xué)誘導(dǎo)肝腫瘤。應(yīng)用含10%FBS、100 mg/L青霉素G和1×105U/L鏈霉素的RPMI-1640培養(yǎng)基在37℃、5%CO2環(huán)境培養(yǎng)箱內(nèi)培養(yǎng)Hepa1-6細(xì)胞,傳代后收集細(xì)胞。
6-8周齡大小雌性C57BL/6J小鼠購自中山大學(xué)和南方醫(yī)科大學(xué)實(shí)驗(yàn)動物中心,飼養(yǎng)于中山大學(xué)實(shí)驗(yàn)動物中心。懸浮于20 μL PBS的Hepa1-6細(xì)胞(6×105cells)注射于每只小鼠右后肢足掌皮下,觀察腫瘤生長,每隔3 d測量腫瘤長徑。第12 d處死小鼠,獲取足掌腫瘤側(cè)的腘淋巴結(jié)(TDLNs)并稱重,同時(shí)獲取同側(cè)腹股溝淋巴結(jié)(第二站引流淋巴結(jié))以及脾臟,小鼠腫瘤足重量減去對側(cè)正常足重量測得腫瘤重量,最后剖檢小鼠,觀察肺、肝外觀及有無轉(zhuǎn)移結(jié)節(jié)。作為對照,細(xì)菌脂多糖(LPS)溶于蒸餾水中,濃度1 g/L,每只小鼠右后肢足掌皮下每天注射20 μg,連續(xù)2 d,2 d后處死小鼠并收集上述淋巴結(jié)標(biāo)本和脾臟。
Foxp3染色所用標(biāo)本為4%多聚甲醛固定,常規(guī)石蠟包埋,每例蠟塊連續(xù)切片數(shù)張,厚4 μm,1張備染,其余行HE染色,鏡下觀察有無腫瘤細(xì)胞淋巴結(jié)轉(zhuǎn)移。組織切片置檸檬酸緩沖液(pH 6.0)中高壓抗原修復(fù)4 min,0.3%Triton破膜40 min,室溫放置于3%H2O2中15 min以阻斷內(nèi)源性過氧化物酶,滴加Ⅰ抗rabbit anti-mouse Foxp3(稀釋度1∶150),4℃孵育過夜,加Ⅱ抗室溫孵育2.5 h,DAB顯色。CD8和CD4染色采用OCT包埋的新鮮標(biāo)本的冰凍切片(厚6 μm),4℃丙酮固定切片10 min,-20℃保存?zhèn)溆?。CD8和CD4Ⅰ抗稀釋度1∶200,滴加Ⅰ抗后室溫孵育3 h,加Ⅱ抗室溫孵育1.5 h,DAB顯色。
采用細(xì)針頭刺入淋巴結(jié)或脾臟,再向組織內(nèi)注入細(xì)胞培養(yǎng)基,將細(xì)胞沖出,然后用塑料針芯鈍端在培養(yǎng)基中輕壓組織,最后通過不銹鋼篩網(wǎng)(孔徑75 μm)過濾制成單細(xì)胞懸液,脾臟組織制成的單細(xì)胞懸液再加入紅細(xì)胞裂解液,反復(fù)沖洗2次。APC-conjugated anti-mouse Foxp3、FITC-conjugated anti-mouse CD4和PE-conjugated anti-mouse CD25 3種抗體用以標(biāo)記Tregs,操作按說明書步驟進(jìn)行。
通過Trizol試劑從淋巴結(jié)和脾臟組織抽提總RNA,按照RT-PCR kit的操作步驟合成cDNA。應(yīng)用SYBR green染料法,通過ABI7000定量PCR儀檢測,擴(kuò)增條件:95℃變性60 s,95℃15 s,60℃15 s,72℃ 45 s,進(jìn)行40個(gè)循環(huán)。引物如下:小鼠Foxp3,5′-GGG AGC AGT GTG GAC CGT AG-3′,5′-CCA CAG CCT CAG TCT CAT GGT-3′;小鼠β-actin,5′-CTT CAA CAC CCC AGC CAT GT-3,5′-TGG CGT GAG GGA GAG CAT AG-3′。結(jié)果根據(jù)目標(biāo)基因相對于內(nèi)參照 β -actin的△Ct值 = 2-(Ct[Foxp3]﹣Ct[β-actin])進(jìn)行分析。
按上述方法從淋巴結(jié)和脾臟制成的單細(xì)胞懸液(8×106-1×107cells)加入6孔板或預(yù)包被anti-CD3抗體的6孔板中,每孔2 mL RPMI-1640培養(yǎng)基(含10%FBS、2 mmol/L L-glutamine、25 mmol/L Hepes、100 mg/L penicillin G和1×105U/L streptomycin),置入37℃、5%CO2培養(yǎng)箱內(nèi)培養(yǎng)48 h后收集淋巴細(xì)胞并計(jì)數(shù),然后在小鼠IFN-γ ELISPOT試劑盒96孔板中進(jìn)行細(xì)胞種板,重復(fù)3孔,設(shè)陰性和陽性對照孔,按試劑盒操作說明依次加入生物素化檢測抗體(biotinylated detection Ab)、抗生蛋白鏈菌素堿性磷酸酶(streptavidin-alkaline phosphatase)和BCIP/NBT發(fā)色團(tuán)(BCIP/NBT chromagen),每步驟之間均以沖洗液反復(fù)沖洗,37℃烤干30 min后應(yīng)用ImmunoSpot Series 3B Analyzer(CTL,Cleveland,OH)進(jìn)行斑點(diǎn)計(jì)數(shù)并分析,數(shù)據(jù)結(jié)果以1×106接種細(xì)胞中形成IFN-γ斑點(diǎn)細(xì)胞數(shù)(IFN-γ spot-forming cells,SFCs)表示。實(shí)驗(yàn)設(shè)定≥30 IFN-γ SFC/ 106cells為特異性淋巴細(xì)胞分泌反應(yīng)陽性,與評估人外周血單個(gè)核細(xì)胞(PBMCs)對記憶抗原刺激陽性反應(yīng)的標(biāo)準(zhǔn)一致[9]。
Hepa1-6細(xì)胞接種小鼠足掌皮下后第4 d可見足掌中心局部稍隆起,呈暗紫褐色,此后足掌腫瘤逐漸增大。第12 d腫瘤長徑達(dá)5 mm(圖1A),重量為(0.0614 ± 0.0250)g,同時(shí)腫瘤側(cè)腘淋巴結(jié)(TDLNs)重量為(0.0042±0.0002)g,明顯大于對側(cè)腘淋巴結(jié)[(0.0007±0.0001)g,P<0.01]和足掌注射LPS組小鼠炎性腘淋巴結(jié)的重量[(0.0009± 0.0001)g,P<0.01],且體積較腫瘤同側(cè)的腹股溝淋巴結(jié)大(圖1B)。HE染色鏡下見TDLNs內(nèi)淋巴細(xì)胞密集,生發(fā)中心擴(kuò)增,未見淋巴結(jié)中心髓竇擴(kuò)大和淋巴液增多現(xiàn)象(圖4A)。
除TDLNs體積較正常腘淋巴結(jié)明顯增大外,免疫組化顯示 TDLNs的髓質(zhì)和副皮質(zhì)區(qū) CD4+和CD8+兩類T淋巴細(xì)胞數(shù)量明顯增多(圖4B、C)。
Figure 1.Growth curve of Hepa1-6 tumor after Hepa1-6 footpad challenge.A:footpad tumor largest dimension was measured every three days after Hepa1-6 cells(6×105cells)were injected s.c.into the footpad of right hind limb of each mouse(n= 20);B:representative photographs of tumor-draining lymph nodes(popliteal lymph nodes)(black arrow)and inguinal lymph nodes(white arrow)12 d after inoculation;C:representative photographs of draining popliteal lymph nodes(black arrow)and inguinal lymph nodes(white arrow)two days after LPS footpad injection.圖1 小鼠足掌腫瘤生長曲線和腘淋巴結(jié)、腹股溝淋巴結(jié)大小改變
Figure 2.Analysis of CD4+Foxp3+T cell frequency.A representative flow cytometry data showed the frequency of CD4+lymphocytes and CD4+Foxp3+T cells in the popliteal lymph nodes(TDLN),inguinal lymph nodes and spleen,which were obtained from two mice 12 d after Hepa1-6 inoculation.Frequency of CD4+ Foxp3+T cells after tumor inoculation respectively was 13.32%,10.88%and 11.86%of total CD4-positive cells.Frequency of CD4+CD25+T cells(data not shown)was slightly higher than that of CD4+ Foxp3+T cells because CD4+CD25+Foxp3+T cells were really Tregs.圖2 腫瘤引流腘淋巴結(jié)、同側(cè)腹股溝淋巴結(jié)及脾臟組織中CD4+CD25+Foxp3+T細(xì)胞流式細(xì)胞儀分析
轉(zhuǎn)錄因子Foxp3是Tregs的特異標(biāo)志[10]。流式細(xì)胞分析顯示TDLNs中CD4+CD25+Foxp3+T細(xì)胞占CD4+T細(xì)胞總數(shù)的13.32%,大于在腹股溝淋巴結(jié)(10.88%)和脾臟(11.86%)中的比例,見圖2。實(shí)時(shí)定量PCR結(jié)果顯示小鼠TDLNs內(nèi)Foxp3 mRNA表達(dá)水平明顯高于同側(cè)腹股溝淋巴結(jié)(0.01393± 0.00283 vs 0.01045±0.00308;P<0.01)和脾臟(0.01393±0.00283 vs 0.01039±0.00362;P< 0.01),而腹股溝淋巴結(jié)和脾臟之間的表達(dá)水平無顯著差異(P>0.05)。荷瘤小鼠TDLNs和脾臟Foxp3 mRNA的表達(dá)水平明顯高于足掌注射LPS的對照組小鼠炎性腘淋巴結(jié)(0.01393±0.00283 vs 0.00743± 0.00378;P<0.01)和脾臟(0.01039±0.00362 vs 0.00549±0.00383;P<0.01)的表達(dá)水平,見圖3。荷瘤小鼠TDLNs、同側(cè)腹股溝淋巴結(jié)和脾臟免疫組化染色的結(jié)果顯示Foxp3定位于細(xì)胞核,F(xiàn)oxp3陽性細(xì)胞彌散分布于T細(xì)胞區(qū),與淋巴結(jié)內(nèi)CD8+T細(xì)胞分布區(qū)域基本一致。與同側(cè)腹股溝淋巴結(jié)和脾臟相比,TDLNs內(nèi)的Foxp3陽性細(xì)胞數(shù)量最多,見圖4D、E、F。
Figure 3.Foxp3 expression in lymph nodes and spleen.Relative quantity of Foxp3 mRNA by real-time PCR using the ΔCt method(n=20)in draining lymph nodes and spleen 12 d after Hepa1-6 footpad inoculation or 2 d after LPS footpad injection.**P<0.01 vs popliteal LNs in Hepa1-6-inoculated mice;##P<0.01 vs spleen in LPS-injected mice.圖3Foxp3 mRNA表達(dá)實(shí)時(shí)定量PCR結(jié)果
Figure 4.Representative features of CD4+,CD8+,or Foxp3+T lymphocytes in TDLNs(popliteal lymph nodes)and Foxp3+T lymphocytes in inguinal lymph nodes and spleen after Hepa1-6 inoculation(A,B,C,×100);(D,E,F(xiàn),×200).TDLN(AD),inguinal lymph nodes(E)and spleen(F).HE staining(A)and immunostaining for CD4(B),CD8(C),and Foxp3(D,E,and F).圖4 CD4,CD8和Foxp3免疫組織化學(xué)染色
由淋巴結(jié)和脾臟制成的單個(gè)淋巴細(xì)胞懸液經(jīng)過單純培養(yǎng)基培養(yǎng)或anti-CD3抗體刺激激活后種板觀察顯示:荷瘤小鼠TDLNs、同側(cè)腹股溝淋巴結(jié)和脾臟分泌IFN-γ的細(xì)胞計(jì)數(shù)分別為2、0和0 IFN-γSFC/106cells。經(jīng)anti-CD3抗體激活處理后,荷瘤小鼠TDLNs、同側(cè)腹股溝淋巴結(jié)和脾臟分泌IFN-γ的細(xì)胞計(jì)數(shù)上升為179、54和13 IFN-γ SFC/106cells,而足掌注射LPS的炎性腘淋巴結(jié)、同側(cè)腹股溝淋巴結(jié)和脾臟分泌IFN-γ的細(xì)胞計(jì)數(shù)分別為6、19和20 IFN-γ SFC/106cells,見圖5。
Figure 5.Detection of CD8+T cells by IFN-γ ELISPOT in the draining lymph nodes and spleen(n=10).The same pool of lymphocytes were plated 48 h after single-cell suspension from popliteal lymph nodes(A,D,G),inguinal lymph nodes(B,E,H),and spleen(C,F(xiàn),I)was stimulated via anti-CD3 Ab or was cultured in the absence of anti-CD3 stimulation. Representative wells were shown after plate development and spots quantified by automated digital image analysis.Responses are reported as SFC/106input cells.圖5 ELISPOT觀測CD8+T細(xì)胞IFN-γ分泌功能
研究證實(shí)腫瘤可以使 TDLNs內(nèi)高內(nèi)皮靜脈(HEV)被重構(gòu)改造成血管、淋巴竇增多并擴(kuò)張和淋巴液增加等結(jié)構(gòu)和功能改變[11,12],而我們建立的小鼠Hepa1-6肝細(xì)胞癌腫瘤引流腘淋巴結(jié)內(nèi)未發(fā)現(xiàn)明顯的類似結(jié)構(gòu)改變,而主要表現(xiàn)為淋巴細(xì)胞擴(kuò)增聚集,提示不同腫瘤細(xì)胞系發(fā)生區(qū)域淋巴結(jié)轉(zhuǎn)移的潛能存在差異,因此可能引起TDLNs不同的形態(tài)結(jié)構(gòu)改變。
我們的研究顯示TDLNs重量與體積明顯大于足掌注射LPS的炎性腘淋巴結(jié),CD4+和CD8+2類T淋巴細(xì)胞在TDLNs中明顯擴(kuò)增,表明TDLNs內(nèi)發(fā)生了與炎癥引流淋巴結(jié)不同程度或特征性的免疫應(yīng)答反應(yīng)。
腫瘤進(jìn)展引起TDLNs中的Tregs和抗腫瘤效應(yīng)性T細(xì)胞被初始化,兩者之間的相互作用決定了TDLNs的免疫狀態(tài)[13]。臨床研究顯示Tregs在調(diào)控機(jī)體對肝細(xì)胞癌的免疫反應(yīng)中發(fā)揮關(guān)鍵作用,其具有的免疫抑制效應(yīng)使 TILs功能低下[4,14,15]。表達(dá)Foxp3是Tregs的基本特征,同時(shí)也是鑒別Tregs的特異標(biāo)志[16]。我們的研究發(fā)現(xiàn)隨著肝細(xì)胞癌逐漸生長成瘤,F(xiàn)oxp3+Tregs首先聚集于TDLNs,數(shù)量明顯增加,而非TDLNs(腹股溝淋巴結(jié))和脾臟中卻無Tregs數(shù)量擴(kuò)增現(xiàn)象,提示TDLNs在形成機(jī)體對腫瘤免疫耐受的過程中是一個(gè)啟動位點(diǎn)。已有研究發(fā)現(xiàn)移植耐受條件下Tregs聚居外周淋巴結(jié)內(nèi)而非脾臟對于主動維持移植物耐受是必需的[17]。體外實(shí)驗(yàn)表明培養(yǎng)的肝細(xì)胞癌細(xì)胞系上清液導(dǎo)致CD4+CD25+調(diào)節(jié)性T細(xì)胞擴(kuò)增且抑制功能增強(qiáng)[18]。因此我們認(rèn)為引流進(jìn)入TDLNs的腫瘤抗原或腫瘤分泌因子可能誘導(dǎo)天然的Tregs擴(kuò)增或Tregs由CD4+T細(xì)胞新生而來。
腫瘤主動地改變了腫瘤引流淋巴結(jié)的免疫微環(huán)境,表現(xiàn)為 Tregs較均勻彌散地分布于 CD4+或CD8+T細(xì)胞聚居的副皮質(zhì)和髓質(zhì)區(qū)。這種分布方式促使細(xì)胞間直接相互接觸,進(jìn)而Tregs通過表達(dá)CD86和CD4+效應(yīng)T細(xì)胞的CTLA-4相互作用而抑制其發(fā)揮效應(yīng)功能[13],然而有研究認(rèn)為Tregs表達(dá)并分泌TGF-β是抑制CD8+T細(xì)胞功能的一種機(jī)制[19,20],我們的研究顯示Tregs彌散分布模式也符合細(xì)胞因子局部發(fā)揮作用的特性,因而可以認(rèn)為Tregs分泌的細(xì)胞因子影響其周圍的CD8+T細(xì)胞的功能。CD8+T細(xì)胞在抗腫瘤免疫中具有至關(guān)重要的作用,我們的研究發(fā)現(xiàn)TDLNs中CD8+T細(xì)胞的功能受到了抑制,這種抑制并未使CD8+T細(xì)胞徹底喪失效應(yīng)功能,在一定的條件下CD8+T細(xì)胞仍可對外界刺激產(chǎn)生應(yīng)答并恢復(fù)分泌IFN-γ能力。因此,消除TDLNs內(nèi)Tregs對特異性抗腫瘤效應(yīng)細(xì)胞的抑制,打破Tregs維持的TDLNs免疫耐受環(huán)境或TDLNs的效應(yīng)細(xì)胞在體外經(jīng)短期激活和擴(kuò)增用于過繼免疫治療可能成為一種有效的腫瘤免疫治療新途徑。
[1] Bruix J,Llovet JM.Major achievements in hepatocellular carcinoma[J].Lancet,2009,373(9664):614-616.
[2] Butterfield LH.Recent advances in immunotherapy for hepatocellular cancer[J].Swiss Med Wkly,2007,137(5-6):83-90.
[3] Wada Y,Nakashima O,Kutami R,et al.Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration[J].Hepatology,1998,27(2):407-414.
[4] Unitt E,Rushbrook SM,Marshall A,et al.Compromised lymphocytes infiltrate hepatocellular carcinoma:the role of T-regulatory cells[J].Hepatology,2005,41(4):722-730.
[5] Sakaguchi S.Regulatory T cells:key controllers of immunologic self-tolerance[J].Cell,2000,101(5):455-458.
[6] Zou W.Regulatory T cells,tumor immunity and immunotherapy[J].Nat Rev Immunol,2006,6(4):295-307.
[7] Curiel TJ.Regulatory T cells and treatment of cancer[J]. Curr Opin Immunol,2008,20(2):241-246.
[8] Munn DH,Mellor AL.The tumor-draining lymph node as an immune-privileged site[J].Immunol Rev,2006,213:146-158.
[9] Currier JR,Kuta EG,Turk E,et al.A panel of MHC class I restricted viral peptides for use as a quality control for vaccine trial ELISPOT assays[J].J Immunol Methods,2002,260(1-2):157-172.
[10]Fontenot JD,Gavin MA,Rudensky AY.Foxp3 programs the development and function of CD4+CD25+regulatory T cells[J].Nat Immunol,2003,4(4):330-336.
[11]Qian CN,Berghuis B,Tsarfaty G,et al.Preparing the“soil”:the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells[J].Cancer Res,2006,66(21): 10365-10376.
[12]Harrell MI,Iritani BM,Ruddell A.Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis[J].Am J Pathol,2007,170(2):774-786.
[13]Hiura T,Kagamu H,Miura S,et al.Both regulatory T cells and antitumor effector T cells are primed in the same draining lymph nodes during tumor progression[J].J Immunol,2005,175(8):5058-5066.
[14]Ormandy LA,Hillemann T,Wedemeyer H,et al.Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma[J].Cancer Res,2005,65(6):2457-2464.
[15]Kobayashi N,Hiraoka N,Yamagami W,et al.Foxp3+regulatory T cells affect the development and progression of hepatocarcinogenesis[J].Clin Cancer Res,2007,13 (3):902-911.
[16]陳莉娟,周 浩,朱劍文,等.Foxp 3轉(zhuǎn)染小鼠CD4+CD25-T細(xì)胞抑制NK細(xì)胞活性[J].中國病理生理雜志,2009,25(6):1151-1155.
[17]Ochando JC,Yopp AC,Yang Y,et al.Lymph node occupancy is required for the peripheral development of alloantigen-specific Foxp3+regulatory T cells[J].J Immunol,2005,174(11):6993-7005.
[18]Cao M,Cabrera R,Xu Y,et al.Hepatocellular carcinoma cell supernatants increase expansion and function of CD4+CD25+regulatory T cells[J].Lab Invest,2007,87 (6):582-590.
[19]Chen ML,Pittet MJ,Gorelik L,et al.Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo[J].Proc Natl Acad Sci USA,2005,102(2):419-424.
[20]Somasundaram R,Jacob L,Swoboda R,et al.Inhibition of cytolytic T lymphocyte proliferation by autologous CD4+/CD25+regulatory T cells in a colorectal carcinoma patient is mediated by transforming growth factor-beta[J].Cancer Res,2002,62(18):5267-5272.