徐進(jìn)友,劉建平,王世宇,宋軼民,秦 云
(1. 天津大學(xué)機(jī)械工程學(xué)院,天津 300072;2. 天津理工大學(xué)機(jī)械工程學(xué)院,天津 300384)
環(huán)狀旋轉(zhuǎn)周期結(jié)構(gòu)模態(tài)攝動(dòng)分析
徐進(jìn)友1,2,劉建平1,王世宇1,宋軼民1,秦 云1
(1. 天津大學(xué)機(jī)械工程學(xué)院,天津 300072;2. 天津理工大學(xué)機(jī)械工程學(xué)院,天津 300384)
為揭示環(huán)狀旋轉(zhuǎn)周期結(jié)構(gòu)的模態(tài)特性,以含附加結(jié)構(gòu)的薄圓環(huán)為研究對象,采用直接模態(tài)攝動(dòng)法建立了該周期結(jié)構(gòu)動(dòng)力特性近似解析方法,獲得了環(huán)狀旋轉(zhuǎn)周期結(jié)構(gòu)的模態(tài)表達(dá)式.給出了由附加結(jié)構(gòu)的個(gè)數(shù)及振型的波數(shù)決定的固有頻率分裂條件以及標(biāo)準(zhǔn)圓環(huán)振型與攝動(dòng)振型之間的調(diào)制規(guī)律.研究表明:分裂的頻率中余弦項(xiàng)頻率值改變,而正弦項(xiàng)頻率值保持不變;重根對應(yīng)的振型被攝動(dòng)振型的正、余弦項(xiàng)諧波調(diào)制,分裂根對應(yīng)的振型僅余弦項(xiàng)振型被調(diào)制,且重根振型的調(diào)制程度大于分裂根振型.仿真結(jié)果證明了解析結(jié)論的正確性.
環(huán)狀旋轉(zhuǎn)周期結(jié)構(gòu);攝動(dòng)法;固有頻率分裂;模態(tài)調(diào)制
工程領(lǐng)域中廣泛存在一類環(huán)狀周期結(jié)構(gòu),該類結(jié)構(gòu)被認(rèn)為是在標(biāo)準(zhǔn)圓環(huán)上附加了周期結(jié)構(gòu)而構(gòu)成的旋轉(zhuǎn)周期結(jié)構(gòu),如行星齒輪傳動(dòng)的內(nèi)齒圈和電機(jī)的定、轉(zhuǎn)子及水輪機(jī)的座環(huán)等.由于附加周期結(jié)構(gòu)改變了原系統(tǒng)的軸對稱性,系統(tǒng)的動(dòng)力特性將發(fā)生明顯的變化.因此對這類結(jié)構(gòu)的振動(dòng)研究具有理論和工程實(shí)用價(jià)值.
結(jié)構(gòu)對稱性的改變引起模態(tài)特性變化的現(xiàn)象引起了學(xué)者和工程技術(shù)人員的廣泛關(guān)注.文獻(xiàn)[1-5]運(yùn)用不同方法研究了不對稱圓環(huán)的振動(dòng)特性.其中Allaei等[1]和 Detinko[2]分析了離散剛度支承下的圓環(huán)振動(dòng)特性.Hwang和 Fox等[3-4]針對具有圓周方向輪廓變化的薄圓環(huán),采用瑞利-里茲方法獲得了頻率和振型,分析了幾何形狀的變化導(dǎo)致的固有頻率分裂現(xiàn)象.文獻(xiàn)[5]利用拉普拉斯變換法研究了局部偏差對圓環(huán)振動(dòng)模態(tài)的影響.
當(dāng)附加結(jié)構(gòu)的質(zhì)量和剛度相對較小時(shí),攝動(dòng)法是分析周期結(jié)構(gòu)動(dòng)力特性的有效方法.樓夢麟等[6-7]采用模態(tài)攝動(dòng)方法給出了復(fù)雜梁結(jié)構(gòu)模態(tài)特性的近似解析解.Parker和 Mote[8-9]用攝動(dòng)方法研究了盤振動(dòng)的特征值.Kim 等[10]研究了周期分布結(jié)構(gòu)對軸對稱結(jié)構(gòu)模態(tài)的影響,結(jié)果表明,由于結(jié)構(gòu)中加入了周期結(jié)構(gòu)而產(chǎn)生頻率分裂現(xiàn)象,且振型由于附加諧波的調(diào)制而導(dǎo)致污染.Chang和 Wickert[11-12]以盤狀結(jié)構(gòu)為例,給出了固有頻率分裂規(guī)則和模態(tài)污染規(guī)律.上述文獻(xiàn)主要以盤狀結(jié)構(gòu)為研究對象,而環(huán)狀旋轉(zhuǎn)周期結(jié)構(gòu)的模態(tài)污染特性未涉及.
由于產(chǎn)生固有頻率分裂現(xiàn)象,結(jié)構(gòu)的重頻分裂為相近的 2個(gè)單頻,相應(yīng)的模態(tài)相互耦合,可以導(dǎo)致共振區(qū)加寬和振幅加大[13],因此在結(jié)構(gòu)的設(shè)計(jì)和應(yīng)用中應(yīng)考慮固有頻率分裂的影響.筆者以工程中應(yīng)用廣泛的環(huán)狀旋轉(zhuǎn)周期結(jié)構(gòu)為研究對象,采用攝動(dòng)方法研究了該類結(jié)構(gòu)的模態(tài)變化規(guī)律.
不失一般性,基于環(huán)狀周期結(jié)構(gòu)的幾何特點(diǎn),建立圖 1所示的分析模型.圓環(huán)的剛度和單位長度質(zhì)量分別為EI和m,圓環(huán)半徑為 r,截面積為 A.u和v分別為角 θ處的切向和徑向位移.均勻分布在圓環(huán)內(nèi)側(cè)的周期子結(jié)構(gòu)個(gè)數(shù)為 N(即周期數(shù)),忽略幾何形狀的影響,將其簡化為集中點(diǎn),其剛度和質(zhì)量分別為kt和 mt.
圖1 旋轉(zhuǎn)周期結(jié)構(gòu)模型Fig.1 Model of rotationally periodic structure
式中下標(biāo) c和 s分別表示特征值和振型的余弦項(xiàng)和正弦項(xiàng).
式中余弦項(xiàng)為正號,正弦項(xiàng)為負(fù)號.顯然,λΔ的取值與周期數(shù)N和波數(shù)n有關(guān).
(1)若2n/N為整數(shù),即
則c2NλΔ=,s0λΔ=,此時(shí)攝動(dòng)特征值不等,即系統(tǒng)的固有頻率發(fā)生分裂,系統(tǒng)的特征值可表示為
此時(shí)系統(tǒng)的1對重根分裂為2個(gè)互異的特征值,且僅余弦項(xiàng)特征值發(fā)生變化,而正弦項(xiàng)特征值保持不變.
(2)若 2n/N 不為整數(shù),則 Δ λc= Δλs= N ,攝動(dòng)特征值相等,即系統(tǒng)的固有頻率仍為重根,系統(tǒng)的特征值可表示為
圖 2給出了 N取不同值時(shí)Δλ隨 n的變化規(guī)律.顯然,若2n/N為整數(shù),λΔ分裂為2個(gè)不等的值.例如,圖2(a)為N =3,則在n為3的整數(shù)倍時(shí),產(chǎn)生頻率分裂,其余為重根.
圖2 Δλ隨n的變化曲線Fig.2 Variety of Δλ with n
旋轉(zhuǎn)周期結(jié)構(gòu)的攝動(dòng)振型[10]為
由式(12)和式(24)~式(28)可得振型為
從式(29)和式(30)可以看出,系統(tǒng)的模態(tài)由2項(xiàng)組成,第1項(xiàng)為標(biāo)準(zhǔn)圓環(huán)的基本模態(tài),第2項(xiàng)是由于增加了周期結(jié)構(gòu)而產(chǎn)生的攝動(dòng)模態(tài).也即系統(tǒng)的模態(tài)是由圓環(huán)基本模態(tài)被攝動(dòng)模態(tài)調(diào)制后得到的[7],圓環(huán)的基本模態(tài)受到污染.攝動(dòng)模態(tài)具有諧波的形式,其諧波系數(shù)Acm和Asm表明了模態(tài)的調(diào)制程度.
為驗(yàn)證本文結(jié)論,以含齒圓環(huán)為例,采用ANSYS軟件進(jìn)行仿真計(jì)算,參數(shù)取值見表1.
表1 含齒圓環(huán)的幾何和物理參數(shù)Tab.1 Geometric parameters and physical properties of Tab.1 ring with teeth
圖 3為固有頻率隨周期數(shù) N的變化規(guī)律.圖中N=0表示無周期結(jié)構(gòu)的標(biāo)準(zhǔn)圓環(huán).從圖 3中可以看出,在滿足 2n/N為整數(shù)時(shí),產(chǎn)生固有頻率分裂,其余為重根.例如:對于 n=3 時(shí),則在 N=1,2,3,6,··處發(fā)生頻率分裂.對某一波數(shù)頻率中分裂的 2個(gè)根,其中正弦項(xiàng)特征值近似等于標(biāo)準(zhǔn)圓環(huán)(N=0)的值,余弦項(xiàng)特征值高于N=0的值.
圖3 固有頻率隨周期數(shù)的變化規(guī)律Fig.3 Variety of natural frequencies with periodic number
限于篇幅,振型分析僅以 N=3為例.圖 4給出了波數(shù)為 3和 4的模態(tài).圖 5為相應(yīng)的振型諧波系數(shù)分布圖.n=3時(shí)系統(tǒng)特征值為分裂根,從圖 5(a)可以看出,余弦項(xiàng)振型在 m=3,6,9,··處存在諧波系數(shù),而正弦項(xiàng)的諧波系數(shù)為 0,表明余弦項(xiàng)振型受到污染,而正弦項(xiàng)振型沒有被污染.同理,從圖 5(b)可以看出,若系統(tǒng)特征值為重根,則在 m=1,2,5,7,8,10,··處存在攝動(dòng)項(xiàng),即基波被上述波數(shù)的諧波模態(tài)調(diào)制,且在 m=1,7,10,··處,系數(shù)相同,在 m=2,5,8,··處系數(shù)為相反數(shù).從圖 5(a)和圖 5(b)的對比也可發(fā)看出,重根對應(yīng)的攝動(dòng)振型諧波項(xiàng)較多,調(diào)制程度大.
圖4 N=3的模態(tài)Fig.4 Mode for N=3
圖5 N=3的振型諧波系數(shù)Fig.5 Harmonic coefficients for N=3 of mode shape
(1) 當(dāng)周期數(shù)N與圓環(huán)振動(dòng)的波數(shù)n滿足2n/N為整數(shù)時(shí),固有頻率發(fā)生分裂.原對稱結(jié)構(gòu)的 2個(gè)頻率中,余弦項(xiàng)頻率值改變,而正弦項(xiàng)頻率值保持不變.
(2) 當(dāng)圓環(huán)振動(dòng)的波數(shù) n和附加周期結(jié)構(gòu)的諧波數(shù)m滿足|m±n|/N為整數(shù)時(shí),圓環(huán)n波數(shù)振動(dòng)的振型被附加周期結(jié)構(gòu)的 m次諧波振型調(diào)制,且對重根振型的調(diào)制大于分裂根振型的調(diào)制.
(3) 特征值的變化特征對應(yīng)振型的調(diào)制程度.重根對應(yīng)的振型被攝動(dòng)振型的正、余弦諧波調(diào)制;分裂根對應(yīng)的振型僅余弦成分的振型被調(diào)制.
[1]Allaei D,Soedel W,Yang T Y. Natural frequencies and modes of rings that deviate from perfect axisymmetry[J].Journal of Sound and Vibration,1986,111(1):9-27.
[2]Detinko F M. Free vibration of a thick ring on multiple supports [J].International Journal of Engineering Science,1989,27(11):1429-1438.
[3]Hwang R S,F(xiàn)ox C H J,McWilliam S. The in-plane vibration of thin rings with in-plane profile variations(PartⅠ):General background and theoretical formulation [J].Journal of Sound and Vibration,1999,220(3):497-516.
[4]Fox C H J,Hwang R S,McWilliam S. The in-plane vibration of thin rings with in-plane profile variations(PartⅡ):Application to nominally circular rings [J].Journal of Sound and Vibration,1999,220(3):517-539.
[5]Park Han Gil,Lee Jang Moo,Kang Yeon June,et al. A study on the mode pair of a slightly asymmetric circular ring with multiple deviations[J].Journal of Sound and Vibration,2008,310(1/2):366-380.
[6]樓夢麟,洪婷婷. 預(yù)應(yīng)力梁橫向振動(dòng)分析的模態(tài)攝動(dòng)方法[J]. 工程力學(xué),2006,23(1):107-111.
Lou Menglin,Hong Tingting. Mode perturbation method for lateral vibration analysis of prestressed beams[J].Engineering Mechanics,2006,23(1):107-111(in Chinese).
[7]Lou Menglin,Duan Qiuhua,Chen Genda. Modal perturbation method for the dynamic characteristics of Timoshenko beams[J].Shock and Vibration,2005,12(6):425-434.
[8]Parker R G,Mote C D. Exact boundary condition perturbation solutions in eigenvalue problems [J].Journal of Applied Mechanics,Transactions of the ASME,1996,63(1):128-135.
[9]Parker R G,Mote C D. Exact perturbation for the vibration of almost annular or circular plates [J].Journal of Vibration and Acoustics,Transactions of the ASME,1996,118(3):436-445.
[10]Kim M,Moon J,Wickert J A. Spatial modulation of repeated vibration modes in rotationally periodic structures[J].Journal of Vibration and Acoustics,Transactions of the ASME,2000,122(1):62-68.
[11]Chang J Y,Wickert J A. Response of modulated doublet modes to travelling wave excitation [J].Journal of Sound and Vibration,2001,242(1):69-83.
[12]Chang J Y,Wickert J A. Measurement and analysis of modulated doublet mode response in mock bladed disks[J].Journal of Sound and Vibration,2002,250(3):379-400.
[13]邱家俊. 彈性體非線性振動(dòng)多重共振的能量法[J]. 力學(xué)學(xué)報(bào),1990,22(6):753-758.
Qiu Jiajun. The energy method of multiple resonance in nonlinear vibration of elastic body[J].Chinese Journal of Theoretical and Applied Mechanics,1990,22(6):753-758(in Chinese).
[14]劉習(xí)軍,賈啟芬. 工程振動(dòng)理論與測試技術(shù)[M]. 北京:高等教育出版社,2004.
Liu Xijun,Jia Qifen.Engineering Vibration Theory and Testing Techniques[M]. Beijing:Higher Education Press,2004(in Chinese).
Modal Perturbation Analysis for Annular Rotationally Periodic Structures
XU Jin-you1,2,LIU Jian-ping1,WANG Shi-yu1,SONG Yi-min1,QIN Yun1
(1. School of Mechanical Engineering,Tianjin University,Tianjin 300072,China;2. School of Mechanical Engineering,Tianjin University of Technology,Tianjin 300384,China)
By taking a thin ring with additional structures as the research object,the approximate analytical method of dynamic characteristics and modal expressions of annular rotationally periodic structures were established by using direct modal perturbation method to reveal the modal characteristics of such structures. Natural frequency splitting conditions were defined by the number of additional structures and wave number,and the modulated rules between standard annular mode shape and perturbation mode shape were presented. The conclusions show that the cosineitem of the splitting doublet changes,while its sine item keeps invariant. Mode shape corresponding to the repeated doublet is modulated by sine and cosine harmonics of perturbation mode shape. Mode shape corresponding to splitting doublet is merely modulated by cosine harmonics. And the modulated degree of repeated doublet is greater than splitting doublet. Simulation results are well consistent with the analytical conclusions.
annular rotationally periodic structure;perturbation method;natural frequency splitting;mode modulation
TH113.1
A
0493-2137(2010)11-1015-05
2009-04-14;
2009-11-18.
國家自然科學(xué)基金資助項(xiàng)目(50705062).
徐進(jìn)友(1977— ),男,博士,xujinyou@tju.edu.cn.
王世宇,wangshiyu@tju.edu.cn.