楊學(xué)忠 黃逢春
教學(xué)內(nèi)容:九年義務(wù)教育教材小學(xué)數(shù)學(xué)六年級下冊第13-14頁。
教學(xué)重點:1.理解圓柱側(cè)面積和表面積的含義;掌握圓柱體側(cè)面積、表面積的計算方法。
2.培養(yǎng)學(xué)生觀察、操作、概括的能力和利用新學(xué)知識合理、靈活地分析、解決實際問題的能力。
教學(xué)難點:運用所學(xué)的知識解決簡單的實際問題。
教學(xué)過程:
一、復(fù)習(xí)舊知,引入新課
1.口頭回答下面的問題。
(1)長方形、正方形和平行四邊形的面積怎樣計算?(板書)
(2)圓的周長和面積是怎么樣計算的?圓的面積公式是怎么樣推導(dǎo)出來的?(演示過程)
2.前面我們認識了圓柱體,生活中哪些地方有圓柱體?今天我們就一起來研究怎樣求圓柱的表面積。
(板書課題:圓柱的表面積)
二、探究圓柱表面積計算
1.請學(xué)生拿出圓柱學(xué)具,問題一:摸一摸圓柱的表面積指的是哪里?(學(xué)生回答后。演示圓柱的表面積的展開圖。)
問題二:怎樣求圓柱的表面積呢?(學(xué)生分組討論匯報得出)圓柱的表面積就是兩個底面的面積加上側(cè)面積。
(教師板書:圓柱的表面積=底面積×2+側(cè)面積。用字母表示:S表=S底×2+S側(cè))
[點評:“圓柱表面積怎么求”這個問題的提出。老師沒有花太多的筆墨,學(xué)生在觀察圓柱表面展示圖就很快地體驗到了。知識要點一步到住。]
2.圓柱的底面是圓形,其底面積我們會求了,那圓柱的側(cè)面積怎樣求呢?
討論:圓柱的側(cè)面展開后是什么圖形?(長方形)這個圖形的長和寬分別是圓柱的哪部分?看哪個小組最先找到突破口。學(xué)生交流匯報。課件展示:圓柱側(cè)面積的長就是底面圓的周長,寬就是圓柱的高。
師生小結(jié):(板書)圓柱側(cè)面積=底面周長×高,用字母表示:S側(cè)=Ch
3。試一試。完成練習(xí)二第5題(略作修改)求下面各圓柱的側(cè)面積。
(1)口算:底面周長是16cm,高是100cm。
(2)筆算:底面半徑是2dm,高5dm。(讓學(xué)生獨立解答。并說出自己的解題思路。)
計算圓柱的側(cè)面積需要哪幾個量?(底面周長和高)要注意什么?
[點評:怎樣計算圓柱側(cè)面積,這一問題是求圓柱表面積的關(guān)鍵,這個環(huán)節(jié)教師利用學(xué)生的已有認知結(jié)構(gòu)——長方形面積的計算,觸類旁通,學(xué)生通過自主探究很順利就獲得了圓柱側(cè)面積的計算方法。]
4.圓柱的側(cè)面積我們會求了,圓柱的表面積會求嗎?
(1)嘗試練習(xí),練習(xí)二第6題中的一題,求下圖圓柱的表面積:
(2)教師在課堂中請不同計算方法的學(xué)生板演。
(3)同學(xué)們在計算過程中,不管哪種解答,一般都有三步:①求側(cè)面積;②求底面積;③把側(cè)面積加上兩個底面積求出表面積。
[點評:讓學(xué)生大膽嘗試計算圓柱表面積,為學(xué)生提供了展示自己的平臺,一方面鞏固圓柱表面積的計算方法,另一方面為解決問題奠定基礎(chǔ)。]
(4)還有簡便一些的方法嗎?圓面積可以轉(zhuǎn)化成近似的長方形,那么圓柱表面積可不可以轉(zhuǎn)化成一個近似的大長方形呢?
(5)小組探究第二種求法。學(xué)生在老師提示下利用手中的剪刀、透明膠在小組里實踐操作,老師巡堂指導(dǎo),學(xué)生把兩個底面圓轉(zhuǎn)化成兩個近似長方形,并拼組成下圖,老師課件展示轉(zhuǎn)化過程,得出第二種求法:
圓柱表面積=底面周長×(高+半徑)
S表=C×(h+r)
(6)做一做練習(xí)二第6題中的另一題:底面直徑是12厘米,高是16厘米,求圓柱表面積。學(xué)生完成后,比較兩種解答方法,哪種簡便一些。
[點評:教師并沒有滿足計算圓柱表面積的一般方法,新的問題引導(dǎo)學(xué)生用切割、拼組方法,運用形變質(zhì)不變的數(shù)學(xué)思維和方法,去探索不同的求積方法。培養(yǎng)了學(xué)生的創(chuàng)新意識。]
5.如果只有一個底面的圓柱,能夠利用上面的方法來解決嗎?
(1)出示課本例4:一頂廚師帽。高28厘米,帽頂直徑20厘米,做這樣一頂帽子至少需要多少面料?(小組再次合作,討論解決,教師巡視。)
(2)匯報交流。課件展示過程。把一個底面轉(zhuǎn)化成近似長方形后,剪成相等的兩份。再拼組成一個近似的長方形(如下圖)。
它們的計算方法:底面周長×(高+半徑÷2)
(3)學(xué)生獨立完成例2。
三、小結(jié)
這節(jié)課我們用轉(zhuǎn)化的數(shù)學(xué)思想和方法把圓柱的三個面或兩個面展開,通過切割、拼接成了一個近似的長方形,得出了圓柱表面積的另一種求法,化難為易,解決了較難的問題,很有創(chuàng)意。
[點評:用切割、拼組的方法。再進行一次嘗試,不僅深化了知識的學(xué)習(xí)。同時讓學(xué)生的探索活動進一步提升。]
四、鞏固反饋
你能用本節(jié)課的計算方法來解決有關(guān)圓柱表面積的實際問題嗎?
1.給筆筒的側(cè)面貼上彩紙,底面周長是25厘米,高是4厘米。至少需要多少彩紙?
2.一個圓柱,底面半徑是2分米,高是4分米,它的表面積是多少平方分米?
3.做一個無蓋的圓柱形鐵皮水桶,高12分米,底面直徑是高的一半,做這個水桶大約需要多少平方分米的鐵皮?
五、全課總結(jié)
這節(jié)課我們學(xué)了什么內(nèi)容?你有什么收獲?
[總評:建構(gòu)主義學(xué)習(xí)理論指出,學(xué)生的學(xué)習(xí)活動必須與問題相結(jié)合。讓學(xué)生帶著問題思考、探究,使學(xué)生擁有學(xué)習(xí)的主動權(quán)。教師向?qū)W生提供了一個探究的情境,讓學(xué)生帶著問題去實施探究活動,抓住了學(xué)生的好奇心理,成功地吸引住學(xué)生的注意力,激發(fā)、調(diào)動了學(xué)生的學(xué)習(xí)興趣。本節(jié)課的亮點不僅在于教師大膽利用學(xué)生的已有認知結(jié)構(gòu),通過觀察體驗圓柱表面積,嘗試掌握圓柱表面積的計算方法,同時鼓勵學(xué)生運用切割、拼組的方法,探索第二種求圓柱表面積的方法。使學(xué)生不僅獲得知識,還能運用數(shù)學(xué)思維和方法進行更為深入地探究。]
(責(zé)編林劍)