趙旭東,王 禮,凌明祥,曾慶雙
(哈爾濱工業(yè)大學(xué)空間控制與慣性技術(shù)研究中心,哈爾濱 150001,zxd7777777@126.com)
趙旭東,王 禮,凌明祥,曾慶雙
(哈爾濱工業(yè)大學(xué)空間控制與慣性技術(shù)研究中心,哈爾濱 150001,zxd7777777@126.com)
研究了時(shí)變時(shí)滯滿足h1≤d(t)≤h2的It型隨機(jī)Markov切換系統(tǒng)的區(qū)間時(shí)滯相關(guān)指數(shù)穩(wěn)定性.通過(guò)構(gòu)造不同的Lyapunov-Krasovskii函數(shù),并通過(guò)引入一些改進(jìn)的積分等式方法,以線性矩陣不等式的形式提出了具有較小保守性的區(qū)間時(shí)滯依賴指數(shù)穩(wěn)定性條件.最后通過(guò)數(shù)值算例說(shuō)明本文結(jié)論的有效性及具有較低的保守性.
時(shí)滯相關(guān)穩(wěn)定性;Markov切換系統(tǒng);區(qū)間時(shí)變時(shí)滯;線性矩陣不等式
時(shí)滯馬爾可夫隨機(jī)切換系統(tǒng)
在本文中:λmin(·),λmax(·)表示相應(yīng)矩陣最小和最大特征值,E[·]代表數(shù)學(xué)期望.‖·‖表示向量的Euclidean范數(shù)和矩陣的譜范數(shù).M >0用來(lái)表示對(duì)稱正定矩陣.當(dāng)r(t)=i∈S={ 1, 2,…,N}時(shí),記Ai=A(r(t)).
系統(tǒng)(1)中d(t)為區(qū)間時(shí)變時(shí)滯,滿足
注1.有必要指出在已知文獻(xiàn)[6-10]中,有關(guān)具有時(shí)變時(shí)滯的It型Markov切換系統(tǒng)的時(shí)滯項(xiàng)大都定義為0≤d(t)≤h,(t)≤μ< 1,而在本文中對(duì)h1,μ并無(wú)限制,因此本文中的時(shí)滯更具一般性.
定理1 給定常數(shù)h1,h2.對(duì)任意時(shí)滯d(t),系統(tǒng)(1)是均方指數(shù)穩(wěn)定的,若存在正常數(shù)ε1,ε2,ε3,ρi和 n × n 階大于0 的矩陣 Pi,Q1i,Q2i,Q3i,Ri,Si,Ti,Z1,Z2,Q1,Q2,Q3及 Lki,Mki,Nki,Hki,k= 1, 2,…, 5,使得對(duì)任意 i= 1, 2,…,N,以下不等式成立:
選擇Lyapunov-Krasovskii函數(shù):
其中:Pi,Q1i,Q2i,Q3i,Q1,Q2,Q3,Z1,Z2,i= 1, 2,…,N,是適當(dāng)維數(shù)正定矩陣,ε1,ε2,ε3為正常數(shù),定義L為隨機(jī)過(guò)程{xt,t≥0}的弱無(wú)窮小微分算子.則對(duì)任意 r(t)=i,i∈ S,有
所以由定義 1,系統(tǒng)(1)是均方指數(shù)穩(wěn)定的.
下面考慮一般型變時(shí)滯馬爾可夫切換系統(tǒng):
定義2 系統(tǒng)(20)是隨機(jī)穩(wěn)定的,若對(duì)于[-h(huán)2,0]上初值 φ(t)和 r(0)∈ S,以下條件滿足:
推論1 給定常數(shù)h1,h2.對(duì)任意時(shí)滯d(t),系統(tǒng)(20)是隨機(jī)穩(wěn)定的,如果存在n×n階矩陣Pi> 0,Q1i> 0,Q2i> 0,Q3i> 0,Ri> 0,Si> 0,Ti> 0,Z1> 0,Z2> 0,Q1> 0,Q2> 0,Q3> 0,Lki,Mki,Nki,Hki,k= 1, 2,…, 5,使得對(duì)任意 i= 1, 2,…,N,以下矩陣不等式成立:
證明 類似定理1的推導(dǎo)過(guò)程,可以得出推論1成立,這里不再贅述.
算例1 考慮具有兩模態(tài)的時(shí)滯馬爾可夫跳躍系統(tǒng)(20),系統(tǒng)參數(shù)如下[5]:
為了將推論1中結(jié)果與文獻(xiàn)[5]中結(jié)果進(jìn)行比較,首先設(shè)定 h1= 0,μ11= -0. 1,μ22= - 0. 8,對(duì)于給定μ值,滿足式(21)~(25)的最大時(shí)滯h2可以通過(guò)求解quasi凸優(yōu)化問(wèn)題得到.表1中給出了比較結(jié)果.另外,設(shè)定μ22=-0. 8,μ =0. 8,對(duì)于給定的μ11,表2給出了比較結(jié)果.通過(guò)表 1,表2的比較可以看出推論1具有更小的保守性.
表1 算例1中對(duì)于給定μ,允許的最大h2比較
表2 算例1中對(duì)于給定μ11,允許的最大h2比較
算例2 考慮具有兩模態(tài)的時(shí)滯馬爾可夫跳躍系統(tǒng)(1),系統(tǒng)參數(shù)如下[9]:
同樣設(shè)定h1= 0,μ11= - 1,μ22= - 2,對(duì)于給定μ值,由定理1得出允許的最大時(shí)滯h2比較結(jié)果在表3中給出.算例2表明定理1的結(jié)果比文獻(xiàn)[9]中的結(jié)論具有更低的保守性.
表3 給定μ,算例2中允許的最大h2比較
當(dāng)時(shí)變時(shí)滯為區(qū)間時(shí)滯(即h1≠0)時(shí),設(shè)定h1=0. 2,μ11= - 1,μ22= - 2,,對(duì)于給定μ值,將定理1所得出允許的最大時(shí)滯h2與文獻(xiàn)[12]中所得結(jié)果列于表4(這里假設(shè)文獻(xiàn)[12]中的干擾輸入v(t)=0).由表4看到當(dāng)時(shí)變時(shí)滯為區(qū)間時(shí)滯時(shí),本文結(jié)果具有較小的保守性.
表4 給定μ,算例2中允許的最大h2比較
[1]CAO Y,LAM J.Robust H∞control of uncertain Markovian jump systems with time-delay[J].IEEE TAC, 2000,45:77-83.
[2]MAO X.Exponential stability of stochastic delay interval systems with Markovian switching[J].IEEE Transactions on Automaic Control, 2002,47(10):1604 -1612.
[3]BENJELLOUN K,BOUKAS E K.Mean square stochastic stability of linear time-delay system with Markovian jumping parameters[J].IEEE Transactions on Automaic Control, 1998,43(10):1456 -1460.
[4]ZHANG L,HUANG B,LAM J.H∞model reduction of Markovian jump linear systems[J].Systems and Control Letters, 2003,50(2):103-118.
[5]XU S,LAM J.Delay-dependent H∞control and filtering for uncertain Markovian jump systems with time-varying delays[J].IEEE Transactions on Circuits and System, 2007,54(9):2070-2077.
[6]舒慧生.時(shí)滯Markov切換It隨機(jī)微分系統(tǒng)的魯棒分析與控制[D].上海:東華大學(xué),2005.
[7]孫敏慧,鄒云.隨機(jī)馬爾可夫切換系統(tǒng)的H∞模型降階[J].控制理論與應(yīng)用, 2006,23(2):268-273.
[8]YUE D,WON S.Delay-dependent robust stability of stochastic uncertain systems with time delay and Markovian jump parameters[J].Circuits,Systems and Signal Processing, 2003,22(4):351-365.
[9]YUE D,HAN Q L.Delay-dependent exponential stability of stochastic systems with time-varying delay,nonlinearity,and Markovian switching[J].IEEE Transactions and Automat Control, 2005,50(2):217 -222.
[10]MAO X R,LAM J,HUANG L R.Stabilisation of hybrid stochastic differential equations by delay feedback control[J].Systems and Control Letters, 2008,57(11):927-935.
[11]CAO Y.Y,LAM J,HU S.Delay-dependent stocastic stability and H∞analysis for time-delay systems with Markovain parameters[J].Journal of the Franklin Institute, 2003,340(6):423-434.
[12]SHAO H Y.Delay-range-dependent robust H∞filtering for uncertain stochastic systems with mode-dependent time delays and Markovian jump parameters[J].Journal of Mathematical Analysis and Applications, 2008,342(6):1084-1095.
Less conservative delay-dependent exponential stability for stochastic Markovian jump systems with time-varying delays
ZHAO Xu-dong,WAGN Li,LING Ming-xiang,ZENG Qing-shuang
(Space Control and Inertial Technology Institute,Harbin Institute of Technology,Harbin 150001,China,zxd7777777@126.com)
In this paper,the delay-range-dependent exponential stability problems for Itstochastic Markovian jump linear systems with interval time-varying delays satisfying h1≤d(t)≤h2are investigated.In terms of linear matrix inequalities,the criteria of less conservative delay-range-dependent stability for Itstochastic Markovian jump systems are proposed by constructing a different Lyapunov-Krasovskii function and introducing some improved integral-equalities.Numerical examples are provided to demonstrate the efficiency and reduced conservatism of the results in this paper.
delay-dependent stability;markovian jump systems;interval time-varying delays;linear matrix inequalities
TP273
A
0367-6234(2010)03-0378-06
2008-10-17.
趙旭東(1970—),男,博士研究生;
曾慶雙(1964—),男,教授,博士生導(dǎo)師.
(編輯 張 宏)