耿帥鋒,趙永亮*,李愛麗,毛 龍,王衛(wèi)國(guó),李 磊
(1.河南工業(yè)大學(xué)生物工程學(xué)院,河南鄭州 450001;2.中國(guó)農(nóng)業(yè)科學(xué)院作物科學(xué)研究所,北京 100081)
植物鈣依賴性蛋白激酶的進(jìn)化和功能研究進(jìn)展
耿帥鋒1,趙永亮1*,李愛麗2,毛 龍2,王衛(wèi)國(guó)1,李 磊1
(1.河南工業(yè)大學(xué)生物工程學(xué)院,河南鄭州 450001;2.中國(guó)農(nóng)業(yè)科學(xué)院作物科學(xué)研究所,北京 100081)
鈣離子是植物細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)的第二信使,植物鈣依賴性蛋白激酶 (CDPK)作為鈣離子的感受器,在植物調(diào)控自身代謝及其對(duì)外界環(huán)境的適應(yīng)性中具有重要作用.對(duì)植物中 CDPK的結(jié)構(gòu)特性、進(jìn)化特性、分布及表達(dá)特性,以及 CDPK在植物中的功能進(jìn)行了概述,旨在為今后培育能抵御多種逆境脅迫,并兼具廣譜抗病性的新品系提供參考依據(jù).
鈣依賴性蛋白激酶;結(jié)構(gòu);進(jìn)化;功能
所有生物體都依賴于復(fù)雜的信號(hào)傳遞網(wǎng)絡(luò)來調(diào)控自身代謝及其對(duì)外界環(huán)境的適應(yīng)性.在眾多的信號(hào)傳遞路徑中,鈣離子作為一個(gè)普遍的二級(jí)信使發(fā)揮著重要作用[1-3].在植物中已經(jīng)鑒定的Ca2+結(jié)合蛋白主要有 4種:鈣依賴性蛋白激酶(calcium-dependent protein kinase,CDPK)、鈣調(diào)素(calmodulins,CaM)、鈣 /鈣調(diào)素依賴性蛋白激酶(CCaMKs)以及鈣調(diào)磷酸酯酶 B類蛋白 (calcineurin B-like proteins,CBL).其中 CDPK是植物和原生動(dòng)物中所特有的 Ca2+離子結(jié)合蛋白,在鈣離子介導(dǎo)的信號(hào)傳遞路徑中扮演著關(guān)鍵角色[4].
在植物中,CDPK具有明顯的結(jié)構(gòu)特征,從蛋白質(zhì)的N端到 C端,存在 4個(gè)典型的結(jié)構(gòu)域,即N末端可變區(qū)、蛋白激酶結(jié)構(gòu)域、自抑區(qū)和類鈣調(diào)蛋白結(jié)構(gòu)域[5].
植物 CDPK的 N末端為可變區(qū),通常由 20~200個(gè)氨基酸殘基組成,且在氨基酸水平上的同源性很低,不同種屬間該區(qū)域的氨基酸殘基數(shù)量變化較大,保守性差.
與N末端可變區(qū)相連的蛋白激酶結(jié)構(gòu)域通常由 300多個(gè)氨基酸殘基組成,該區(qū)域中具有典型的 Ser/Thr蛋白激酶的催化保守序列,不同種屬或不同成員之間具有較高的同源性.
自抑區(qū)緊連蛋白激酶結(jié)構(gòu)域,由 20~30個(gè)氨基酸殘基組成,在 CDPK中的各類功能區(qū)中最為保守,富含堿性氨基酸,具有以底物方式與蛋白激酶結(jié)構(gòu)域結(jié)合進(jìn)而表現(xiàn)自抑制特征的能力.當(dāng)Ca2+低于某一濃度時(shí),自抑區(qū)與蛋白激酶結(jié)構(gòu)域結(jié)合,使其激酶活性受到抑制;當(dāng) Ca2+高于某一濃度時(shí),自抑區(qū)對(duì)蛋白激酶結(jié)構(gòu)域的抑制解除,使其具有激酶活性[6].
類鈣調(diào)蛋白結(jié)構(gòu)域是與 Ca2+結(jié)合的區(qū)域,含有一段結(jié)構(gòu)和功能類似于 CaM的氨基酸序列,包括 4個(gè)與 Ca2+結(jié)合的 EF手型結(jié)構(gòu),通過該手型結(jié)構(gòu)使 CDPK與 Ca2+高度親和[5,7].類鈣調(diào)蛋白結(jié)構(gòu)域也是 CDPK有別于其他類型激酶的特有區(qū)域,但該區(qū)域保守性差[8].分子進(jìn)化研究的結(jié)果顯示,早期植物種屬 CDPK基因可能來自于蛋白激酶和 CaM基因的融合[9].
此外,多數(shù) CDPK在 N末端含有與蛋白質(zhì)定位(膜定位)相關(guān)的豆蔻?;稽c(diǎn) (MGXXXSK)[10].自抑區(qū)包含雙元的保守區(qū),與蛋白質(zhì)核定位相關(guān).類鈣調(diào)蛋白結(jié)構(gòu)域的 EF手環(huán)中關(guān)鍵氨基酸的偏離能夠影響其與鈣離子的結(jié)合能力,進(jìn)而可能影響其功能.在花生中,有一個(gè) CDPK基因的第二個(gè) EF手結(jié)合位點(diǎn)發(fā)生偏離,從而引起其與鈣離子的結(jié)合能力下降[11].
對(duì)擬南芥和水稻的全基因組序列進(jìn)行分析分別獲得 34和 31個(gè) CDPK基因[7,12,13].分屬于 4個(gè)不同的 group(I-I V).在未全基因組測(cè)序的小麥中也鑒定出 20個(gè) CDPK基因,分屬于 4個(gè)不同的group(I-I V)[4].其他植物如大豆、番茄、玉米也含有 CDPK基因家族[10].對(duì)擬南芥、水稻和其他植物中 CDPK基因的系統(tǒng)發(fā)育進(jìn)行分析表明基因家族的進(jìn)化是多水平復(fù)制.在擬南芥中,4號(hào)染色體短臂上的一個(gè)基因簇包含 5個(gè)基因 (AtCPK21,22,23,27和 31),可能是通過基因末端復(fù)制產(chǎn)生的,在功能上可能相似或者互補(bǔ).在水稻中,CDPK的氨基酸水平進(jìn)化分析發(fā)現(xiàn) 11個(gè)基因?qū)?其復(fù)制方式和擬南芥不同,有可能是通過片段復(fù)制而產(chǎn)生的.在小麥中,CDPK也是成對(duì)存在,而且 N端的 GC含量很高[4].總之,植物 CDPK在基因組進(jìn)化過程中形成一個(gè)沒有多大差別的多基因家族,表明該類基因的存在受自然界的正向選擇,對(duì)植物適應(yīng)環(huán)境有著重要的作用.
隨著測(cè)序技術(shù)的發(fā)展和谷類作物幾個(gè)主要物種 (水稻、高粱、玉米、短柄草)全基因組測(cè)序的完成,為基因組的進(jìn)化分析奠定了基礎(chǔ).在不同物種的進(jìn)化關(guān)系中,比較基因組學(xué)通過蛋白、RNA和不同生物調(diào)控區(qū)域的相似性和差異性推斷這些因素在選擇機(jī)制中的作用.就不同物種而言,生物體成功進(jìn)化中重要的因素是保守的,不重要的因素是分化的.早期的禾本科家族基因結(jié)構(gòu)比較研究顯示從 50~80百萬年前共同祖先分化的草類之間有共線性關(guān)系[13],如在短柄草、高粱、水稻和玉米之間有 59個(gè)共線基因區(qū)域包含 99.2%的短柄草基因[14].通過對(duì)不同物種同源基因?qū)Φ耐刺娲史治?可以估計(jì)出短柄草從小麥中分化是 32~39百萬年前,水稻中是 40~53百萬年前,高粱中是 45~60百萬年前.另外,根據(jù)測(cè)序物種的基因組序列信息,可以利用比較基因組學(xué)研究未測(cè)序物種的進(jìn)化和基因組信息.
由于 CDPK廣泛參與植物生長(zhǎng)發(fā)育和逆境的響應(yīng)過程,因此,在長(zhǎng)期演化過程中,形成了以眾多成員組成的基因家族,各成員通過自身的結(jié)構(gòu)特征分別介導(dǎo)不同的內(nèi)部生育信號(hào)和外部逆境信號(hào).在特定組織、生理?xiàng)l件或發(fā)育階段下表達(dá)的不同 CDPK家族成員基因,分別執(zhí)行特定的功能.在水稻中,OsCPK2和 OsCPK11在葉片對(duì)光的反應(yīng)中具有不同的功能[15];在煙草中,N tCPK1在根、莖和花中都表達(dá),而葉片中不表達(dá)[16];在馬鈴薯中,StCPK1的表達(dá)受發(fā)育調(diào)控,在開始形成塊莖時(shí)被誘導(dǎo)表達(dá)[12].
CDPK在植物體內(nèi)廣泛分布,在器官水平上,CDPK分布于根、莖、葉、果實(shí)和種子中[17].在水稻中,OsCPK1、OsCPK6、OsCPK7、OsCPK8、Os-CPK13、OsCPK17、OsCPK23在根、莖、葉、穗中表達(dá),OsCPK4、OsCPK14在根、莖、葉中表達(dá),Os-CPK15、OsCPK16、OsCPK19在莖、葉、穗中表達(dá) ,OsCPK9在莖、葉中表達(dá),OsCPK12在葉、穗中表達(dá),OsCPK24、OsCPK29只在根中表達(dá)[18].在小麥中,TaCPK1、TaCPK2、TaCPK5、TaCPK16在根、莖、葉、幼穗、未成熟種子中都表達(dá),TaCPK3、TaCPK6、TaCPK9、TaCPK12、TaCPK14、TaCPK15在根、莖、葉、幼穗中表達(dá);TaCPK10在根、葉、幼穗、未成熟種子中表達(dá),TaCPK8在葉、未成熟種子中表達(dá),TaCPK13只在幼穗中表達(dá)[4].
在亞細(xì)胞定位水平上,CDPK在細(xì)胞膜、細(xì)胞骨架、細(xì)胞質(zhì)、葉綠體、線粒體、微粒體膜、細(xì)胞核和染色體等細(xì)胞器中均有表達(dá).在擬南芥中,通過CDPK與綠色熒光蛋白融合的方法,對(duì)擬南芥 9個(gè) CDPK成員 AtCPK2、A tCPK3、A tCPK4、A tCPK7、A tCPK8、AtCPK9、AtCPK16、AtCPK21和 A tCPK28的亞細(xì)胞定位進(jìn)行研究,結(jié)果表明,A tCPK2定位在內(nèi)質(zhì)網(wǎng)膜 (ER),A tCPK1定位在過氧化物酶體,A tCPK7、A tCPK8、AtCPK9、AtCPK16、A tCPK21、A tCPK28定位在細(xì)胞膜,AtCPK3和 A tCPK4定位在細(xì)胞質(zhì),AtCPK3和 AtCPK4定位在細(xì)胞核、線粒體[19].另外,在亞細(xì)胞水平上部分 CDPK基因具有移動(dòng)性,如冰草中,M cCPK1在低濕條件或者干旱脅迫下,亞細(xì)胞定位可以從質(zhì)膜轉(zhuǎn)移到核中,這可能和其功能相關(guān)[20].擬南芥中,A tCPK3和A tCPK4在感受逆境前分布于細(xì)胞質(zhì)中,在感受逆境后分布于細(xì)胞核內(nèi),亞細(xì)胞定位的改變可能進(jìn)一步激活位于細(xì)胞核內(nèi)的轉(zhuǎn)錄因子,調(diào)控下游基因的表達(dá)[19].
對(duì)于 CDPK的功能研究主要集中在兩個(gè)方面,一是 CDPK對(duì)各種脅迫和刺激反應(yīng),二是通過基因轉(zhuǎn)化研究對(duì)其功能進(jìn)行驗(yàn)證.
CDPK的表達(dá)可受水分、鹽分、低溫、傷害等非生物因素和稻瘟病、真菌等生物因素以及赤霉素、生長(zhǎng)素、細(xì)胞分裂素等激素的誘導(dǎo),如表1所示.
從表1可以看出:冰草中M cCPK1受鹽和水分脅迫誘導(dǎo)[20];葡萄中 ACPK1受 ABA(脫落酸)誘導(dǎo),而其他植物激素如生長(zhǎng)素、赤霉素以及細(xì)胞分裂素則對(duì) ACPK1的表達(dá)沒有影響,表明 ACPK1可能特異參與 ABA信號(hào)傳遞路徑[21];水稻中有 4個(gè) CDPK受低溫、鹽和脫水脅迫誘導(dǎo)[18],6個(gè)基因受稻瘟病誘導(dǎo)[18],4個(gè)基因受鹽誘導(dǎo)[18],2個(gè)基因受低溫誘導(dǎo),而 OsCDPK13(OsCPK7)受低溫和赤霉素誘導(dǎo)[22].煙草中 N tCPK2和 N tCPK3受真菌和滲透壓誘導(dǎo)[23],N tCPK1受 I AA(生長(zhǎng)素)、GA(赤霉素 )、鹽、真菌、幾丁質(zhì)、細(xì)胞分裂素、傷害的誘導(dǎo)[16,23],N tCPK4受鹽、赤霉素誘導(dǎo)[24].玉米中 ZmCPK7和 ZmCPK9受光誘導(dǎo),ZmCPK1受低溫誘導(dǎo)[25],ZmCPK11受傷害誘導(dǎo).小麥中,目前只報(bào)道了 TaCDPK1參與了蔗糖誘導(dǎo)的信號(hào)傳遞路徑[26].
目前有些 CDPK的功能則通過轉(zhuǎn)基因得到了驗(yàn)證,如表2所示.
表2 已有文獻(xiàn)報(bào)道的 CDPK功能驗(yàn)證
從表2可以看出:在逆境抵御方面,利用玉米原生質(zhì)體瞬時(shí)表達(dá)體系證明了擬南芥 A tCPK10和AtCPK30可以激活脅迫和 ABA誘導(dǎo)的啟動(dòng)子[27];擬南芥中突變 AtCPK3和A tCPK6證明其作用于 S型細(xì)胞防衛(wèi)、鈣離子滲透通道和細(xì)胞氣孔關(guān)閉[28];擬南芥中過表達(dá)和突變 A tCPK4和AtCPK11證明其在 ABA信號(hào)傳遞路徑中磷酸化下游轉(zhuǎn)錄因子 ABF1和 ABF4[29].擬南芥A tCPK32的過量表達(dá)增強(qiáng)了響應(yīng) ABA的基因的表達(dá)[30].在水稻中過量表達(dá)水稻 OsCPK13(OsCDPK7)增強(qiáng)了水稻對(duì)低溫、鹽和干旱的耐受能力[31];在病原防衛(wèi)方面,利用病毒誘導(dǎo)的基因沉默 (Virus-Induced Gene-Silencing,V IGS)體系的研究結(jié)果表明煙草N tCPK2的沉默降低和延遲了 gene-for-gene互作引起的過敏反應(yīng),從而證明 N tCPK2在煙草R基因介導(dǎo)的病原防衛(wèi)中發(fā)揮著重要作用[32];大麥中應(yīng)用瞬時(shí)表達(dá)體系證明大麥 HvCDPK3和HvCDPK4在白粉菌對(duì)寄主細(xì)胞早期侵染過程中至少存在著部分拮抗作用[33].在根發(fā)育方面,苜蓿M tCPK1能夠調(diào)節(jié)根毛生長(zhǎng)以及防御相關(guān)基因的表達(dá)[34],而 M tCPK3則在根與根瘤菌 Sinorhizobium m eliloti的共生互作中發(fā)揮關(guān)鍵作用[35].
非生物脅迫和生物脅迫等刺激均可導(dǎo)致植物內(nèi)源 Ca2+濃度發(fā)生變化[36-38],植物 Ca2+結(jié)合蛋白能夠識(shí)別 Ca2+濃度變化,改變下游蛋白質(zhì) (如轉(zhuǎn)錄因子)磷酸化狀態(tài),從而影響基因表達(dá)模式[2].可見 Ca2+濃度變化可以被多種逆境脅迫以及病原所誘導(dǎo),那么 Ca2+結(jié)合蛋白必然參與了多條抵御非生物脅迫及生物脅迫的防御路徑.植物CDPK作為鈣離子結(jié)合蛋白,在改善植物的抗逆和抗病方面一定有很大潛力.如在水稻中,過量表達(dá)OsCPK7的轉(zhuǎn)基因水稻增強(qiáng)了脅迫信號(hào)在遺傳作用區(qū) (維管組織)的傳導(dǎo),改善了耐逆性,說明單一的 CDPK基因就有很重要的作用[31].
總之,環(huán)境脅迫 (如低溫、鹽和干旱)在世界范圍內(nèi)對(duì)作物產(chǎn)量造成巨大影響,而由各種作物病害所造成的減產(chǎn)也不容忽視.我國(guó)是一個(gè)農(nóng)業(yè)大國(guó),隨著人口的增長(zhǎng)和可利用耕地面積的日益減少,培育能抵御多種逆境脅迫,并兼具廣譜抗病性的新品系顯得越來越重要.
[1] TrewavasA,MalhóR.Ca2+signalling in plant cells:the big network[J].Curr Opin PlantBiol,1998,1(5):428-433.
[2] Sanders D,Brownlee C,Harper J.Communicatingwith calcium[J].Plant Cell,1999,11(4):691-706.
[3] BerridgeM,Lipp P,BootmanM.The versatility and universality of calcium signalling[J].NatRevMolCellBio,2000,1(1):11-21.
[4] LiA,Zhu Y,Tan X,et al.Evolutionary and functional study of the CDPK gene family in wheat(Triticum aestivumL.)[J].PlantMol Biol,2008,66(4):429-443.
[5] WeljieA,Clarke T,JufferA,et al.Comparative modeling studies of the ca lmodulin-like domain of calcium-dependent protein kinase from soybean[J].Proteins,2000,39(4):343-357.
[6] Cheng S,W il lmann M,Chen H,et al.Calcium signaling through protein kinases.The A rabidopsiscalcium-dependent protein kinase gene family[J].Plant Physiol,2002,129(2):469-485.
[7] Ha rmon A,GribskovM,Harper J.CDPKs-a kinase for every Ca2+signal?[J]. Trends Plant Sci,2000,5(4):154-159.
[8] Hrabak E,Dickmann L,Satterlee J,et al.Characterization of eight new members of the ca lmodulin-like domain protein kinase gene family fromArabidopsis thaliana[J]. Plant MolBiol,1996,31(2):405-412.
[9] Zhang X,Choi J.Molecular evolution of ca lmodulin-like domain protein kinases(CDPKs)in plants and protists[J].J Mol Evol,2001,53(3):214-224.
[10]Krupa A.Genome-wide comparative analyses of domain organisation of repertoiresof protein kinases ofA rabidopsis thalianaandO ryza sativa[J].Gene,2006,380(1):1-13.
[11]Christodoulou J,Malmendal A,Harper J,et al.Evidence for differing roles for each lobe of the calmodulin-like domain in a calciumdependent protein kinase[J].J Biol Chem,2004,279(28):29092-29100.
[12]Raíces M,Chico J,Téllez-I? ón M,et al.Molecular characterization ofStCDPK1,a calcium-dependent protein kinase fromSolanum tuberosumthat is induced at the onset of tuber development[J]. Plant Mol Biol,2001,46(5):591-601.
[13]Wolfe K,Gouy M,Yang Y,et al.Date of the monocot-dicot divergence est imated from chloroplast DNA sequence data[J].PTOC Natl Acad Sci USA,1989,86(6):6201-6205.
[14]W itte C,Keinath N,Dubiella U,et al.Tobacco calcium-dependent protein kinases are differentially phosphorylated invivoas part of a kinase cascade that regulates stress response[J].J Biol Chem,2010,285(13):9740-9748.
[15]FrattiniM,Morello L,Breviario D.Rice calcium-dependent protein kinase isofo rmsOs-CDPK2andOsCDPK11show different responses to light and different expression patterns during seed development[J].PlantMol Biol,1999,41(6):753-764.
[16]Mee Yoon G,Sun C H,Jung H H,et al.Characterization ofN tCDPK1,a calcium-dependent protein kinase gene inN icotiana tabacum,and the activity of its encoded protein[J].PlantMolBiol,1999,39(5):991-1001.
[17]Schenk P,Snaar-Jagalska B.Signal perception and transduction:the role of protein kinases[J].Bioch im Biophys Acta,1999,1449(1):1-24.
[18]Wan B,Lin Y,Mou T.Expression of rice Ca2+-dependent protein kinases(CDPKs)genes under different environmental stresses[J]. FEBS Lett,2007,581(6):1179-1189.
[19]Dammann C,Ichida A,HongB,et al.Subcellular targeting of nine calcium-dependent protein kinase isofo rms fromArabidopsis[J].Plant Physiol,2003,132(4):1840-1848.
[20]Chehab E,Patharkar O,Hegeman A,et al.Autophosphorylation and subcellular localization dynamics of a salt and water deficit-induced calcium-dependent protein kinase from ice plant[J].Plant Physiol,2004,135(3):1430-1446.
[21]Yu X,Zhu S,Gao G,et al.Expression of a grape calcium-dependent protein kinase ACPK1inA rabidopsis thalianapromotes plant growth and confers abscisic acid-hypersensitivity in ge rmination,postgermination growth,and stomatal movement[J].PlantMol Biol,2007,64(5):531-538.
[22]Abbasi F,Onodera H,Toki S,et al.OsCDPK13,a calcium-dependent protein kinase gene from rice,is induced by cold and gibberellin in rice leaf sheath[J].PlantMolBiol,2004,55(4):541-552.
[23]Klimecka M,Muszynska G.Structure and functions of plant calcium-dependent protein kinases[J].Acta Bicchim Pol,2007,54(2):219-233.
[24]ZhangM,Liang S,Lu Y.Cloning and functional characterization ofN tCPK4,a new tobacco calcium-dependent protein kinase[J].Biochim BiophysActa,2005,1729(3):174-185.
[25]Berberich T,Kusano T.Cycloheximide induces a subset of low temperature-inducible genes in maize[J].Mol Gene Genetics,1997,254(3):275-283.
[26]Martínez-Noёl G,Nagaraj V,CalóG,et al.Sucrose regulated expression of a Ca2+-dependent protein kinase(TaCDPK1)gene in excised leaves of wheat[J]. Plant Physiol Biochem,2007,45(6-7):410-419.
[27]Sheen J.Ca2+-dependent protein kinases and stress signal transduction in plants[J].Science,1996,274:1900-1902.
[28]Mori I,Murata Y,Yang Y,et al.CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-Type anion-and Ca2+-permeable channels and stomatal closure[J].PLoS Biol,2006,4(10):1749-1762.
[29]Zhu S,Yu X,Wang X,et al.Two calciumdependent protein kinases, CPK4 and CPK11,regulate abscisic acid signal transduction inA rabidopsis[J].Plant Cell,2007,19(10):3019-3036.
[30]Choi H,Park H,Park J,et al.Arabidopsis calcium-dependent protein kinaseA tCPK32 interacts withAB F4,a transcriptional regulator of abscisic acid-responsive gene expression,and modulates its activity[J]. Plant Physiol,2005,139(4):1750-1761.
[31]Saijo Y,Hata S,Kyozuka J,et al.Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J].Plant J,2001,23(3):319-327.
[32]Romeis T,LudwigA,Martin R,et al.Calcium-dependent protein kinases play an essential role in a plant defence response[J].EMBO J,2001,20(20):5556-5567.
[33]Freymark G,Diehl T,MiklisM,et al.Antagonistic control ofpowdery m ildew host cell entry by barley calcium-dependent protein kinases(CDPKs)[J].Mol PlantMicrobe In,2007,20(10):1213-1221.
[34]Ivashuta S,Liu J,Lohar D,et al.RNA interference identifies a calcium-dependent protein kinase involved inM edicago truncatula root development[J].Plant Cell,2005,17(11):2911-2921.
[35]Gargantini P,Gonzalez-Rizzo S,Chinchilla D,et al.A CDPK isofo rm participates in the regulation of nodule number inM edicago truncatula[J]. Plant J,2006,48(6):843-856.
[36]Knight H,KnightM.Abiotic stress signalling pathways: specificity and cross-talk[J].Trends in Plant Sci,2001,6(6):262-267.
[37]Sanders D,Pelloux J,Brownlee C,et al.Calcium at the crossroads of signaling[J].Plant Cell,2002,S14:401-417.
[38] Iwata Y,Kuriyama M,Nakakita M,et al.Characterization of a calcium-dependent protein kinase of tobacco leaves that is associated with the pla smamembrane and is inducible by sucrose[J]. Plant Cell Physiol,1998,39(11):1176-1183.
[39]Liu G,Chen J,Wang X,et al.VfCPK1,a gene encoding calcium-dependent protein kinase fromV icia faba,is induced by drought and abscisic acid[J]. Plant Cell Environ,2006,29(11):2091-2099.
[40]LanteriML,Pagnussat GC,Lamattina L,et al.Calcium and calcium-dependent protein kinases are involved in nitric oxide-and auxininduced adventitious root formation in cucumber[J].J Exp Bot,2006,57(6):1341-1351.
[41]Ma S Y,WuW H.AtCPK23functions inA rabidopsisresponses to drought and salt stresses[J].PlantMolBiol,2007,65(4):511-518.
[42]Ye S,Wang L,Xie W,et al. Expression profile of calcium-dependent protein kinase(CDPKs)genes during the whole lifespan and under phytohormone treatment conditions in rice(Oryza sativa L. ssp. indica)[J].PlantMolBiol,2009,70(3):311-325.
[43]Breviario D,Morello L,Giani S.Molecular cloning of two novel rice cDNA sequences encoding putative calcium-dependent protein kinases[J].Plant Mol Biol,1995,27(5):953-967.
[44]Asano T,Tanaka N,Yang G,et al.Genome-wide identification of the rice calciumdependent protein kinase and its closely related kinase gene families:comprehensive analysis of the CDPKs gene family in rice[J].Plant Cell Physiol,2005,46(2):356-366.
[45]KhanM M,Jan A,Karibe H,et al.Identification of phosphoproteins regulated by gibberellin in rice leaf sheath[J].PlantMol Biol,2005,58(1):27-40.
[46]Saijo Y,Hata S,Sheen J,et al.cDNA cloning and prokaryotic expression of maize calcium-dependent protein kinases[J].Biochim BiophysActa,1997,1350(2):109-114.
[47]Murillo I,Jaeck E,Cordero M J,et al.Transcriptional activation of a maize calciumdependent protein kinase gene in response to fungal elicitors and infection[J].Plant Mol Biol,2001,45(2):145-158.
[48]Szczegielniak J,Klimecka M,L iwosz A,et al.A wound-responsive and phospholipid-regulated maize calcium-dependent protein kinase[J]. Plant physiol,2005,139(4):1970-1983.
[49]McCubbin A G,Ritchie SM,Swanson S J,et al.The calcium-dependent protein kinase HvCDPK1 mediates the gibberellic acid response of the barley aleurone through regulation of vacuolar function[J].Plant J,2004,39(2):206-218.
[50]KobayashiM,Ohura I,Kawakita K,et al.Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase[J]. Plant Cell,2007,19(3):1065-1080.
RESEARCH PROGRESS OF EVOLUTI ON AND FUNCTI ON OF CALCI UM-DEPENDENT PROTEI N KI NASE I N PLANT
GENG Shuai-feng1,ZHAO Yong-liang1,L IAi-li2,MAO Long2,WANGWei-guo1,L ILei1
(1.School of B ioengineering,Henan University of Technology,Zhengzhou450001,China;2.Institute of Crop Sciences,Chinese Academ y of Agricultural Sciences,B eijing100081,China)
Calcium ions play the role of the second messenger in plant signal transduction.As the calcium ion sensor,the calcium-dependent protein kinase(CDPK)in plant has the important effect in regulating plant metabolism and the plant adaptability to the external environment.The paper summarized the structure characteristics,the evolutionary characteristics,distribution and expression characteristics,and the function of CDPK in plant to provide reference for the development of broad-spectrum disease-resistance varieties with resistance to different kinds of stresses.
calcium-dependent protein kinase;structure;evolution;function
TS201.2
A
1673-2383(2010)05-0086-07
2010-06-03
河南工業(yè)大學(xué)博士基金(150216)
耿帥鋒 (1982-),男,河南汝州人,碩士研究生,研究方向?yàn)槲⑸锱c生化藥學(xué).
*通信作者