李戈陽
中國艦船研究設(shè)計中心,湖北武漢 430064
電抗加載天線陣的優(yōu)化設(shè)計及性能分析
李戈陽
中國艦船研究設(shè)計中心,湖北武漢 430064
為優(yōu)化均勻圓形天線陣的輻射性能,利用矩量法對電抗加載偶極子均勻圓陣的波束形成進(jìn)行了可行性分析,并設(shè)計了粗選與微擾結(jié)合的電抗加載值序列優(yōu)化計算方法,以滿足指定方向上波束形成的需求。仿真結(jié)果表明,電抗加載天線陣波束形成方法能有效在期望方向上形成具有較高增益與前后比的波束,且對陣半徑與電抗加載值的誤差具有一定的容錯能力。該分析方法與計算結(jié)果對電抗加載天線陣的設(shè)計與實際工程應(yīng)用具有一定的指導(dǎo)意義。
電抗加載;偶極子;波束形成;增益;前后比
電抗加載天線陣以其結(jié)構(gòu)簡單,不需要多路接收機(jī),采用對寄生振子進(jìn)行電抗加載就可實現(xiàn)波束控制等諸多優(yōu)點,在艦載通信系統(tǒng)[1-2]、現(xiàn)代雷達(dá)和通信[3]領(lǐng)域得到了廣泛應(yīng)用。利用寄生振子控制天線陣輻射方向的方法在本世紀(jì)初由日本學(xué)者提出,利用此方法制成的Yagi-Uda天線已在通信和廣播等領(lǐng)域得到廣泛應(yīng)用,但將這一方法上升到理論高度的卻是美國學(xué)者Harrington。1978年,Harrington首次提出電抗加載天線陣?yán)碚摚?],并以七元圓陣為例對增益方向圖進(jìn)行了綜合優(yōu)化,用計算結(jié)果證明了理論的有效性。
基于電抗加載天線陣的基本理論,本文設(shè)計了小型均勻圓陣,并計算了天線陣半徑的變化與電抗加載值的誤差對天線陣電性能的影響。
自從1978年Harrington將矩量法應(yīng)用于電磁學(xué)后,矩量法一直是分析線天線輻射與散射問題的有效工具[5]。矩量法是一種將線性空間的算子方程轉(zhuǎn)化為矩陣方程來進(jìn)行計算的數(shù)值方法。本文根據(jù)矩量法原理,采用分段正弦基和伽遼金法計算了天線陣各單元的電流分布[6]。
根據(jù)矩量法原理,采用分段正弦基和伽遼金法分析天線。設(shè)每根振子均勻分為m+1小段,形成m個元偶極子,振子的全長為2L,共有n根振子。在第1根振子的中心,用電壓源V0饋電。可構(gòu)造矩陣方程:
在上式中,N=m×n。令加載的阻抗矩陣為[ZL],即
在矩陣[ZL]中,對角線上的元素為各天線的加載電抗值。考慮電抗加載后,新的廣義阻抗矩陣[7]為:
求解式(1),即可得各振子上的電流分布:
得到每個振子上的電流分布后,即可計算圓陣的基本輻射性能。
以上分析表明,通過改變天線陣中任一振子的電抗加載值,即可改變天線陣中各振子的電流分布,從而改變天線陣的整體輻射特性[8]。因此,可以考慮采用調(diào)整電抗加載值的方法,盡可能地增加天線陣在期望方向的增益,抑止旁瓣和壓縮波束[9]等。以下將就加載電抗值序列的計算方法進(jìn)行分析。
對于所研究的電抗加載天線陣,本文分以下兩步對電抗加載值進(jìn)行優(yōu)化計算。
步驟一:加載電抗數(shù)值序列的有界粗選。
加載的電抗值必須易于用電感元件或電容元件實現(xiàn),這是對優(yōu)化結(jié)果最基本的要求。所以,在優(yōu)化中,加載電抗值只能在一個有限的區(qū)間內(nèi)變化[10],如果初值選取得當(dāng),還可大大縮短尋優(yōu)時間[11]。從工程應(yīng)用角度出發(fā),本文將每根天線加載電抗值的取值范圍設(shè)定為(-350,350)Ω,取50 Ω為步長,采用窮舉法來計算期望方向上增益達(dá)到最大值時的加載電抗值序列。
步驟二:加載電抗值序列的微擾算法優(yōu)化。
為使天線陣在期望方向上的增益G(θ,φ)盡可能增大,且對旁瓣進(jìn)行抑止,本文利用微擾的方法對加載電抗值序列進(jìn)行了優(yōu)化,以盡可能避免計算結(jié)果陷入局部最優(yōu)解。為便于描述,設(shè)主瓣的峰值增益為Gmax,第一副瓣的峰值增益為Gsec。
計算初值加載序列的G(θ,φ)、Gmax、Gsec,然后在初值加載序列基礎(chǔ)上進(jìn)行擾動,計算天線陣輻射特性,得到當(dāng)前增益值G′(θ,φ)、G′max、G′sec。
1)當(dāng)G′(θ,φ)≠G′max時:
(1)若G(θ,φ)=Gmax,則增強(qiáng)擾動,重新計算;
(2)若G(θ,φ)≠Gmax,且G′(θ,φ)/G′max≤G(θ,φ)/Gmax,則增強(qiáng)擾動,重新計算;
(3)若G(θ,φ)≠Gmax,且G′(θ,φ)/G′max>G(θ,φ)/Gmax,則接受該組加載值,將G(θ,φ)、Gmax、Gsec替換為G′(θ,φ)、G′max、G′sec。
2)當(dāng)G′(θ,φ)=G′max時:
(1)若G(θ,φ)=Gmax,G′(θ,φ)/G′sec≥G(θ,φ)/Gsec,且G′(θ,φ)>G(θ,φ),則接受該組加載值,將G(θ,φ)、Gmax、Gsec替換為G′(θ,φ)、G′max、G′sec;
(2)若G(θ,φ)=Gmax,G′(θ,φ)/G′sec≥G(θ,φ)/Gsec,且G′(θ,φ)≤G(θ,φ),則以概率P1接受該組加載值,將G(θ,φ)、Gmax、Gsec替換為G′(θ,φ)、G′max、G′sec;
(3)若G(θ,φ)=Gmax,G′(θ,φ)/G′sec<G(θ,φ)/Gsec,且G′(θ,φ)>G(θ,φ),則以概率P2接受該組加載值,將G(θ,φ)、Gmax、Gsec替換為G′(θ,φ)、G′max、G′sec;
(4)若G(θ,φ)=Gmax,G′(θ,φ)/G′sec<G(θ,φ)/Gsec,且G′(θ,φ)≤G(θ,φ),則增強(qiáng)擾動,重新計算;
(5)若G(θ,φ)≠Gmax,則接受該組加載值,將G(θ,φ)、Gmax、Gsec替換為G′(θ,φ)、G′max、G′sec。
3)當(dāng)連續(xù)增強(qiáng)擾動次數(shù)大于預(yù)設(shè)的容忍門限值T時,程序中止,輸出加載值序列。
其目標(biāo)系統(tǒng)為電抗加載七單元圓陣,如圖1所示。其中,天線單元為半波振子,工作中心頻率12.5 MHz,振子半徑10-3λ(2.4 cm),天線陣半徑3/8λ(9 m),天線高度6 m。在電抗加載值序列的優(yōu)化選擇算法中,設(shè)期望方向為30°,接受概率P1=40%,P2=80%,容忍門限T=20,可計算得出各天線的加載值序列為[0-114.80-126.88 112.63-22.37-13.28 119.88],其從左至右依次對應(yīng)于圖1中編號1~7的天線單元所需加載的電抗值。
利用此組加載值,將天線的工作頻率改變?yōu)?2 MHz和13 MHz,分別進(jìn)行計算,得到天線陣的輸入阻抗、駐波比和增益如表1所示。
表1 天線電參數(shù)隨工作頻率的變化Tab.1 Variation of antenna electrical parameters along with operational frequency
天線陣的E面(φ=0°)方向圖如圖2所示。
結(jié)合表1與圖2可看出,當(dāng)天線陣工作在中心頻率12.5 MHz時,天線陣增益達(dá)到最大值9.180 8 dB,且較好地抑止了旁瓣。實驗結(jié)果驗證了方法的正確性,同時,還證明了該天線陣具有較好的方向性與增益。
當(dāng)天線陣在12~13 MHz頻帶內(nèi)工作時,方向圖能較準(zhǔn)確地對準(zhǔn)期望的方向,且具有8 dB以上的增益,這說明該天線陣具有一定的帶寬。對照表1與圖2可看出,當(dāng)天線陣的實際工作頻率偏離中心頻率時,主波束略偏離期望方向且主瓣增益有所降低。但此時,如圖2a所示,天線陣方向圖雖具有一定的后瓣,但駐波比比較理想,在對后瓣無嚴(yán)格限制要求時,可將其作為發(fā)射天線陣使用;如圖2c所示,天線陣雖具有非常理想的旁瓣抑止效果,但駐波比偏高,在實際工程應(yīng)用中,可考慮采用對天線加載優(yōu)化匹配網(wǎng)絡(luò)的方法來改善駐波比,使之降低到工程要求的范圍內(nèi)。
天線陣波束形成方法的性能是指天線陣參數(shù)的變化對方向圖的影響,影響越小,天線陣的性能便越好,天線陣工作也越穩(wěn)定。影響天線陣波束形成方法性能的因素有很多,例如,工作頻率的變化、振子粗細(xì)的變化、振子長短的變化、天線陣半徑的變化、加載電抗值的變化等。下面本文將以圖1的七元圓陣為例來分析天線陣半徑的變化和電抗加載值的變化對天線陣性能的影響。
1)天線陣半徑的改變對方向圖的影響。
研究對象為電抗加載七單元均勻圓陣 (圖1),其天線陣參數(shù)設(shè)置為:工作中心頻率f=12 MHz(工作波長λ為25 m),振子半徑10-3λ(2.5 cm),天線高度1/4λ(6.25 m),天線陣半徑3/8λ(9.375 m)。在電抗加載值序列的優(yōu)化選擇算法中,設(shè)期望方向為30°,接受概率P1=40%,P2= 80%,容忍門限T=20,計算此時的電抗加載序列值,并討論天線陣半徑變?yōu)?1/2λ、1/8λ、1/10λ時,其主波束指向與增益的波動。
實驗結(jié)果如圖3所示。在圖中,給出了以dB數(shù)表示的天線陣增益值。
從圖3中可看出,當(dāng)天線陣的半徑在1/2λ至1/10λ之間變化時,天線陣方向圖的主波束始終能較準(zhǔn)確地指向期望的30°方向,增益保持在7~9 dB之間,天線陣的輻射性能基本保持穩(wěn)定。從工程應(yīng)用角度出發(fā),當(dāng)安裝環(huán)境不能滿足設(shè)計要求時,可根據(jù)現(xiàn)場情況與系統(tǒng)對輻射性能的要求,在一定范圍內(nèi)對陣半徑進(jìn)行適應(yīng)性調(diào)節(jié),以滿足工程應(yīng)用需要。
2)電抗加載值的誤差對方向圖的影響。
研究對象仍為上例中的天線陣。圖4中原始數(shù)據(jù)對應(yīng)的方向圖與圖3中陣半徑為3/8λ時的方向圖相同,該方向圖是根據(jù)優(yōu)化計算所得的電抗加載值序列所產(chǎn)生的。
在本節(jié)的性能分析中,分別對優(yōu)化計算所得電抗加載值產(chǎn)生了10%、20%和40%的隨機(jī)擾動,并得到了3組加載值,然后分別利用這3組加載值序列計算了天線陣方向圖,仿真結(jié)果如圖4所示。
從圖4可看出,天線陣的輻射性能,如增益、主波束寬度與指向、后瓣增益等指標(biāo),在加載電抗值發(fā)生偏差時基本能保持穩(wěn)定,即使是在電抗加載值產(chǎn)生40%的誤差時,天線陣方向圖的主波束也基本能穩(wěn)定在期望的30°方向,后瓣依然在可接受范圍。在電抗加載值存在較小誤差的情況下,如10%與20%,天線陣的性能未受到明顯影響,這說明天線陣對加載電抗值的誤差具有一定的容錯能力。當(dāng)將本方法應(yīng)用于實際工程時,無需精確加載理論計算的電抗值,只需加載與計算的精確值相近的標(biāo)稱值即可達(dá)到預(yù)期結(jié)果。
本文以矩量法為基礎(chǔ),采用電抗加載的思想對對稱振子均勻圓陣進(jìn)行了分析計算。仿真結(jié)果表明,利用文中方法計算所得的電抗值對天線進(jìn)行加載,能使天線陣在期望方向形成具有一定增益且后瓣較小的波束,對艦艇信息的定向、保密發(fā)送與接收具有一定的應(yīng)用價值。其性能分析也驗證了該天線陣對陣半徑的誤差與電抗加載值的誤差具有一定的容忍能力,使其較易于工程實現(xiàn)與應(yīng)用。當(dāng)在艦艇上使用時,該型天線陣具有相對較大的占艦面積,因此,需要在確保波束寬度、增益、
波瓣前后比等性能的前提下,進(jìn)行進(jìn)一步的小型化設(shè)計,如對天線單元進(jìn)行頂端加載以降低振子高度,將天線陣設(shè)計成非均勻陣或半圓陣等。
[1] 朱永建.艦載通信天線發(fā)展綜述 [J].艦船電子工程,2008,168(6):15-17.
[2] 江小平.艦載通信系統(tǒng)及其關(guān)鍵技術(shù)研究[D].武漢:華中科技大學(xué),2007.
[3] 周濤,孔慶國,錢一婧,等.高頻地波雷達(dá)技術(shù)及其發(fā)展趨勢[J].雷達(dá)與對抗,2008(4):1-5.
[4] HARRINGTON R F.Reactive Controlled Directive Array[J].IEEE Trans on Antennas and Propagation,1978,26(3):390-395.
[5] HARRINGTON R F.Field Computation by Moment Methods[M].New York:Macmillan,1968.
[6] HARRINGTON R F.計算電磁場的矩量法[M].王爾杰,譯.北京:國防工業(yè)出版社,1981.
[7] 牛俊偉.電抗加載定向天線陣的輻射特性研究 [D].西安:西安電子科技大學(xué),2001.
[8] 柳超,劉其中,梁玉軍,等.艦用短波寬帶鞭狀天線研究[J].電波科學(xué)學(xué)報,2006,21(6):955-958.
[9] 胡航,劉偉會,吳群,等.一種有效的子陣級波束掃描旁瓣抑制方法[J].電波科學(xué)學(xué)報,2009,24(4):593-597,666.
[10] 韓明華,袁乃昌.基于整體退火遺傳算法的不等間距天線陣的綜合[J].現(xiàn)代雷達(dá),1998,20(6):72-77.
[11] 祝志鵬,蔣鳳仙,陳學(xué)峰.一種改進(jìn)的遺傳算法及其在線天線陣方向圖綜合中的應(yīng)用[J].復(fù)旦學(xué)報(自然科學(xué)版),2001,40(1):55-60.
Optimization Design and Performance Analysis of Reactance Loaded Antenna Arrays
Li Ge-yang
China Ship Development and Design Center,Wuhan 430064,China
To optimize the radiation performance of circular antenna array,Method of Moments(MoM)was applied to analyze the feasibility of achieving beam forming by reactance loaded circular antenna array,which is consisted of symmetrically displaced dipole antennas.Then,coarse and turbulence combination searching algorithm for reactance loading sequence is proposed for beam forming in specified direction.The simulation results show that beams of relatively high gain and fore-rear ratio can be formed on required directions,and the errors of array radius and loaded reactance can be tolerated to a certain extent.The analysis methods and computational results are of certain significance to the design and practical engineering application of reactance loaded antenna array.
reactance loaded;dipole;beam forming;gain;fore-rear ratio
U665.26
A
1673-3185(2011)02-65-04
10.3969/j.issn.1673-3185.2011.02.013
2010-04-28
“十一五”預(yù)研基金資助項目
李戈陽(1982-),男,博士,工程師。研究方向:無線電物理。E-mail:ligeyang_82@163.com