• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      用G'/G-展開法求解(2+1)維Ablow itz-Ladik方程

      2011-04-07 05:50:44李四偉張金良
      關鍵詞:孤子李四行波

      李四偉,張金良

      (河南科技大學數學與統(tǒng)計學院,河南洛陽471003)

      0 前言

      由于非線性微分-差分方程(組)在非線性光學、原子物理、凝聚態(tài)物理、生物物理等領域有著廣泛的應用,如脈沖在光纖中的傳播、等離子體物理中Langmuir波的自聚焦和爆破等,因此,非線性微分-差分方程(組)已引起眾多學者廣泛的興趣。對于非線性微分-差分方程(組),已有很多研究方法如雙線性方法[1]、達布變換法[2]、Backlund變換法[3]、廣義的微分變換法[4]、離散的Sine-Gordon方程展開法[5]、指數函數展開法[6]、Jacobi橢圓函數展開法[7]、擴展的雙曲正切函數展開法[8]、G'/G-展開法[9-11]等。到目前為止,沒有一種統(tǒng)一的方法能求解出非線性微分-差分方程(組)的所有精確解。

      文獻[12]研究了(2+1)維Ablowitz-Ladik(AL-NLS)方程

      文獻[13]證明了方程(1)是不完全可積的,并對其孤波性質進行了系統(tǒng)分析,得到對于任意小的格子空間△x,此方程均有穩(wěn)定的孤子解;求解出了方程(1)的精確線孤子解(不穩(wěn)定):

      由于方程(1)的精確解具有很重要的理論意義和實用價值,因此,本文利用G'/G-展開法求解方程(1)的精確解,并成功得到它的三種類型的精確行波解。

      1 (2+1)維Ablow itz-Ladik方程的精確解

      由于un,m(t)為復函數,設

      把式(2)代入方程(1),令實部和虛部等于零,得

      依據齊次平衡原則,令

      其中,a0、a1為待定常數;G (ξn,m)滿足

      λ、μ為任意常數。

      其中,△1=;ζ1、ζ2、d2和h2為任意常數;d1和h1為滿足cos(d1)cos(h1)>0的任意常數;耦合強度ε=1/△x2。

      利用方程(7)的解,可導出方程(1)的精確解:

      情形2 當λ2-4μ<0時,類似于情形1,可得出方程(1)的精確解:

      情形3 當λ2-4μ=0時,類似于情形1,可得方程(1)的解為:

      2 結論

      本文將G'/G-展開法應用于(2+1)維Ablowitz-Ladik(AL-NLS)方程的求解中,當耦合強度ε= 1/△x2,σ=1(散焦)時,得到了該方程的雙曲函數形式的精確解、三角函數形式的周期波解和有理函數形式的行波解,這些精確解含有較多的任意參數。利用Mathematica軟件,驗證了所得精確解的正確性??梢?,在求解非線性微分-差分方程(組)精確解方面,G'/G-展開法是一個非常有效、直接、簡便的方法。

      [1] Hu X B,Ma W X.Application of Hirota’s Bilinear Formalism to the Toeplitz Lattice-some Special Soliton-like Solutions[J].Phys Lett A,2002,293:161-165.

      [2] Nimmo J JC.Darboux Transformations for Discrete Systems[J].Chaos,Solitons and Fractals,2000,11:115-120.

      [3] Sun M N,Deng SF,Chen D Y.The Backlund Transformation and Novel Solutions for the Toda Lattice[J].Chaos,Solitons and Fractals,2005,23:1169-1175.

      [4] Zou L,Wang Z,Zong Z.Generalized Differential Transform Method to Differential-difference Equation[J].Phys Lett A,2009,373:4142-4151.

      [5] Yan Z Y.Discrete Exact Solutions of Modified Volterra and Volterra Lattice Equations via the New Discrete Sine-Gordon Expansion Algorithm[J].Nonlinear Analysis,2006,64:1798-1811.

      [6] Bekir A.Application of the Exp-function Method for Nonlinear Differential-difference Equations[J].Applied Mathematics and Computation,2010,215:4049-4053.

      [7] Yong X L,Zeng X,Zhang Z Y,et al.Symbolic Computation of Jacobi Elliptic Function Solutions to Nonlinear Differentialdifference Equations[J].Computers and Mathematicswith Applications,2009,57:1107-1114.

      [8] Wang Z,Zhang H Q.A Symbolic Computational Method for Constructing Exact Solutions to Differential-difference Equations[J].Applied Mathematics and Computation,2006,178:431-440.

      [9] Aslan I.Discrete Exact Solutions to Some Nonlinear Differential-difference Equations Via the(G'/G)-expansion Method[J].Applied Mathematics and Computation,2009,215:3140-3147.

      [10] 牛艷霞,李二強,張金良.利用(G'/G)-展開法求解2+1維破裂孤子方程組[J].河南科技大學學報:自然科學版,2008,29(5):73-76.

      [11] 李四偉,張金良.用(G'/G)-展開法求解耦合離散非線性Schr?nger方程組的精確解[J].河南科技大學學報:自然科學版,2010,31(5):87-90.

      [12] Ablowitz M J,Prinari B,Trubatch A D.Discrete and Continuous Nonlinear Schrodinger Systems[M].Cambridge: Cambridge University Press,2004.

      [13] Kevrekidis PG,Herring G J,Lafortune S,et al.The Higher-dimensional Ablowitz-Ladik Model:from(non-)Integrability and Solitary Waves to Surprising Collapse Properties and More Exotic Solutions[Z].arXiv:0907.1386vl,2009:1-4.

      猜你喜歡
      孤子李四行波
      “半魯”請客
      一類非局部擴散的SIR模型的行波解
      一個新的可積廣義超孤子族及其自相容源、守恒律
      你追我趕
      (3+1)維Potential-Yu-Toda-Sasa-Fukuyama方程新的多周期孤子解
      Joseph-Egri方程行波解的分岔
      熟人就是這樣變成陌生人的
      喜劇世界(2017年9期)2017-12-06 20:11:47
      兩個孤子方程的高階Painlevé截斷展開
      Kolmogorov-Petrovskii-Piskunov方程和Zhiber-Shabat方程的行波解
      (3+1)維Kdv-Zakharov-Kuznetsev方程的亞純行波解
      儋州市| 梁河县| 西畴县| 尤溪县| 特克斯县| 保亭| 广州市| 河东区| 霍邱县| 桃源县| 望谟县| 衡阳市| 长宁区| 锦州市| 中宁县| 法库县| 双辽市| 淳化县| 台北县| 濉溪县| 连山| 克拉玛依市| 宜章县| 富锦市| 德格县| 惠安县| 容城县| 香格里拉县| 会同县| 丰都县| 西和县| 安宁市| 玛纳斯县| 兴文县| 稷山县| 英山县| 南华县| 留坝县| 安仁县| 平舆县| 五华县|