欒鋒平,向愛華,李慶祥
(武漢工程大學化工與制藥學院,綠色化工過程省部共建教育部重點實驗室,湖北 武漢 430074)
圖1 配體DTNE和ENOTA的結構式
所用試劑和溶劑除核黃素、蛋氨酸、氯化硝基四氮唑藍(NBT)為BR級外,其余均為分析純.所用水為二次蒸餾水,配體1,2-二(1,4,7-三氮環(huán)壬烷)乙烷氫溴酸鹽(DTNE·6HBr)根據文獻報道的方法合成[15].元素分析在240C型元素分析儀上完成;紅外光譜用KBr壓片后在Nicolet 5DX FT-IR型紅外光譜儀上記錄;X-射線衍射數據搜集在德國Bruker SMART-APEX CCD單晶衍射儀上進行;循環(huán)伏安在273-型電化學儀上測定型電化學儀上測定.
配體1,2-二(1,4,7-三氮環(huán)壬烷)乙烷氫溴酸鹽(DTNE·6HBr)200 mg(0.26 mmol)溶于5 mL水中,加入100 mg(1.05 mmol)氯乙酸的水溶液(3 mL),用0.1 mol·L-1的NaOH水溶液調pH至11,80 ℃下加熱60 h,期間補充NaOH水溶液維持pH=11.溶液冷卻后,加入192 mg(0.52 mmol)Cu(ClO4)2·6H2O的水溶液(2 mL),再加入25 mL無水乙醇,室溫攪拌3 h后過濾,濾液室溫揮發(fā),析出適合X射線結構分析的藍色晶體.收率:47 mg(25%).IR(KBr)ν:3 464,1 625,1 350 691 cm-1.Anal.calcd for C22H46Cu2N6O13:C 36.21,H 6.35,N 11.52;found C 36.39,H 6.42,N 11.25.
選取尺寸為0.21 mm×0.20 mm×0.19 mm的化合物的藍色單晶,數據搜集在SMART-CCD面探衍射儀上進行,用SMART和SAINT程序進行數據還原和晶胞精修,晶體結構用直接法解出,所有非氫原子都用全矩陣最小二乘法對F2各向異性修正(Bruker Shelxtl)[17].氫原子通過理論加氫加上.有關晶體學數據見表1.
CCDC:777328
表1 配合物的晶體學數據
循環(huán)伏安用273-型電化學分析儀測定.支持電解質是0.1 mol·dm-3的NaClO4的水溶液,測定前溶液中通入高純氮氣15 min以除去其中氧.用三電極系統在氮氣氣氛中測定,其中,玻碳電極作工作電極,Ag/AgCl電極作參比電極,鉑絲作對電極.測定溶液濃度為1.0×10-3mol·dm-3,溫度為(25±0.1) ℃.半波電位E1/2用(Epa+Epc)/2近似計算.
配合物晶體結構見圖2,部分鍵長、鍵角見表2,從晶體結構圖2可知,兩個Cu(II)離子分別位于畸變四方錐配位環(huán)境的中心,來自三氮環(huán)的兩個氮原子和來自兩個羧酸懸臂的氧原子構成四方錐的底面,橋頭氮原子占據了四方錐的頂角.Cu(1)和Cu(2)分別偏離四方錐底面0.025 04和0.023 55 nm,兩個底面的標準偏差分別為0.008 83和0.008 93 nm.Cu(1)與四方錐頂點原子之間的距離(Cu(1)-N(3)鍵長)為0.022 01(4) nm,長于與四方錐底面的四個原子之間的距離0.019 23(4)~0.019 98(5) nm.Cu(2)與四方錐頂點原子(N(4))之間的距離0.022 37(5) nm也長于與四方錐底面四個原子之間的距離0.019 17(4)~0.020 04(5) nm.兩個銅原子之間的距離為0.747 nm.該配合物中,兩個中心銅離子的配位環(huán)境與天然Cu2Zn2SOD的活性中心Cu(II)的配位環(huán)境較接近,在天然Cu2Zn2SOD中,活性中心Cu(II)與來自四個組氨酸的咪唑氮原子和一個氧原子的配位,形成一個畸變的四方錐構型[14].
圖的晶體結構
圖的SOD活性
Cu(1)-N(1)0.197 0(5)Cu(1)-N(2)0.199 8(5)Cu(1)-O(1)0.192 5(4)Cu(1)-O(3)0.192 3(4)Cu(1)-N(3)0.220 1(4)Cu(2)-N(5)0.197 0(5)Cu(2)-N(6)0.200 4(5)Cu(2)-O(5)0.192 8(4)Cu(2)-O(7)0.191 7(4)Cu(2)-N(4)0.223 7(5)O(1)-Cu(1)-O(3)97.82(18)O(3)-Cu(1)-N(1)169.26(18)O(1)-Cu(1)-N(1)85.31(19)O(3)-Cu(1)-N(2)86.05(17)O(1)-Cu(1)-N(2)159.31(18)N(1)-Cu(1)-N(2)87.50(18)O(3)-Cu(1)-N(3)103.13(17)O(1)-Cu(1)-N(3)113.05(17)N(1)-Cu(1)-N(3)84.90(18)N(2)-Cu(1)-N(3)85.52(18)O(7)-Cu(2)-O(5)98.03(19)O(7)-Cu(2)-N(5)170.06(19)O(5)-Cu(2)-N(5)85.35(19)O(7)-Cu(2)-N(6)86.4(2)O(5)-Cu(2)-N(6)160.06(19)N(5)-Cu(2)-N(6)87.4(2)O(7)-Cu(2)-N(4)103.36(18)O(5)-Cu(2)-N(4)113.25(18)N(5)-Cu(2)-N(4)83.67(18)N(6)-Cu(2)-N(4)84.28(19)
圖在水溶液中的循環(huán)伏安圖
參考文獻:
[1] McCord J M,Fridovich I.Superoxide dismutase.An enzymic function for erythrocuprein (hemocuprein) [J].J Biol Chem,1969,244:6049-6055.
[2] Jiang W,Shen T,Han Y C,et al. Divalent-metal-dependent nucleolytic activity of Cu,Zn superoxide dismutase [J].J Bio Inorg Chem,2006,11:835-848.
[3] Scarpellini M,Wu A J,Kampf J W,et al.Corroborative Models of the Cobalt(II) Inhibited Fe/Mn Superoxide Dismutases [J].Inorg Chem,2005,44:5001-5010.
[4] Grove L E,Hallman J K,Emerson J P,et al.Synthesis, X-Ray Crystallographic Characterization,and Electronic Structure Studies of a Di-Azide Iron(III) Complex:Implications for the Azide Adducts of Iron(III) Superoxide Dismutase[J].Inorg Chem,2008,47:5762-5774.
[5] 汪立耀.超氧化物歧化酶的制備及其臨床應用[J].武漢化工學院學報,2003(4):16-18.
[6] Valentine J S,Freitas D M.Copper-Zinc Superoxide Dismutase.A Unique Biological "Ligand" for Bioinorganic Studies [J].J Chem Educ,1985,62:990-997.
[7] Zhang Z,Geng Z R,Kan X W,et al.Iron(III), nickel(II) and cadmium(II) complexes of triazamacrocyclic ligand with pendant nitrile groups 1,4,7-tris(cyanomethyl)-1,4,7-triazacyclononane: Synthesis, structural characteristics and artificial nuclease activity[J].Inorg Chim Acta,2010,363:1805-1812.
[8] Wainwright K P.Synthetic and structural aspects of the chemistry of saturated polyaza macrocyclic ligands bearing pendant coordinating groups attached to nitrogen[J].Coord Chem Rev,1997,166:35-90.
[9] Grove L E,Hallman J K,Emerson J P,et al.Synthesis, X-Ray Crystallographic Characterization,and Electronic Structure Studies of a Di-Azide Iron(III) Complex: Implications for the Azide Adducts of Iron(III) Superoxide Dismutase [J].Inorg Chem,2008,47:5762-5774.
[10] Mewis R E,Archibald S.Biomedical applications of macrocyclic ligand complexes[J].Coord Chem Rev,2010,254:1686-1712.
[11] Li Q X,Luo Q H,Li Y Z,et al.A study on the mimics of Cu-Zn superoxide dismutase with high activity and stability: two copper(II) complexes of 1,4,7-triazacyclononane with benzimidazole groups [J].Dalton Trans,2004:2329-2335.
[12] Li Q X,Wang X F,Cai L,et al.Crystal structure,superoxide dismutase activity and electrochemical property of complex[Cu(dtne)]·(ClO4)2·CH3CH2OH[J].Inorg Chem Commun,2009,12:145-147.
[13] Li Q X,Luo Q H,Li Y Z,et al.Shen M C.Studies on Manganese(II) Complexes of N-Benzimidazole-Functionalized 1,4,7-Triazacyclononane:Crystal Structures,Properties and Combined Superoxide Dismutase and Catalase Functions[J].Eur J Inorg Chem,2004,22:4447-4456.
[14] Tainer J A,Getzoff E D,Beem K M,et al.Determination and analysis of the 2 A-structure of copper,zinc superoxide dismutase[J].J Mol Biol,1982,160:181-217.
[15] Sessler J L,Sibert J W,Lynch V.Model studies related to hemerythrin.Synthesis and characterization of a bridged tetranuclear iron(III) complex[J].Inorg Chem,1990,29:4143-4146.
[16] Fry F H,Graham B,Spiccia L,et al.Binuclear copper complexes of bis(1,4,7-triazacyclonon-1-yl) ligandsincorporating acetate pendant arms[J].J Chem Soc,Dalton Trans,1997:827-832.
[17] Sheldrick G M.SHELXTL V5.1 Software Reference Manual[M].Madison:Bruker AXS,Inc,1997.
[18] Luo Q H,Lu Q,Dai A B,et al.A study on the structure and properties of a new model compound of Cu(II)-Zn(II)-superoxide dismutase[J].J Inorg Biochem,1993,51:655-662.
[19] Sawyer D T,Valentine J S.How super is superoxide?[J].Acc Chem Res,1981,14(12):393-400.