薛艷霞,蘇振超
?
端部附加質(zhì)量對次隨從力作用下懸臂柱臨界力的影響
薛艷霞,蘇振超
(五邑大學(xué) 土木建筑學(xué)院,廣東 江門 529020)
懸臂柱;次隨從力;附加質(zhì)量;臨界力
自1952年Beck[1]對隨從力(或跟隨力)的動(dòng)力學(xué)行為研究以來,不少學(xué)者對隨從力作用下構(gòu)件的靜態(tài)和動(dòng)態(tài)性能進(jìn)行了研究[2-4],特別是在土木工程、航空航天工程、機(jī)械工程、管道工程等領(lǐng)域. 由于懸臂柱在隨從力作用下其歐拉意義下的臨界荷載不存在[5],人們開始研究次隨從力作用下懸臂柱的臨界力問題,如B. Nageswara Rao等[6-8]對等截面和變截面懸臂柱在次隨從力作用下的靜態(tài)穩(wěn)定性進(jìn)行了分析,并討論了計(jì)算結(jié)果. 本文在此基礎(chǔ)上對端部附加集中質(zhì)量的等截面懸臂柱在次隨從力作用下的穩(wěn)定性進(jìn)行分析,討論了集中質(zhì)量對等截面懸臂柱臨界力的影響.
考慮如圖1所示的具有附加質(zhì)量的等截面懸臂桿件在次隨從力作用下的靜態(tài)穩(wěn)定性的特征. 假設(shè)材料處于線彈性狀態(tài),坐標(biāo)由頂點(diǎn)開始計(jì)算,由Bernoulli-Euler梁的理論可得:
并具有邊界條件:
方程(4)積分可得:
圖1 懸臂柱在端部附加質(zhì)量和次隨從力作用下的靜力穩(wěn)態(tài)圖
顯然,方程(8)為二階非線性微分方程.
圖3 參數(shù)h對臨界力lcr的影響
本文討論了端部附加的集中質(zhì)量對次隨從力作用下懸臂柱的穩(wěn)定性影響,特別是對臨界力的影響,所得的結(jié)論推廣了B. N. Rao和G. V. Rao以前的結(jié)果,如果端部附加質(zhì)量為零,所得結(jié)果與其結(jié)論一致. 本研究還需進(jìn)一步討論端部附加集中質(zhì)量時(shí)次隨從力作用下懸臂柱臨界力的精確表達(dá)式;考慮端部附加集中質(zhì)量時(shí)變截面懸臂柱在次隨從力作用下的臨界力;一個(gè)剛性桿件與彈性桿件,或者2個(gè)彈性桿件在次隨從力作用下的穩(wěn)定性等,相關(guān)研究將另文討論.
[1] BECK M. Die knicklast des einseitig eingespannten tangential gedrückten stabes[J]. ZAMP, 1952, 3(3): 225-228.
[2] LANGTHJEM M A, SUGIYAMA Y. Dynamic stability of columns subjected to follower loads: a survey[J]. Journal of Sound and vibration, 2000, 283(5): 809-851.
[3] GLABISZ W. Vibration and stability of a beam with elastic supports and concentrated masses under conservative and nonconservative forces[J]. Computers and Structures, 1999, 70: 305-313.
[4] SUGIYAMA Y, LANGTHJEM M A, RYU B J. Realistic follower forces[J]. Journal of Sound and Vibration, 1999, 225(4): 779-782.
[5] REBIERE J P. non-linear static analysis of a bar under a pure follower force[J]. Journal of Sound and Vibration, 1978, 60(3): 459-460.
[6] RAO B N, RAO G V. Applicability of the static or dynamic criterion for the stability of a cantilever column under a tip-concentrated subtangential follower force[J]. Journal of Sound and Vibration, 1987, 120(l): 197-200.
[7] RAO B N, RAO G V. Applicability of static or dynamic criterion for the stability of a non-uniform cantilever column subjected to a tip-concentrated subtangential follower force[J]. Journal of Sound and Vibration, 1988, 122(1): 188-191.
[8] RAO B N, RAO G V. Post-critical behaviour of Euler and Beck columns resting on an elastic foundation[J]. Journal of Sound and Vibration, 2004, 276: 1150-1158.
[9] RAO B N, RAO G V. Stability of tapered cantilever columns with an elastic foundation subjected to a concentrated follower force at the free end[J]. Journal of Sound and Vibration, 1982, 81(l): 147-151.
The effect of additional mass on critical force of a Cantilever Column Subject to a Subtangential Follower Force
XueYan-xia, SuZhen-chao
(School of Civil Engineering & Architecture, Wuyi University, Jiangmen 529020, China)
cantilever columns; subtangential follower force; additional mass; stability; critical force
1006-7302(2011)02-0069-04
TU13
A
2010-06-29
薛艷霞(1968—),女,河南民權(quán)人,講師,主要從事力學(xué)、結(jié)構(gòu)工程專業(yè)課程的教學(xué)與研究.