• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      數(shù)學(xué)分析教材研究 (二)*

      2011-11-18 06:38:56郎開(kāi)祿
      關(guān)鍵詞:技巧性講義高等教育出版社

      郎開(kāi)祿

      (楚雄師范學(xué)院數(shù)學(xué)系,云南 楚雄 675000)

      數(shù)學(xué)分析教材研究 (二)*

      郎開(kāi)祿

      (楚雄師范學(xué)院數(shù)學(xué)系,云南 楚雄 675000)

      本文闡述了數(shù)學(xué)分析課程,數(shù)學(xué)分析課程教學(xué)內(nèi)容,數(shù)學(xué)分析課程教學(xué)目標(biāo),數(shù)學(xué)分析課程教學(xué)方手段,數(shù)學(xué)分析課程教學(xué)理念,數(shù)學(xué)分析教與學(xué)的基本關(guān)系;研究了兩套歷史悠久的數(shù)學(xué)分析沃土教材的獨(dú)特風(fēng)采、獨(dú)異風(fēng)格。

      數(shù)學(xué)分析;教材;研究

      3.3.3 風(fēng)采三:函數(shù)級(jí)數(shù)和函數(shù)分析性質(zhì)

      (1)《數(shù)學(xué)分析講義》(下冊(cè))函數(shù)級(jí)數(shù)和函數(shù)分析性質(zhì)的處理思路和方法《數(shù)學(xué)分析講義》(下冊(cè))直接證明定理8、定理9、定理10.

      (a)每個(gè)un(x)在區(qū)間I連續(xù);

      (a)每個(gè)un(x)在區(qū)間I連續(xù);

      (a)每個(gè)u'n(x)在區(qū)間I連續(xù);

      【思路和方法比較】

      【ⅰ】思路和方法比較自然;

      【ⅱ】思路和方法同學(xué)易理解和掌握;

      【?!恐R(shí)點(diǎn)連貫性強(qiáng);

      【ⅳ】思路和方法技巧性大。

      (2)《數(shù)學(xué)分析》(下冊(cè))函數(shù)級(jí)數(shù)和函數(shù)分析性質(zhì)的處理思路和方法

      (ⅰ)直接證明定理11

      (ⅱ)應(yīng)用定理11證明定理12、定理13、定理14

      (a)每個(gè)fn(x)在區(qū)間I連續(xù);

      (a)每個(gè)fn(x)在區(qū)間I連續(xù);

      (a)每個(gè)f'n(x)在區(qū)間I連續(xù);

      (ⅲ)應(yīng)用定理12、定理13、定理14證明證明定理8、定理9、定理10證明略。

      【思路和方法比較】

      【ⅰ】思路和方法的關(guān)鍵是直接證明定理11;

      【ⅱ】思路和方法陡,知識(shí)的調(diào)用要求非常高;

      【?!克悸泛头椒ㄍ瑢W(xué)不易理解和掌握;

      【ⅳ】思路和方法獨(dú)特;

      【ⅴ】思路和方法技巧性大。

      3.3.4 風(fēng)采四:含參變量無(wú)窮積分分析性質(zhì)

      (1)《數(shù)學(xué)分析講義》(下冊(cè))含參變量無(wú)窮積分分析性質(zhì)的處理思路和方法《數(shù)學(xué)分析講義》(下冊(cè))直接證明定理15、定理16、定理17。

      【思路和方法比較】

      【ⅰ】思路和方法比較自然;

      【ⅱ】思路和方法同學(xué)易理解和掌握?!劲!恐R(shí)點(diǎn)連貫性強(qiáng)。

      【ⅳ】思路和方法技巧性大。

      (2)《數(shù)學(xué)分析》(下冊(cè))含參變量無(wú)窮積分分析性質(zhì)的處理思路和方法

      (ⅰ)直接證明定理18

      (ⅱ)應(yīng)用定理18和函數(shù)級(jí)數(shù)和函數(shù)分析性質(zhì)證明定理15、定理16、定理17證明略。

      【思路和方法比較】

      【ⅰ】思路和方法的關(guān)鍵是直接證明定理18;

      【ⅱ】思路和方法陡,知識(shí)的調(diào)用要求非常高;

      【?!克悸泛头椒ㄍ瑢W(xué)不易理解和掌握;

      【ⅳ】思路和方法獨(dú)特;

      【ⅴ】思路和方法技巧性大。

      3.3.5 風(fēng)采五:二重積分的變量代換

      (1)《數(shù)學(xué)分析講義》(下冊(cè))二重積分的變量代換的處理思路和方法(ⅰ)直接證明定理19

      定理19 若變量代換

      x=x(u,v),y=y(u,v),(u,v) ∈ G'

      (ⅱ)應(yīng)用定理19證明定理20

      定理20 若變量代換

      x=x(u,v),y=y(u,v),(u,v) ∈ D'

      【思路和方法比較】

      【ⅰ】思路和方法比較自然;

      【ⅱ】思路和方法同學(xué)易理解和掌握;

      【?!恐R(shí)點(diǎn)連貫性強(qiáng);

      【ⅳ】思路和方法技巧性大。

      (2)《數(shù)學(xué)分析》(下冊(cè))二重積分的變量代換的處理思路和方法

      (ⅰ)直接證明定理21

      其中Γ取正向。

      (ⅱ)應(yīng)用定理21直接證明定理22

      定理22 若變量代換

      (ⅲ)應(yīng)用定理22直接證明定理20

      證明略

      【思路和方法比較】

      【ⅰ】將線積分放在重積分之前講;

      【ⅱ】思路和方法非常較陡,知識(shí)的調(diào)用要求非常高;

      【?!克悸泛头椒ㄍ瑢W(xué)不易理解和掌握;

      【ⅳ】思路和方法技巧性大;

      【ⅴ】思路和方法獨(dú)特。

      3.3.6 風(fēng)采六:定積分的可積準(zhǔn)則

      (1)《數(shù)學(xué)分析講義》(上冊(cè))定積分的可積準(zhǔn)則的處理思路和方法

      (ⅰ)直接證明大和與小和性質(zhì)

      定理22 對(duì)[a,b]的任一分法T,均有

      定理 23 對(duì)[a,b]任一分法 T={△1,△2,…,△n},有

      定理24 設(shè)T'是分法T添加分點(diǎn)得到的分法,則

      S(T)≥S(T')(大和不增),s(T)≤s(T')(小和不減)。

      定理25 對(duì)于[a,b]的任意分法T,T',小和不超過(guò)大和,即

      s(T)≤S(T'),s(T')≤S(T)。

      (ⅱ)應(yīng)用大和與小和性質(zhì)證明了可積準(zhǔn)則

      (ⅲ)應(yīng)用可積準(zhǔn)則獲得了三種可積函數(shù)類(lèi)

      定理28(連續(xù)函數(shù)可積性)若f(x)在[a,b]連續(xù),則f(x)在[a,b]可積。

      定理29(單調(diào)函數(shù)可積性)若f(x)在[a,b]單調(diào),則f(x)在[a,b]可積。

      定理30(有有限個(gè)間斷點(diǎn)的有界函數(shù)的可積性)若f(x)在[a,b]有界,且只有有限個(gè)間斷點(diǎn),則 f(x) 在[a,b]可積。

      【思路和方法比較】

      【ⅰ】思路和方法比較自然;

      【ⅱ】思路和方法同學(xué)易理解和掌握;

      【?!恐R(shí)點(diǎn)連貫性強(qiáng);

      【ⅳ】思路和方法技巧性大。

      (2)《數(shù)學(xué)分析》(上冊(cè))定積分的可積準(zhǔn)則的處理思路和方法

      (ⅰ)§9.3((可積條件)直接給出可積準(zhǔn)則

      (ⅱ)§9.3可積條件應(yīng)用可積準(zhǔn)則獲得了三種可積函數(shù)類(lèi)。

      (ⅲ)§9.8可積理論補(bǔ)敘證明大和與小和性質(zhì)(內(nèi)容較系統(tǒng))。

      (ⅳ)§9.8可積理論補(bǔ)敘應(yīng)用大和與小和性質(zhì)證明了可積準(zhǔn)則(內(nèi)容較系統(tǒng))。

      【思路和方法比較】

      【ⅰ】思路和方法同學(xué)易理解和掌握;

      【ⅱ】思路和方法技巧性大;

      【?!克悸泛头椒í?dú)特;

      【ⅳ】知識(shí)點(diǎn)連貫性不強(qiáng);

      【ⅴ】理論性更強(qiáng);

      【ⅵ】獲取的知識(shí)量大。

      3.4 風(fēng)格獨(dú)異的數(shù)學(xué)分析教材

      (1)《數(shù)學(xué)分析講義》(上、下冊(cè))這套教材循序漸進(jìn),系統(tǒng)性強(qiáng),范例和習(xí)題豐富,便于自學(xué),且劉玉璉、傅沛仁兩位先生編著了配套的《數(shù)學(xué)分析講義學(xué)習(xí)指導(dǎo)書(shū)》(上、下冊(cè))(高等教育出版社出版)等教學(xué)輔導(dǎo)書(shū),這樣大大降低大學(xué)一年級(jí)學(xué)習(xí)數(shù)學(xué)分析的難度,也降低了備課的難度。

      (2)《數(shù)學(xué)分析》(上、下冊(cè))這套教材理論性和實(shí)用性強(qiáng),內(nèi)容精,彈性空間大,習(xí)題豐富,富于啟發(fā),吳良森,毛羽輝,韓士安,吳畏編著了配套的《數(shù)學(xué)分析學(xué)習(xí)指導(dǎo)書(shū)》(上、下冊(cè))(高等教育出版社)等教學(xué)輔導(dǎo)書(shū),這樣大大降低大學(xué)一年級(jí)學(xué)習(xí)數(shù)學(xué)分析的難度,也降低了備課的難度。

      (3)《數(shù)學(xué)分析講義》(上、下冊(cè))和《數(shù)學(xué)分析》(上、下冊(cè))是風(fēng)采獨(dú)特、風(fēng)格獨(dú)異、歷史悠久的數(shù)學(xué)分析沃土教材中的重要兩部,潛心學(xué)習(xí)和研讀,必然沃土發(fā)新枝。

      [1]胡適耕,張顯文編著.數(shù)學(xué)分析原理與方法 [M].北京:科學(xué)出版社,2008.

      [2]劉玉璉,傅沛仁等編.數(shù)學(xué)分析講義 (上)[M].第四版.北京:高等教育出版社,2002.

      [3]劉玉璉,傅沛仁等編.數(shù)學(xué)分析講義 (下)[M].第四版.北京:高等教育出版社,2002.

      [4]劉玉璉,揚(yáng)奎元,呂風(fēng)編.數(shù)學(xué)分析講義學(xué)習(xí)輔導(dǎo)書(shū) (上)[M].第二版,北京:高等教育出版社.2003.

      [5]劉玉璉,揚(yáng)奎元,呂風(fēng)編.數(shù)學(xué)分析講義學(xué)習(xí)輔導(dǎo)書(shū) (下)[M].第二版,北京:高等教育出版社.2003.

      [6]華東師范大學(xué)數(shù)學(xué)系編.數(shù)學(xué)分析 (上) [M].第四版.北京:高等教育出版社,2009.

      [7]華東師范大學(xué)數(shù)學(xué)系編.數(shù)學(xué)分析 (下) [M].第四版.北京:高等教育出版社,2009.

      [8]吳良森,毛羽輝,韓士安,吳畏編著.數(shù)學(xué)分析學(xué)習(xí)指導(dǎo)書(shū) (上)[M].北京:高等教育出版社.2004.

      [9]吳良森,毛羽輝,韓士安,吳畏編著.數(shù)學(xué)分析學(xué)習(xí)指導(dǎo)書(shū) (下)[M].北京:高等教育出版社.2004.

      Research of mathematical analysis teaching materials(Part Ⅱ)

      LANG Kai-lu
      (Department of mathematics,Chuxiong Normal Uinversity,Chuxiong 675000,China)

      This paper elucidates mathematical analysis course and its teaching content,teaching objectives,teaching method,teaching philosophy,and the relationship between teaching and learning,and then studies the unique characteristics of two profound historical versions.

      Mathematical analysis;teaching materials;research

      O171.2

      A

      1671-7406(2011)09-0024-07

      2011-03-12

      郎開(kāi)祿 (1962—),男,云南楚雄人,副教授,主要研究方向:高等數(shù)學(xué)及數(shù)學(xué)分析。

      (責(zé)任編輯 劉洪基)

      猜你喜歡
      技巧性講義高等教育出版社
      多措并舉比較冪的大小
      高等教育出版社圖書(shū)推薦
      高等教育出版社科普?qǐng)D書(shū)推薦
      高等教育出版社科普?qǐng)D書(shū)推薦
      以道致君:程俱“經(jīng)筵講義”研究
      原道(2020年2期)2020-12-21 05:47:00
      How to Improve University Students’English Reading Ability
      十八而志 初心講義
      意林(2017年16期)2017-09-01 08:12:28
      十八而志 初心講義
      意林(2017年10期)2017-06-06 10:25:47
      小學(xué)數(shù)學(xué)教學(xué)中如何設(shè)計(jì)“練習(xí)”
      考試周刊(2016年94期)2016-12-12 12:40:18
      例析二次函數(shù)關(guān)系式的確定方法
      德钦县| 武安市| 同德县| 彭水| 蒙自县| 东安县| 公安县| 关岭| 正阳县| 财经| 法库县| 绥阳县| 杭锦旗| 永州市| 巴马| 诸暨市| 张家川| 江阴市| 沙坪坝区| 娱乐| 太仓市| 双牌县| 米泉市| 龙岩市| 新津县| 三原县| 海原县| 鄂托克前旗| 桃源县| 焦作市| 台山市| 梁平县| 乐昌市| 龙门县| 普宁市| 咸宁市| 永修县| 上虞市| 南和县| 洛川县| 新化县|