• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extensions of Reduced Rings

    2011-11-23 01:32:14WUHuifeng
    關(guān)鍵詞:冪級數(shù)約化環(huán)上

    WU Hui-feng

    (College of Science,Hangzhou Normal University,Hangzhou 310036,China)

    Extensions of Reduced Rings

    WU Hui-feng

    (College of Science,Hangzhou Normal University,Hangzhou 310036,China)

    A ringRis a reduced ring,provided thata2=0 implies thata=0.The paper discussed the relations between reduced rings and 3-Armendariz rings and proved that power series rings and some special upper triangular matrix rings of reduced rings are 3-Armendariz rings.

    reduced ring; power series ring; 3-Armendariz ring.

    1 Introduction

    Condition(P) For alla,b,c∈R,if (abc)2=0,thenabc=0.(see [1])

    Proposition1 IfRis a reduced ring,thenRsatisfies the Condition (P),but the converse is not true.

    ProofIt is easy to prove thatRis a reduced ring implies thatRsatisfies the Condition (P),there exists a ring that satisfies the Condition (P) but is not a reduced ring.Let

    From [1],we know thatRis 3-Armendariz ring if and only ifR[x] is 3-Armendariz ring.Clearly,all subrings of 3-Armendariz rings are 3-Armendariz rings.IfR[[x]] is a 3-Armendariz ring,thenR[x] is a 3-Armendariz ring,but the converse is not true.

    Theorem1 LetRbe a reduced ring,thenR[[x]] is a 3-Armendariz ring.

    If [f(x)g(x)h(x)]2=0,that is

    (d0+d1x+d2x2+d3x3+…+dn-1xn-1+dnxn)·(d0+d1x+d2x2+d3x3+…+dn-1xn-1+dnxn)=

    dn+1dn-1)x2n+(d0d2n+1+d2n+1d0+d1d2n+d2nd1+d2d2n-1+d2n-1d2+…+dndn+1+dn+1dn)x2n+1+…=0.

    SetAibe the coefficient of [f(x)g(x)h(x)]2.then

    d2n-2d2+…+dn-1dn+1=0;A2n+1=d0d2n+1+d2n+1d0+d1d2n+d2nd1+d2d2n-1+d2n-1d2+…+

    dn-1dn+2+dndn+1=0; ….

    AsA2n=0 andd0=0,d1=0,d2=0,d3=0,…,dn-1=0,

    Continuing in this way we haved0=0,d1=0,d2=0,d3=0,…,dn=0,….

    Corollary1 IfRis a reduced ring,thenR[x] is a 3-Armendariz ring.

    Theorem2 LetRbe a reduced ring,then is a 3-Armendariz ring.

    ProofIt is well know that for a ringRand any positive integern≥2,R[x]/(xn)≌S.where (xn) is the ideal ofR[x] generated byxn.It is evident thatR[x]/(xn)≌R′,R′ is subring ofR[[x]],soR′≌S.SinceRis reduced ring,by Theorem 1,we knowR[[x]] is 3-Armendariz ring,moveover,subrings of 3-Armendariz rings are 3-Armendariz rings,soR′ is a 3-Armendariz ring.ThereforeSis a 3-Armendariz ring and the proof is complete.

    Theorem3 LetRbe a reduced ring,then

    is a 3-Armendariz ring.

    ProofSinceRis a reduced ring,thenRsatisfies the Condition (P),that is

    if(abc)2=0,thenabc=0.

    InR,since (bca)2=bcabca=bc(abc)a=0,sobca=0.

    We can denote their addition and multiplication by:

    (f0(0),f0(x),f1(x))+(g0(0),g0(x),g1(x))=(f0(0)+g0(0),f0(x)+g0(x),f1(x)+g1(x)).and

    (f0(0),f0(x),f1(x))·(g0(0),g0(x),g1(x))=(f0(0)g0(0),f0(x)g0(x),f0(0)g1(x)+f1(x)g0(x)).

    So every polynomial ofR[y] can be expressed by (f0(0),f0(y),f1(y)),wheref0(y),f1(y)∈R[x][y].For allf(y),g(y),h(y) ∈R〈x〉[y],and

    f(y)=(f0(0),f0(y),f1(y)),
    g(y)=(g0(0),g0(y),g1(y)),
    h(y)=(h0(0),h0(y),h1(y)).

    Iff(y)g(y)h(y)=0,we have the following system of equations:

    f0(0)g0(0)h0(0)=0,

    (1)

    f0(y)g0(y)h0(y)=0,

    (2)

    f0(0)g0(0)h1(y)+f0(0)g1(y)h0(y)+f1(y)g0(y)h0(y)=0.

    (3)

    If we multiply (3) on the right side byf0(y),then

    f0(0)g0(0)h1(y)f0(y)+f0(0)g1(y)h0(y)f0(y)=0

    (3′)

    (sincef0(y)g0(y)h0(y)=g0(y)h0(y)f0(y)=0.)

    Also if we multiply (3′) on the right side byg0(y),then

    f0(0)g0(0)h1(y)f0(y)g0(y)=0.

    Thusf0(0)g0(0)h1(y)f0(0)g0(0)=0.So (f0(0)g0(0)h1(y))2=f0(0)g0(0)h1(y)f0(0)g0(0)h1(y)=0.SinceRa reduced ring,thenR[x] is a reduced ring,and thenR[x][y] is a reduced ring.Thereforef0(0)g0(0)h1(y)=0.Hencef0(0)g1(y)h0(y)f0(y)=0,sof0(0)g1(y)h0(y)f0(0)=0,it means that (f0(0)g1(y)h0(y))2=0,thenf0(0)g1(y)h0(y)=0.

    And sof0(0)g0(0)h1(y)=f0(0)g1(y)h0(y)=f1(y)g0(y)h0(y)=0.

    Write

    and set

    For all 0≤i≤r,0≤j≤s,0≤k≤t,we have

    we knowR[x][y] is a reduced ring,soR[x][y] is a 3-Armendariz ring.Sincef0(0)g0(0)h0(0)=0,thenf1i(0)f2j(0)f3k(0)=0.Sincef0(y)g0(y)h0(y)=0,thenf1i(x)f2j(x)f3k(x)=0.Sincef0(0)g0(0)h1(y)=0,thenf1i(0)f2j(0)g3k(x)=0.Sincef0(0)g1(y)h0(y)=0,thenf1i(0)g2j(x)f3k(x)=0.Sincef1(y)g0(y)h0(y)=0,theng1i(x)f2j(x)f3k(x)=0.

    Consequently

    HenceR〈x〉 is a 3-Armendariz ring.

    Example1Z2〈x〉 is a 3-Armendariz ring,henceZ2〈x〉 is a Armendariz ring whereZ2is the field with two elements.

    ProofIn view of Theorem 3,Z2〈x〉 is a 3-Armendariz ring.ButZ2〈x〉 has an identity,and so it is a Armendariz ring.

    [1] Yang Suiyi.On the extension of Armendariz rings[D].Lanzhou:Lanzhou University,2008:9-19.

    [2] Anderson D D,Camillo V.Armendariz rings and Gaussian rings[J].Comm Algebra,1998,26(7):2265-2272.

    [3] Rege M B.Chhawchharia S.Armendariz rings[J].Proc Japan Acad Ser A Math Sci,1997,73:14-17.

    [4] Hirano Y.On annihilator ideals of a polynomial ring over a non commutative ring[J].J Pure Appl Algebra,2002,168:45-52.

    [5] Yan Zhanping.Armendariz property of a class of matrix rings[J].Journal of Northwest Normal University Natural Science,2003,39(3):22-24.

    [6] Wang Wenkang.Armendariz and semicommutative properties of a class of upper triangular matrix rings[J].Journal of Shandong University:Natural science Edition,2008,43(2):62-65.

    [7] Kim N K,Lee K H,Lee Y,Power series rings satisfying a zero divisor porperty[J].Comm Alg,2006,34:2205-2218.

    約化環(huán)的推廣

    伍惠鳳

    (杭州師范大學(xué)理學(xué)院,浙江 杭州 310036)

    稱環(huán)R是約化環(huán),如果a2=0,那么a=0.討論了約化環(huán)和3-Armendariz環(huán)之間的關(guān)系,證明了不帶單位元的約化環(huán)上的冪級數(shù)環(huán)和某些特殊的上三角矩陣環(huán)是3-Armendariz 環(huán).

    約化環(huán); 冪級數(shù)環(huán); 3-Armendariz環(huán).

    date:2011-03-18

    Biography:Wu Hui-feng(1982—),famale,born in Anqing,Anhui province,master,engageed in Algebraic.E-mail:yaya57278570@163.com

    10.3969/j.issn.1674-232X.2011.05.005

    O153.3MSC2010:16E99; 14F99ArticlecharacterA

    1674-232X(2011)05-0407-04

    猜你喜歡
    冪級數(shù)約化環(huán)上
    約化的(3+1)維Hirota方程的呼吸波解、lump解和半有理解
    冪級數(shù)的求和方法總結(jié)
    主動脈瓣環(huán)擴大聯(lián)合環(huán)上型生物瓣膜替換治療老年小瓣環(huán)主動脈瓣狹窄的近中期結(jié)果
    矩陣環(huán)的冪級數(shù)弱McCoy子環(huán)
    冪級數(shù)J-Armendariz環(huán)*
    交換環(huán)上四階反對稱矩陣李代數(shù)的BZ導(dǎo)子
    取繩子
    投射可遷環(huán)上矩陣環(huán)的若當(dāng)同態(tài)
    M-強對稱環(huán)
    關(guān)于強冪級數(shù)McCoy環(huán)
    陆河县| 馆陶县| 五莲县| 大新县| 泾川县| 东平县| 西青区| 布拖县| 哈密市| 衡东县| 浠水县| 福建省| 容城县| 五家渠市| 孟州市| 综艺| 洮南市| 德阳市| 清水河县| 澄江县| 海阳市| 吴堡县| 文山县| 潞西市| 崇礼县| 卓尼县| 正定县| 马龙县| 色达县| 金堂县| 太和县| 沂南县| 邢台县| 莎车县| 镶黄旗| 安福县| 佛学| 金昌市| 静乐县| 恩平市| 翼城县|