閆 莉,陳淑蘭
(廣西大學(xué) 數(shù)學(xué)與信息科學(xué)學(xué)院,廣西 南寧 530004)
縱向數(shù)據(jù)中偽似然方程的根的相合性
閆 莉,陳淑蘭
(廣西大學(xué) 數(shù)學(xué)與信息科學(xué)學(xué)院,廣西 南寧 530004)
研究了偽似然方程的根的漸近存在性和相合性大樣本性質(zhì).偽似然方程是研究縱向數(shù)據(jù)的一種方法,它是廣義估計方程(GEE)的一種推廣,用適當(dāng)?shù)木仃嚾ス烙嬒嚓P(guān)陣,這也是研究意義所在.自從Shao(1999)定義偽似然方程以來,其大樣本性質(zhì)也不斷完善.本文證明了在一定條件下偽似然方程的根的漸近存在性及相合性.
縱向數(shù)據(jù);偽似然方程;漸近存在性;相合性
自從Liang和zerge用廣義線性模型去分析縱向數(shù)據(jù)和分類相關(guān)數(shù)據(jù),由此發(fā)展為廣義估計方程(GEE),GEE的漸進結(jié)果在文[1]和[2]中逐漸完善.1999年,Shao引入了偽似然方程,文[3]具體研究了其漸進結(jié)果.
在縱向數(shù)據(jù)中,觀測向量(yij,Xi)j表示第i個個體的第j次觀測值,每個個體i重復(fù)測量m次,Xij是p維協(xié)變量,β為p維未知參數(shù),μ是連續(xù)可微的聯(lián)系函數(shù)且μ>0,本文假設(shè)不同個體的觀測值是獨立的,同一個體內(nèi)部觀測值是相關(guān)的,并且考慮的是自然聯(lián)系函數(shù),m有界n趨向于∞的情況下,偽似然方程的根的漸近存在性和相合性.
為了后文的方便,引入下列記號:
[1]Xie M,Yang Y.Asymptotics for generalized estimating equations with large cluster sizes[J].Ann Statist,2003,31(1):310-347.
[2]Chen K,Hu I,Ying Z.Strong consistency of maximum quasi-likelihood estimation in generalized linear models with fixed and adaptive designs[J].Ann Statist,1999,27:1155-1163.
[3]Balan R M,Schiopu-Kratina I.Asymptotic Results With Generalized Estimating Equations for Longitudinal Date[J].Ann Statist,2005,33(2):522-541.
[4]Liang K Y,Zerge S L.Longitudinal data analysis using gen?
eralized linear models[J].Biometrics,1986,73:13-22.
Consistency of Pseudo-likelihood Equation of Longitudinal Data
YAN Li,CHEN Shulan
(College of Mathematics and Information Sciences,Guangxi University,Nanning530004,China)
The asymptotic existence and consistency of the solutions of pseudo-likelihood equation are studied in this paper.Pseudo-likelihood equation is the extension of the generalized estimating equation,which is an approach used to study longitudinal data.The use of appropriate matrix to estimate the correlation matrix that is the researching signifi?cance we need.Large sample properties of pseudo-likelihood equation have been enriched since the definition of proper?ties of pseudo-likelihood equation is proposed by shao.The proof of asymptotic existence and consistency of the solu?tions of pseudo-likelihood equation is given in some condition in this article.
Longitudinal date;Pseudo-likelihood equation;Asymptotic existence;Consistency
O 212.1
A
1674-4942(2011)03-0237-05
2011-05-01
國家自然科學(xué)基金資助項目(11061002)
畢和平