柴寶峰,常文娟,申泉,王剛
(化學生物學與分子工程教育部重點實驗室,山西大學 生物技術(shù)研究所,山西 太原 030006)
重組慢病毒介導的NMD途徑因子UPF1和SMG1可誘導干擾細胞株的構(gòu)建
柴寶峰,常文娟,申泉,王剛
(化學生物學與分子工程教育部重點實驗室,山西大學 生物技術(shù)研究所,山西 太原 030006)
無義介導的m RNA降解途徑是一個比較完善的異常mRNA的降解機制,結(jié)合在外顯子拼接復合體上的多種蛋白決定NMD途徑對異常轉(zhuǎn)錄物的識別和降解的啟動,其中UPF1和SMG1發(fā)揮主要功能.UPF1是一個RNA解旋酶和RNA依賴的ATP酶;而SMG1具有磷脂酰肌醇激酶活性,負責UPF1的磷酸化.本研究構(gòu)建了含有UPF1和SMG-1基因發(fā)夾結(jié)構(gòu)的誘導開關(guān)基因表達干擾質(zhì)粒.利用慢病毒介導轉(zhuǎn)化哺乳動物細胞HEK293T細胞得到重組病毒,經(jīng)鑒定后感染細胞AD_293,目的基因在細胞中得以高效表達.通過繼代培養(yǎng)和單克隆化,得到強力霉素誘導干擾UPF1和SMG-1表達的穩(wěn)定細胞株.
NMD途徑;UPF 1;SMG 1;PTC;RNA干擾;shRNA
真核生物細胞擁有多種機制用于保障基因復制的忠實性和表達的準確性.從基因語言到蛋白質(zhì)語言的轉(zhuǎn)化過程中,經(jīng)歷基因的轉(zhuǎn)錄、剪接、修飾、運輸和翻譯,每一個過程都有一套精密的調(diào)控機制.其中無義介導的m RNA降解途徑(nonsense-mediated RNA decay,NMD)是一個比較完善的m RNA監(jiān)控和降解機制,可以選擇性地消除含有早發(fā)性終止密碼子(premature termination codons,PTC)的異常m RNA,結(jié)合在外顯子拼接復合體(exon-exon junction complex,EJC)上的 UPF1(up-frameshift protein)和SMG1(suppressor with morphological effect on genitalia protein)決定NMD途徑對異常轉(zhuǎn)錄物的識別和降解途徑的啟動[1-3].含有PTC的m RNA表達出C端截短的蛋白,有些具有顯性-負性(dominant-negative)功能,影響其等位基因所表達的正常蛋白的功能;有些則產(chǎn)生功能獲得性(gain-of-function)蛋白,導致機體病變[4].另外,NMD途徑還參與調(diào)解各種細胞過程中正常的mRNA的表達,諸如細胞分化、脅迫反應和染色體結(jié)構(gòu)和功能的維持以及胚胎發(fā)育等[2,5-6].該途徑與人類疾病的發(fā)生密切相關(guān),尤其是由單基因無義突變導致的各種疾病,如地中海貧血癥、血友病、杜氏肌肉營養(yǎng)不良癥(Duchenne’s muscular dystrophy,DMD)和囊性纖維?。╟ystic fibrosis,CF)等[4,7-11].此外,抑癌基因無義突變是導致腫瘤發(fā)生的一個重要機制,含有 PTC的抑癌基因(tumor suppressor gene)的轉(zhuǎn)錄產(chǎn)物也是 NMD 途徑的靶標[8,12-13].因此,對 NMD 途徑機制的深入研究具有重要的科學意義和應用前景.本文構(gòu)建了引發(fā)NMD途徑的關(guān)鍵因子UPF1和SMG-1的開關(guān)型干擾質(zhì)粒,用慢病毒介導的方法轉(zhuǎn)化哺乳動物細胞,篩選得到了強力霉素誘導干擾UPF1和SMG-1表達的細胞穩(wěn)定株,為深入探討NMD途徑的機制奠定了基礎(chǔ).
1.1.1 細胞株
大腸桿菌(Escherichiacoli)DH5α為本實驗室保存;人胚腎細胞(HEK293T)和AD_293細胞購自Stratagene公司,本實驗室保存.
1.1.2 試劑和工具酶
DNA回收試劑盒 (Gel Extraction Mini Kit)購自Bio MIGA公司;質(zhì)粒抽提試劑盒(Plasmid Mini Kit)購自O(shè)MEGA公司;EasyTaqDNA聚合酶購于北京全式金生物技術(shù)有限公司;D-MEM細胞培養(yǎng)基和Lipfectinamine2000脂質(zhì)體轉(zhuǎn)染試劑盒購自Invitrogen公司;胎牛血清購自杭州四季青公司;堿性磷酸酶(Calf intestinal Alkaline Phosphatase)、各種工具酶、T4多核苷酸激酶(polynucleotide kinase)購自TaKaRa公司;T4 DNA ligase購自Promega公司.PCR引物合成由華大基因公司完成;DNA序列測定由北京奧科生物公司完成.
1.2.1 干擾序列的設(shè)計和合成
為了干擾UPF1和SMG-1基因的表達,設(shè)計含有發(fā)夾結(jié)構(gòu)的寡核苷酸鏈(sh RNA),在其兩側(cè)分別含有一個BglII和KpnI的粘性末端.如表1所示,設(shè)計發(fā)夾結(jié)構(gòu)分別為對照sh RNAs、與UPF1互補的sh RNA、與SMG-1互補的shRNA.
表1 本研究中所用到的寡核苷酸序列Table 1 Oligonucleotides list used in this study
1.2.2 中間載體的構(gòu)建
將備用的載體p FRT-U6tet O經(jīng)BglII和KpnI雙酶切,用小牛腸道磷酸酶孵育1 h去磷酸化,瓊脂糖凝膠電泳分離、純化.用T4多核苷酸激酶分別將合成的寡核苷酸鏈磷酸化.具體操作體系:10μmol/L寡核苷酸鏈,1 mmol/L三磷酸腺苷,1× 多核苷酸激酶緩沖液,5 U多核苷酸激酶,總體積20μL,37℃孵育1 h.將磷酸化的寡核苷酸鏈分別混勻,75℃退火10 min,冷卻到室溫備用.將上述產(chǎn)物(寡核苷酸鏈)稀釋25倍(終濃度為200 nmol/L)與酶切后的質(zhì)粒進行連接反應.將純化的質(zhì)粒片段1μL、退火產(chǎn)物3μL、2×T4 DNA連接酶緩沖液5μL、T4 DNA連接酶1μL混合,總體積10μL.室溫孵育1 h.將連接產(chǎn)物分別轉(zhuǎn)化感受態(tài)大腸桿菌DH5α.涂板,37℃過夜孵育,挑取陽性克隆,經(jīng)液體培養(yǎng)后提取的重組質(zhì)粒p FRT-shC、p FRT-sh U和p FRT-shS(表2,P378).構(gòu)建的重組質(zhì)粒經(jīng)PCR和測序鑒定.
1.2.3 干擾載體p TIG-U6tet Osh的構(gòu)建
設(shè)計引物 BF211/212(表1),分別以構(gòu)建好的質(zhì)粒p FRT-sh C、p FRT-sh U、p FRT-shS為模板進行PCR擴增.經(jīng)NotI和SphI雙酶切連接到p TIG慢病毒表達載體上.轉(zhuǎn)化大腸桿菌篩選陽性克隆、提取質(zhì)粒后經(jīng)雙酶切和測序鑒定.得到重組質(zhì)粒p TIG-U6tetO-shC、p TIG-U6tet O-sh U和p TIG-U6tetO-shS(表2).
表2 本實驗構(gòu)建和所用的質(zhì)粒和細胞株Table 2 Plasmids and cell strains used in this study
1.2.4 重組慢病毒的構(gòu)建
取對數(shù)生長期細胞HEK293T,用質(zhì)量濃度為0.025%的胰酶消化,在底面積為75 cm2的細胞培養(yǎng)瓶中調(diào)整細胞濃度為(3.75×106)個,細胞融合度為50%-70%時,參考脂質(zhì)體轉(zhuǎn)染說明書用陽離子脂質(zhì)體Lipfectinamine2000分別將重組質(zhì)粒p TIG-U6tetO-shC、p TIG-U6tetO-sh U 和 p TIG-U6tet O-sh與慢病毒包裝質(zhì)粒pPACKHI-GAG、p PACKHI-REV、p VSV-G共同轉(zhuǎn)染細胞.轉(zhuǎn)染后8 h換液.分別在24 h,48 h和72 h后開始收獲細胞培養(yǎng)液上清,3 000 r/min離心5 min沉淀細胞碎片.將上清病毒液用超速離心(50 000×g)在4℃離心90 min濃縮,備用.取80μL病毒懸液,用丙型肝炎病毒核酸檢測試劑盒(中山大學,達安基因)反轉(zhuǎn)錄病毒總RNA,得到相應的c DNA,用于目的基因的擴增檢測.
1.2.5 重組慢病毒感染哺乳動物細胞
取對數(shù)生長期AD_293細胞,用質(zhì)量濃度為0.25%胰酶消化,接種于24孔板,調(diào)整細胞濃度為每孔0.6×105-1×105個,將超速離心的病毒沉淀用500μL D-MEM重懸,分別滴入24孔板中.7 d后用激光共聚焦顯微鏡觀察綠色熒光強度,判定細胞的感染效率.篩選穩(wěn)定細胞株.
2.1.1 中間載體的構(gòu)建
如圖1A(P379)所示,在質(zhì)粒p FRT-U6tet O中有一個強力霉素誘導開關(guān)的U6啟動子[14].本研究首先將合成的UPF1和SMG-1的發(fā)夾結(jié)構(gòu)寡核苷酸進行退火,得到的雙鏈DNA經(jīng)酶切后連接在U6啟動子的下游的BglII和KpnI之間.在質(zhì)粒的19-36 bp和302-325 bp位置設(shè)計引物,對重組質(zhì)粒進行PCR鑒定.當目的片段連接成功時,引物擴增片段的大小應該是~310 bp,而沒有連接成功時應該是~380 bp.結(jié)果如圖1B所示,泳道1是沒有連接目的片段的擴增產(chǎn)物,泳道2、3、4分別為連接了對照序列片段、SMG-1發(fā)夾序列片段和UPF1發(fā)夾序列片段.得到的中間重組質(zhì)粒分別命名為p FshC、p FshS和p Fsh U.
2.1.2 慢病毒載體的構(gòu)建
在質(zhì)粒p FRT-U6tetO上的19-36 bp和302-325 bp位置設(shè)計引物(表1),將含有U6啟動子和發(fā)夾結(jié)構(gòu)的基因片段擴增出來,連接到p MD-18T載體進行測序.經(jīng)NotI和SphI酶切后連接到p TIG質(zhì)粒中,經(jīng)酶切鑒定(如圖2A,P380)后進一步測序證實.得到一個含有U6啟動子、干擾發(fā)夾序列、Tet R調(diào)控序列和GFP基因的基因表達盒(圖2B),該表達盒位于慢病毒表達質(zhì)粒中.質(zhì)粒分別命名為p TIG-shC、p TIG-sh U、p TIG-shS,分別表達干擾對照序列、干擾UPF1和SMG1的基因片段,該干擾過程受強力霉素的誘導調(diào)控.
圖1 重組慢病毒中間載體的構(gòu)建A p FRT-U6tetO質(zhì)粒載體圖譜;B中間載體p FRT-U6tetO的PCR鑒定.Mr:Takara DL500 DNA Marker,泳道1:質(zhì)粒p FRT空載體的PCR擴增產(chǎn)物;泳道2:重組質(zhì)粒p FshC的PCR擴增產(chǎn)物;泳道3:重組質(zhì)粒p FshS的PCR擴增產(chǎn)物;泳道4:重組質(zhì)粒p Fsh U的PCR擴增產(chǎn)物Fig.1 Construction of mediated recombinant lentivirus vectorsA:the map of plasmid p FRT-U6tetO;B:the PCR analysis of mediated plasmids p FRT-U6tetO.Mr:Takara DL500 DNA Marker;Lane 1:PCR product of plasmid p FRT;Lane 2:PCR product of plasmid p FshC;Lane 3:PCR product of plasmid p FshS;Lane 4:PCR product of plasmid p Fsh U
2.2.1 重組慢病毒制備
將構(gòu)建的三種重組慢病毒基因表達質(zhì)粒p TIG-U6tet O-shC、p TIG-U6tet O-shS和p TIG-U6tet O-sh U分別與病毒包裝質(zhì)?;旌限D(zhuǎn)染人胚腎細胞HEK293T(圖3A,P380).經(jīng)培養(yǎng)后,離心收集病毒顆粒.取80μL病毒,經(jīng)反轉(zhuǎn)錄得到病毒的cDNA,用引物BF175/176進行擴增,得到圖2所示的基因盒中U6Tet O與Tet R之間的基因片段,總長度為2 438 bp(圖3B),并經(jīng)測序證實.從病毒中克隆到目的基因,說明目的基因片段被成功包裝到病毒中,可用于下一步的細胞的感染,構(gòu)建穩(wěn)定的細胞株.病毒顆粒分別命名為V-shC、V-shS和V-sh U.
2.2.2 細胞的感染和篩查
培養(yǎng)AD_293細胞,調(diào)整細胞濃度為每孔0.6×105-1×105個時,用含有基因表達盒的重組慢病毒V-shC、V-shS和V-sh U分別感染細胞AD_293.培養(yǎng)7 d后在熒光顯微鏡下觀察.如圖4(P381)所示,表達基因盒中的eGFP基因作為標記,綠色熒光蛋白的表達說明外源基因在細胞中得到了成功表達,這說明人工構(gòu)建的慢病毒成功感染了AD_293細胞,得到了含有對UPF1和SMG-1進行可誘導干擾的細胞株.
本研究成功構(gòu)建了強力霉素誘導表達的用于干擾NMD途徑關(guān)鍵因子UPF1和SMG1的重組慢病毒質(zhì)粒,并制備了相應的重組病毒,感染目的細胞AD_293,綠色熒光蛋白基因在細胞中得以高效表達,說明目的基因已經(jīng)通過慢病毒成功轉(zhuǎn)染到細胞中.本實驗得到的細胞株為下一步研究NMD途徑的機制、無義突變基因的表達調(diào)控機制奠定了基礎(chǔ).另外,該細胞株可以用于篩選受到NMD途徑調(diào)控的參與細胞正常生理活動的基因和一些與腫瘤發(fā)生相關(guān)的基因[12].
圖2 重組慢病毒干擾載體的構(gòu)建A重組慢病毒干擾質(zhì)粒p TIG-U6tetO-sh的酶切鑒定.重組質(zhì)粒經(jīng)的Not I和Sph I酶切電泳.Mr:Trans 2K Plus DNA Marker,泳道1:重組質(zhì)粒p TIG-U6tetO-shC;泳道2:重組質(zhì)粒p TIG-U6tetO-shS;泳道3:重組質(zhì)粒p TIG-U6tetO-sh U;泳道4:質(zhì)粒p TIG.B強力霉素誘導發(fā)夾序列干擾基因表達的基因盒組成結(jié)構(gòu)Fig.2 Construction of recombinant lentivirus interference plasmidA:Enzyme analysis of recombinant lentivirus interference plasmid by Not I and Sph I.Mr:Trans 2K Plus DNA Marker;Lane 1:recombinant lentivirus interference plasmid p TIG-U6tetO-shC;Lane 2:recombinant lentivirus interference plasmid p TIG-U6tetO-shS;Lane 3:recombinant lentivirus interference plasmid p TIG-U6tetO-sh U;Lane 4:control plasmid p TIG.B:map of gene cassette encoding dox-inducible interference hairpin structure
圖3 重組慢病毒的制備和鑒定A病毒包裝和穩(wěn)定細胞株制備流程;B從病毒基因組中擴增的目的基因片段.Mr:Trans 2K Plus DNA Marker,泳道1:從病毒cDNA擴增的目的基因片段,長度為2 438 bpFig.3 Preparation and analysis of recombinant lentivirusA:flow-sheet of Preparation and analysis of recombinant lentivirus;B:PCR product from prepared recombinant lentivirus.Mr:Trans 2K Plus DNA Marker;Lane 1:gene fragment amplified from recombinant lentivirus and the full-length is 2 438 bp
圖4 重組慢病毒感染AD_293細胞,綠色熒光蛋白在細胞中的表達.圖Control:細胞內(nèi)發(fā)夾結(jié)構(gòu)中含有的基因序列與基因組片段沒有互補關(guān)系;圖UPF1:細胞內(nèi)的基因盒中含有干擾UPF1的發(fā)夾結(jié)構(gòu);圖SMG-1細胞內(nèi)的基因盒中含有干擾SMG1的發(fā)夾結(jié)構(gòu);Fig.4 Expression of green fluorescence in AD_293 tranfected by recombinant lentivirus Fig.Control:gene in hairpin cassette in AD_293 cells have no complementary to genomic DNA of human cell;Fig.UPF1:gene in hairpin cassette in AD_293 cells interfere the expression of UPF 1;Fig.SMG-1 gene in hairpin cassette in AD_293 cells interfere the expression of SMG1
[1]Frischmeyer P A,Dietz H C.Nonsense-mediated mRNA Decay in Health and Disease[J].HumMolGenet,1999,8(10):1893-1900.
[2]Nicholson P,Yepiskoposyan H,Metze S,etal.Nonsense-mediated mRNA Decay in Human Cells:Mechanistic Insights,F(xiàn)unctions Beyond Quality Control and the Double-life of NMD Factors[J].CellMolLifeSci,2010,67(5):677-700.
[3]Brogna S,Wen J.Nonsense-mediated m RNA Decay(NMD)Mechanisms[J].NatStructMolBiol,2009,16(2):107-113.
[4]Bhuvanagiri M,Schlitter A M,Hentze M W,etal.NMD:RNA Biology Meets Human Genetic Medicine[J].BiochemJ,2010,430(3):365-377.
[5]Hwang J,Maquat L E.Nonsense-mediated mRNA Decay(NMD)in Animal Embryogenesis:to Die or not to Die,That is the Question[J].CurrOpinGenetDev,2011,21:1-9.
[6]Sharifi N A,Dietz H C.Physiologic Substrates and Functions for Mammalian NMD.In:Nonsense-Mediated mRNA Decay[M].Edited by Maquat LE.Georgetown,Texas:Landes Bioscience,2006:97-109.
[7]Abbas S,Erpelinck-Verschueren C A,Goudswaard C S,etal.Mutant Wilms’tumor 1 (WT1)mRNA with Premature Termination Codons in Acute Myeloid Leukemia(AML)is Sensitive to Nonsense-mediated RNA Decay(NMD)[J].Leukemia,2010,24(3):660-663.
[8]Karam R,Carvalho J,Bruno I,etal.The NMD mRNA Surveillance Pathway Downregulates Aberrant E-cadherin Transcripts in Gastric Cancer Cells and in CDH1 Mutation Carriers[J].Oncogene,2008,27(30):4255-4260.
[9]Holbrook J A,Neu-Yilik G,Hentze M W,etal.NMD and Human Disease[M]//Nonsense-Mediated mRNA Decay.Edited by Maquat LE.Georgetown,Texas:Landes Bioscience,2006:111-119.
[10]James P D,Raut S,Rivard G E,etal.Aminoglycoside Suppression of Nonsense Mutations in Severe Hemophilia[J].Blood,2005,106(9):3043-3048.
[11]Hamed S A.Drug Evaluation:PTC-124-a Potential Treatment of Cystic Fibrosis and Duchenne Muscular Dystrophy[J].IDrugs,2006,9(11):783-789.
[12]Gardner L B.Nonsense-mediated RNA Decay Regulation by Cellular Stress:Implications for Tumorigenesis[J].Mol CancerRes,2010,8(3):295-308.
[13]Wolf M,Edgren H,Muggerud A,etal.NMD Microarray Analysis for Rapid Genome-wide Screen of Mutated Genes in Cancer[J].CellOncol,2005,27(3):169-173.
[14]Aagaard L,Aamarzguioui M,Sun G,etal.A Facile Lentiviral Vector System for Expression of Doxycycline-inducible Sh RNAs:Knockdown of the pre-miRNA Processing Enzyme Drosha[J].MolTher,2007,15(5):938-945.
Construction of Cell Strain Containing Inducible Interference of NMD Factor UPF1 and SMG1 Mediated by Lentiviral System
CHAI Bao-feng,CHANG Wen-juan,SHEN Quan,WANG Gang
(KeyLaboratoryofChemicalBiologyandMolecularEngineering,MinistryofEducation,InstituteofBiotechnology,ShanxiUniversity,Taiyuan030006,China)
Nonsense-mediated decay(NMD)is well known by the lucid definition of being a RNA surveillance mechanism that ensures the speedy degradation of mRNAs containing premature translation termination codons.The definition of aberrant transcription and start of NMD are determined by the protein complex binding on EJC,where UPF1 and SMG1 play key role for NMD path.UPF1 is a RNA helicase and a RNA-dependent ATPase.SMG1 is responsible for UPF1 phosphorylation as a phosphatidylinositol 3-kinase.In this study,we construct the p HIV-7-derived lentiviral vector p TIG (p HIV7-Tet R-IRES-GFP)encoding a U6tet O-promoted short hairpin RNA (sh RNA)cassette containing UPF1 and SMG1.The resultant plasmids were transfected into HEK293T cell with the help of packaging plasmids to result in recombinant virus harboring hairpin RNA cassette.The resultant virus were then used to infect AD_293 cell to observe the expression of hairpin RNA gene.We have obtained the cell strains expressing hairpin RNA of UPF1 and SMG1,and these cell strains could be used for next research on the mechanism of NMD and gene screen.
NMD path;UPF 1;SMG 1;premature termination codon;RNA interference;sh RNA
Q813
A
0253-2395(2012)02-0376-07*
2012-02-16
國家自然科學基金( 31172078;30770294);山西省自然科學基金(2009011040-1);山西省留學歸國基金項目
柴寶峰(1967-),男,山西聞喜人,博士,教授,研究領(lǐng)域:分子細胞生物學.E-mail:bfchai@sxu.edu.cn