• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      二甲苯和乙苯在MIL-53(Al)上的吸附分離性能研究

      2012-01-16 00:32:42段林海董憲瑩張曉彤邵新超宋麗娟
      關(guān)鍵詞:鄰二甲苯對(duì)二甲苯乙苯

      段林海, 董憲瑩, 張曉彤, 王 利, 邵新超, 宋麗娟

      (遼寧石油化工大學(xué)遼寧省石油化工重點(diǎn)實(shí)驗(yàn)室,遼寧撫順113001)

      石油加工過程中,甲苯歧化裝置、催化重整、汽油裂解等工藝產(chǎn)生出大量的C8混合芳烴,即鄰、間、對(duì)二甲苯和乙苯4種同分異構(gòu)體;并且在鋼鐵企業(yè)焦化廠每年也會(huì)產(chǎn)生大量的C8芳烴副產(chǎn)品,其主要組成為間二甲苯、鄰二甲苯、對(duì)二甲苯,另含少量的乙苯及微量的甲苯[1]。C8芳烴中各同分異構(gòu)體都是重要的工業(yè)原料,但是它們的沸點(diǎn)都十分接近(對(duì)二甲苯138.35℃,鄰二甲苯144.42℃,間二甲苯139.10℃,乙苯136.18℃),用傳統(tǒng)的精餾方法很難將其分開。為此,先后開發(fā)了“結(jié)晶分離法”、“吸附分離法”及“膜分離法”等技術(shù)[2-3]。相比較其他分離方法,吸附分離有單程收率高,工藝條件緩和,無腐蝕,無毒性,全部液相操作,投資小和能耗低等優(yōu)點(diǎn)而備受青睞。吸附劑主要是分子篩,其中,陽離子(Na+,K+,Ba2+等)改性的X和Y分子篩表現(xiàn)出良好的吸附分離二甲苯混合物的性質(zhì)[4-7]。

      金屬有機(jī)骨架(MOFs)材料是由含氧或氮的有機(jī)配體與金屬團(tuán)簇連接而形成的網(wǎng)狀骨架,是一種新型的微孔材料,這類材料具有其他多孔材料無法比擬的結(jié)構(gòu)組成多樣性、骨架可伸縮性、較大比表面積和孔隙率高等特點(diǎn),而且能夠在去除孔道中的溶劑分子后仍然保持骨架的完整性,在選擇性分離、催化、氣體儲(chǔ)存和非線形光學(xué)等領(lǐng)域具有潛在的應(yīng)用價(jià)值而引起了廣泛的關(guān)注[8-9]。

      MIL-53(Al)是由AlO4(OH)2八面體與對(duì)苯二甲酸的羧基自組裝而形成具有一維菱形孔道的三維骨架結(jié)構(gòu)。此材料在吸附一些極性分子和烴類分子時(shí)能夠自主調(diào)節(jié)孔道形狀和尺寸,也就是所謂的骨架發(fā)生“呼吸”作用[10],即從脫除客體分子后的大孔(large pore,lp)形式轉(zhuǎn)變?yōu)楠M窄孔(narrowpore,np)形式,然后隨著覆蓋度的增加,結(jié)構(gòu)又從np形式轉(zhuǎn)變?yōu)閘p形式,在轉(zhuǎn)變過程中并未破壞原來的骨架結(jié)構(gòu)[11]。骨架較高的比表面積和孔特殊的呼吸作用對(duì)于大分子芳烴的吸附分離具有巨大的潛力。本文通過研究不同溫度下二甲苯和乙苯各同分異構(gòu)體在MIL-53(Al)上的吸附能力,尤其是高溫吸附時(shí)骨架“呼吸”作用對(duì)吸附質(zhì)分子吸附能力的影響,從而探討材料在不同狀態(tài)時(shí)對(duì)二甲苯和乙苯混合物的分離能力的影響,這對(duì)于低成本,高收率且環(huán)境友好地分離C8芳烴混合物的研究具有重要意義。

      1 實(shí)驗(yàn)部分

      1.1 主要試劑

      Al(NO3)3·9H2O(分析純,沈陽化學(xué)試劑廠);對(duì)苯二甲酸(分析純,國藥集團(tuán)化學(xué)試劑有限公司);鄰、間、對(duì)二甲苯、乙苯和正己烷(分析純,國藥集團(tuán)化學(xué)試劑有限公司)。

      1.2 MIL-53(Al)的合成

      MIL-53(Al)的合成:將一定量的H2BDC與Al(NO3)3·9H2O放入100mL的燒瓶中,向其中加入1.6mol的去離子水,攪拌60min后放入有聚四氟內(nèi)襯的不銹鋼反應(yīng)釜中,密封,在恒溫220℃條件下反應(yīng)3d,自然冷卻至室溫,過濾干燥,得到MIL-53(Al)as,將MIL-53(Al)as在馬福爐中330℃焙燒3d得到MIL-53(Al)ht,即為實(shí)驗(yàn)所用吸附劑。

      1.3 吸附等溫線的測定

      吸附實(shí)驗(yàn)采用由英國HIDEN公司生產(chǎn)的IGA-002/003(Intelligent Gravimetric Analyzer)智能重量分析儀。該儀器利用非常靈敏的微天平(靈敏度為0.1μg),并通過計(jì)算機(jī)自動(dòng)記錄樣品的重量,具有精確的壓力控制系統(tǒng)和超真空壓力艙(10-1~2.0×106Pa),并且在線浮力校正,保證數(shù)據(jù)精確度高。在這里,二甲苯和乙苯的吸附實(shí)驗(yàn)是采用100 mg的吸附劑,抽到真空(<10-3Pa),保持溫度603 K活化20h。然后將溫度保持至實(shí)驗(yàn)溫度,設(shè)置吸附壓力點(diǎn),通過軟件控制對(duì)整個(gè)系統(tǒng)進(jìn)行程序升壓,最終得到不同壓力點(diǎn)下的吸附平衡數(shù)據(jù)。

      1.4 固定床穿透實(shí)驗(yàn)

      混合組分的分離實(shí)驗(yàn)是由裝有MIL-53(Al)具有外加熱套的垂直石英管反應(yīng)器的動(dòng)態(tài)吸附和穿透實(shí)驗(yàn)得到。裝置由一個(gè)計(jì)量泵、壓力表、溫度控制表、流量計(jì)、反應(yīng)器及加熱爐組成。吸附前將吸附劑裝填在反應(yīng)器中焙燒活化,然后用加熱爐將吸附劑穩(wěn)定到實(shí)驗(yàn)所需的溫度,通入以正己烷為載體的C8芳烴二元混合組分(單組分濃度為2mmol/g),開始記錄時(shí)間,待組分餾出后在反應(yīng)器出口取樣,樣品中的組分含量由氣相色譜檢測。對(duì)于兩組分的競爭吸附,采用以下公式(1)計(jì)算分離因數(shù)αij。

      式中,αij是混合組分的分離因數(shù);qi和qj分別是C8芳烴組分i和j在每克吸附劑上的吸附量;ci和cj分別是C8芳烴組分i和j在流出液中的濃度。

      1.5 表征與分析方法

      XRD圖譜由日本理學(xué)D/max-RB 12kW轉(zhuǎn)靶X射線衍射儀測定,CuKa輻射,掃描速度(2θ)為4(°)/min。采用北京瑞利公司生產(chǎn)的SP-2100型氣相色譜儀分析混合組分。分析條件:Elite-1(PerkinElmer)毛細(xì)管柱;30m×0.53mm×1.5 μm;固定相為Dimethyle Polysiloxane;氣化室溫度200℃,柱溫85℃,檢測器溫度205℃,N2載氣流速為30mL/min,H2流速為30mL/min,空氣流速為100mL/min。用面積歸一化法定量,計(jì)算公式為:

      式中,wi是被測組分的質(zhì)量分?jǐn)?shù),%;Am為被測組分的峰面積;fi為被測組分的相對(duì)質(zhì)量校正因子。

      2 結(jié)果與討論

      2.1 MIL-53(Al)的表征分析

      為了考察MIL-53(Al)的晶體結(jié)構(gòu),分別做了兩種狀態(tài)下的XRD表征分析如圖1所示。

      Fig.1 XRD pattern of samples MIL-53(Al)as and MIL-53(Al)ht圖1 MIL-53(Al)as和MIL-53(Al)ht兩種狀態(tài)下的XRD譜圖

      從圖1中可以看出,MIL-53(Al)ht與MIL-53(Al)as的XRD譜圖出峰位置有些相似,都已具備MIL-53(Al)的特征峰。其中MIL-53(Al)as的譜峰比較雜亂,說明孔道中存在雜質(zhì)以及H2BDC分子,而在經(jīng)過焙燒后的MIL-53(Al)ht的譜圖中,譜峰清晰明確,說明經(jīng)過焙燒后雜質(zhì)已基本被脫除。

      圖2是利用IGA在液氮溫度下測試的MIL-53(Al)ht的氮?dú)馕矫摳降葴厍€,表1則是由此而得出的樣品孔結(jié)構(gòu)性能的數(shù)據(jù)??梢钥闯觯瑯悠肪哂休^大的吸附量、比表面積和孔容孔徑,是一種很好的微孔吸附劑。

      Fig.2 Nitrogen adsorption and desorption isotherms for MIL-53(Al)圖2 MIL-53(Al)的氮?dú)馕矫摳降葴厍€

      2.2 二甲苯和乙苯在MIL-53(Al)上的吸附性能

      圖3為二甲苯和乙苯分別在303K和373K時(shí)的吸附等溫線。從圖3(a)可以看出,在溫度為303 K時(shí),二甲苯和乙苯的吸附等溫線都符合標(biāo)準(zhǔn)的Langmuir模型,屬于I型吸附等溫線。其中,鄰二甲苯和對(duì)二甲苯有較高的吸附量,分別為3.4m./(u.c.)和3.3m./(u.c.);乙苯的飽和吸附量最低,為2.3m./(u.c.)。在此溫度下,鄰、間和對(duì)二甲苯分子能夠在材料的孔道中在較低壓力下迅速達(dá)到吸附飽和,但是,乙苯分子達(dá)到吸附平衡卻相對(duì)困難,這與乙苯分子的結(jié)構(gòu)有關(guān)。乙苯中乙基的空間位阻導(dǎo)致了乙苯分子在孔道中移動(dòng)緩慢,并且也很容易阻擋后進(jìn)入孔道中的乙苯分子的正常移動(dòng),使乙苯分子難以到達(dá)理想的吸附位置,所以,乙苯的吸附等溫線表現(xiàn)出難以到達(dá)吸附平衡并且吸附量最低。

      表1 MIL-53(Al)ht的孔結(jié)構(gòu)性質(zhì)Table 1 Pore textural properties of MIL-53(Al)ht

      Fig.3 Adsorption isotherms of o-xylene(OX),m-xylene(MX),p-xylene(PX)and ethylbenzene(EB)on MIL-53(Al)圖3 鄰二甲苯(OX)、對(duì)二甲苯(PX)、間二甲苯(MX)和乙苯(EB)在MIL-53(Al)上的吸附等溫線

      圖3(b)是在373K溫度下測得的二甲苯和乙苯的吸附等溫線。與303K時(shí)的等溫線相比,最大的特點(diǎn)是出現(xiàn)了階梯吸附。這是在373K時(shí)MIL-53(Al)骨架發(fā)生了“呼吸作用”而導(dǎo)致的。在吸附少量分子時(shí),骨架發(fā)生收縮作用,使孔的寬度變小,逐步達(dá)到窄孔np狀態(tài),阻礙了吸附質(zhì)分子的繼續(xù)進(jìn)入孔道,所以吸附等溫線出現(xiàn)吸附平臺(tái);隨著壓力的增大,部分吸附質(zhì)分子被壓入孔道中,使收縮的骨架逐漸張開,重新回到大孔lp狀態(tài),這一過程又會(huì)使不同的吸附質(zhì)呈現(xiàn)出不同的吸附變化曲線。鄰二甲苯在50~100Pa壓力范圍內(nèi)經(jīng)歷了一個(gè)短暫的小平臺(tái),說明鄰二甲苯與骨架的作用方式能使骨架迅速擴(kuò)張,之后吸附量迅速增大,并很快達(dá)到吸附平衡,飽和吸附量最大為2.9m./(u.c.)??梢姡瞬牧蠈?duì)鄰二甲苯的吸附能力是很強(qiáng)的。對(duì)二甲苯和間二甲苯在經(jīng)歷了一段較長的平臺(tái)后吸附量也逐漸升高,分別達(dá)到2.5m./(u.c.)和1.9m./(u.c.)的吸附量。但是,乙苯的吸附形式大有不同,幾乎看不出階梯變化,說明乙苯中乙基空間位阻效應(yīng)阻礙了骨架的“呼吸作用”的發(fā)揮,也阻礙了吸附量的提高,具有最低的吸附量1.1m./(u.c.)。

      C8芳烴各同分異構(gòu)體在MIL-53(Al)上的吸附等溫線之間具有較大的差別,說明它們與骨架的吸附作用形式還是有很大不同的,鄰二甲苯和對(duì)二甲苯在MIL-53(Al)孔道中的吸附相對(duì)容易,能獲得較高的吸附量;但是,乙苯在MIL-53(Al)孔道中吸附是處于劣勢地位的,它們的差別是實(shí)現(xiàn)其混合物分離的理論基礎(chǔ)。

      2.3 兩組分混合物在MIL-53(Al)上的分離性能

      圖4列出了在303K和373K時(shí),二甲苯和乙苯的二元混合組分在MIL-53(Al)上的穿透曲線,由穿透曲線計(jì)算得到的分離因數(shù)列于表2中。從表2中可以看出乙苯/鄰二甲苯具有最高的分離因數(shù),在373K時(shí)達(dá)到9.2,骨架能將鄰二甲苯分子吸附因而很好的分離出乙苯;乙苯/對(duì)二甲苯也有較高的分離性能,骨架材料將對(duì)二甲苯優(yōu)先吸附而分離出乙苯;鄰二甲苯/間二甲苯的分離性能相比以上兩組而言偏弱。分離性能的好壞是由組分在材料上的吸附強(qiáng)弱差別而決定的。從圖3的分析可以得到,鄰二甲苯在材料上的吸附能力特別強(qiáng),而乙苯的吸附能力最弱,尤其是373K時(shí),骨架發(fā)生收縮和擴(kuò)張作用之后,對(duì)吸附鄰二甲苯的影響不大,仍然能夠較快地達(dá)到很高的吸附量,但是對(duì)于乙苯的影響很大,使乙苯本身就不大的吸附量更為降低,使這兩種組分的吸附能力出現(xiàn)了更大的差別,因此,MIL-53(Al)對(duì)這組混合物有非常好的分離性能。同理,材料對(duì)于對(duì)二甲苯分子也表現(xiàn)出比較好的吸附能力,所以對(duì)二甲苯和乙苯混合物也取得了較高的分離因數(shù)。

      Fig.4 Breakthrough curves for the separation of binary mixtures of o-xylene(OX),m-xylene(MX),p-xylene(PX)and ethylbenzene(EB)on MIL-53(Al)圖4 鄰(OX)、對(duì)(PX)、間(MX)二甲苯和乙苯(EB)的二組分混合物在MIL-53(Al)上分離的穿透曲線

      表2 溫度分別為303K和373K時(shí)二元混合物在MIL-53(Al)上的分離因數(shù)Table 2 Selectivity as calculated from binary breakthrough experiments on MIL-53(Al)at 303 K and 373 K

      3 結(jié)束語

      本工作成功合成了具有大的吸附量、高比表面積的金屬-有機(jī)骨架材料MIL-53(Al),并將其應(yīng)用于二甲苯和乙苯的吸附分離研究。吸附等溫線的研究發(fā)現(xiàn),在303K時(shí)各同分異構(gòu)體的吸附都符合標(biāo)準(zhǔn)的Langmuir型,鄰二甲苯具有最大的吸附量;而在373K時(shí),骨架發(fā)生特有的“呼吸作用”使等溫線呈階梯狀,而且還使各吸附質(zhì)在材料上的吸附能力出現(xiàn)了很大的差別。在這兩個(gè)溫度下,鄰二甲苯在骨架孔道中都表現(xiàn)出最強(qiáng)的吸附能力,而乙苯的吸附能力是最弱的;尤其是在373K時(shí),骨架的收縮和擴(kuò)張使乙苯的吸附能力更為減弱,鄰二甲苯和乙苯在MIL-53(Al)上的吸附能力差別增大,致使鄰二甲苯/乙苯二組分混合物能夠被很好地分離開來,分離因數(shù)達(dá)到9.2。同時(shí),乙苯/對(duì)二甲苯和間二甲苯/鄰二甲苯也在此材料上取得了較高的分離因數(shù)。

      [1] 羅祎青,孫長江.C8芳烴中二甲苯和乙苯的分離技術(shù)進(jìn)展[J].現(xiàn)代化工,2005,25(8):23-26.

      [2] Iwayama K,Suzuki M.Adsorption of C8aromatic isomers on faujasite zeolite[J].Studies in surface science and catalysis,1994,83:243-250.

      [3] Lai Z P,Michael T.Gas and organic vapor permeation through b-oriented MFI membranes[J].Industrial &engineering chemistry research,2004,43(12):3000-3007.

      [4] Hulme R,Rosensweig R E,Ruthven D M.Binary and ternary equilibria for C8aromatics on KY faujasite[J].Industrial&engineering chemistry research,1991,30(4):752-760.

      [5] Ruthven D M,Goddard M.Sorption and diffusion of C8aromatic hydrocarbons in faujasite type zeolites.I.Equilibrium isotherms and separation factors[J].Zeolites,1986,6(4):275-282.

      [6] Perego C,Ingallina P.Recent advances in the industrial alkylation of aromatics:new catalysts and new processes[J].Catalysis today,2002,73(1-2):3-22.

      [7] Cottier V,Bellat J P,Simonot-Grange M H.Adsorption of p-xylene/m-xylene gas mixtures on BaY and NaY zeolites coadsorption equilibria and selectivities[J].Journal of physical chemistry B,1997,101(24):4798-4802.

      [8] Yaghi O M,Li H L,Charles D,et al.Synthetic strategies,structure patterns,and emerging properties in the chemistry of modular porous solids[J].Accounts of chemical research,1998,31(8):474-484.

      [9] Rosi N L.Design,synthesis,and control of metrics,functionality,and interpenetration in metal-organic frameworks and their application in hydrogen storage:[the dissertations of Doctor of Philosophy][D].Michigan:the university of Michigan,2003.

      [10] Loiseau T,Serre C,Huguenard C,et al.A rationale for the large breathing of the porous aluminum terephthalate(MIL-53)upon hydration[J].Chemistry-A European journal,2004,10:1373-1382.

      [11] Finsy V,Kirschhock C E A,Vedts G,et al.Framework breathing in the vapour-phase adsorption and separation of xylene isomers with the metal-organic framework MIL-53[J].Chemistry-A European journal,2009,15:7724-7731.

      猜你喜歡
      鄰二甲苯對(duì)二甲苯乙苯
      芳烴鄰二甲苯精餾塔流程模擬優(yōu)化研究
      UOP公開一種生產(chǎn)高純度甲苯和對(duì)二甲苯的方法
      均三乙苯的合成研究
      2014—2019年我國對(duì)二甲苯回顧與展望
      鄰二甲苯的工藝流程模擬及工業(yè)試驗(yàn)
      生物化工(2018年1期)2018-03-01 11:58:17
      和利時(shí)海南60萬噸/年對(duì)二甲苯(PX)項(xiàng)目
      對(duì)二甲苯依賴進(jìn)口與擴(kuò)產(chǎn)困難之間的矛盾
      介質(zhì)阻擋放電反應(yīng)器降解鄰二甲苯的特性研究
      對(duì)二乙苯生產(chǎn)技術(shù)評(píng)述
      乙苯/苯乙烯生產(chǎn)過程的優(yōu)化運(yùn)行研究
      盐池县| 连平县| 堆龙德庆县| 广元市| 万荣县| 苍山县| 桓台县| 兴安盟| 黄石市| 乐清市| 如东县| 岚皋县| 通辽市| 合川市| 房产| 化德县| 平谷区| 乌兰浩特市| 西平县| 皋兰县| 庆城县| 大洼县| 车致| 横峰县| 察雅县| 林芝县| 昌都县| 盐源县| 龙州县| 和顺县| 江华| 磴口县| 遵义市| 阳朔县| 垫江县| 方城县| 潜江市| 秭归县| 蓬安县| 修水县| 松溪县|