王靈芝,張燕玲,王元明,喬延江*
(北京中醫(yī)藥大學(xué)中藥學(xué)院,北京 100102)
食物源ACE抑制肽的生產(chǎn)及構(gòu)效關(guān)系研究進(jìn)展
王靈芝,張燕玲,王元明,喬延江*
(北京中醫(yī)藥大學(xué)中藥學(xué)院,北京 100102)
生物活性肽是蛋白質(zhì)中隱藏著的可在體內(nèi)發(fā)揮一定生理功能的活性肽段。目前已從食物蛋白中獲得了具有免疫調(diào)節(jié)、抑菌、抗病毒、抗腫瘤、抗血栓形成、抗高血壓等功能的多肽,其中血管緊張素轉(zhuǎn)化酶(ACE)抑制肽是研究熱點(diǎn)之一。ACE通過產(chǎn)具有升壓作用的血管緊張素Ⅱ和降解擴(kuò)張血管的舒緩激肽在調(diào)節(jié)血壓中發(fā)揮著重要作用。ACE抑制肽可通過消化道水解、發(fā)酵和熟化過程、體外酶解和遺傳重組方法而獲得,并可作為功能因子添加到功能食品中,相關(guān)產(chǎn)品已上市或研發(fā)中。本文對ACE抑制肽的生產(chǎn)及其構(gòu)效關(guān)系研究進(jìn)展等進(jìn)行綜述。
生物活性肽;血管緊張素轉(zhuǎn)化酶(ACE);高血壓
食物不僅在生長和維持機(jī)體時(shí)提供所必需的能量和物質(zhì)基礎(chǔ),而且與人體健康息息相關(guān)。近年來功能食品蓬勃興起,所謂功能食品是指通過提高機(jī)體健康狀態(tài)或者降低患病風(fēng)險(xiǎn)而有益健康的食品,它有別于藥物,是正常食物攝入的一部分[1]。食物蛋白經(jīng)消化后可獲得有益健康的生物活性成分,因此,生物活性肽逐漸引起人們關(guān)注。這些活性肽由2~50個(gè)氨基酸組成,在食物蛋白中沒有活性,經(jīng)體外酶水解或消化道酶水解后被釋放出來,發(fā)揮著不同的生理調(diào)節(jié)功能。同時(shí),傳統(tǒng)的蛋白質(zhì)消化、吸收理論暴露出一定的局限性,寡肽吸收理論逐漸被大眾接受,與游離氨基酸相比,寡肽吸收具有更快更高的速率和效率[2]。這些生物肽具有多種生物學(xué)活性,如抗氧化、抗血栓形成、抗高血壓、免疫調(diào)節(jié)、抗腫瘤、促進(jìn)礦質(zhì)元素吸收、阿片樣肽等[3-4]。近10年來這些降低慢性疾病危害、提高天然免疫力并存在于食品蛋白中的生物肽引起了學(xué)術(shù)界和商業(yè)界的極大興趣。
高血壓是危害人類健康的常見疾病之一,是心血管疾病的重要獨(dú)立危險(xiǎn)因素。針對其高發(fā)性和危害性,改變生活方式、調(diào)整飲食結(jié)構(gòu)和藥物治療是廣泛被接受的治療手段,其中營養(yǎng)因素在預(yù)防、治療高血壓中發(fā)揮著不可忽視的作用,因此,研發(fā)具有降壓作用的功能食品是科研工作者努力方向之一。血管緊張素轉(zhuǎn)化酶(angiotensin-converting enzyme,ACE,EC 3.4.15.1)在血壓調(diào)節(jié)中發(fā)揮著重要作用,首先可作用于腎素-血管緊張素-醛固酮系統(tǒng)(renin-angiotensin system,RAS),將十肽的血管緊張素Ⅰ裂解成具有收縮血管作用的血管緊張素Ⅱ,同時(shí)能夠促進(jìn)醛固酮分泌,導(dǎo)致水鈉滯留,血壓升高。其次,作用于激肽釋放酶-激肽系統(tǒng)(kallikrein kinin system,KKS)系統(tǒng),使具有血管舒張作用的舒緩激肽轉(zhuǎn)變?yōu)闆]有活力的緩釋肽,導(dǎo)致血壓進(jìn)一步升高。動物和臨床實(shí)驗(yàn)表明,生物活性肽通過抑制該酶活性產(chǎn)生了明顯的降壓效果。1979年,Oshima等[5]首次利用細(xì)菌膠原酶水解明膠獲得了6種活性較強(qiáng)的ACE抑制肽,此后從其他食品蛋白中分離的降血壓肽相繼出現(xiàn),目前已從乳源蛋白質(zhì)[4,6]、海洋生物[7-8]、蛋黃[9]、油菜籽[10]、鷹嘴豆[11]、蕎麥粉[12]、高梁[13]、小麥[14]、玉米[15-16]中獲得了食源性的ACE抑制肽。這些食品源降壓肽的降壓效果雖沒有臨床藥物好,但其副作用小,因而備受關(guān)注[17]。本文就近年來ACE抑制肽的生產(chǎn)加工、構(gòu)效關(guān)系、作用機(jī)制等研究熱點(diǎn)進(jìn)行綜述。
國內(nèi)外生產(chǎn)生物活性肽常用的方法主要有酶解法、微生物發(fā)酵法、重組DNA法、化學(xué)合成法、酶合成法等[18-20]。
1.1 胃腸消化
膳食蛋白質(zhì)和多肽被攝取后,在胃腸道中被各種酶如胃蛋白酶、胰蛋白酶、糜蛋白酶、肽酶水解后,釋放不同長度的肽段。一部分肽可調(diào)節(jié)消化道酶活性、腸上皮細(xì)胞分泌炎性細(xì)胞因子、促進(jìn)鈣離子吸收等方面直接發(fā)揮作用,其他肽則被吸收后經(jīng)體循環(huán)到達(dá)靶器官或者組織而行使功能[21]。為深入了解消化道蛋白酶對膳食蛋白作用后產(chǎn)生ACE抑制肽的情況,可模擬胃腸道生理作用的條件對各種蛋白用消化酶進(jìn)行處理。Jimenez-Escrig等[22]利用胃蛋白酶和胰蛋白酶水解豆渣蛋白,獲得了ACE抑制肽和抗氧化肽。食品處理和加工方式可促進(jìn)蛋白的消化和多肽釋放。高流體靜壓(200~400MPa)可加速胃蛋白酶水解卵清蛋白速率和提高血壓肽YAEERYPIL、FRADHPFL和RADHPFL的產(chǎn)量[23]。 與煮雞蛋相比煎蛋消化物表現(xiàn)出較高的ACE抑制活性,推測可能由于沸水加工過程使蛋白質(zhì)變性程度較低,從而導(dǎo)致蛋白消化程度相對較低[24]。
1.2 發(fā)酵和熟化過程
微生物在生產(chǎn)發(fā)酵乳制品過程中會產(chǎn)生生物活性肽。文獻(xiàn)報(bào)道Lactobacillus helveticus、Lactobacillus delbrueckiissp.bulgaricus、Lactococcus lactisssp.diacetylactis等多種菌可水解乳蛋白并釋放出ACE抑制肽,部分生物活性肽可使自發(fā)性高血壓大鼠(systolic blood pressure,SHR)收縮壓降低7.1~29.3mmHg,脫脂乳經(jīng)發(fā)酵后可使中度高血壓患者血壓下降4.6~14.1mmHg[25]。研究較為清楚、已經(jīng)進(jìn)入商業(yè)化生產(chǎn)的降壓肽有VPP和IPP,如日本的Calpis公司生產(chǎn)的Ameal BP Peptide和芬蘭Valio公司生產(chǎn)的Valio Evolus Double Effects。
Pihlanto等[26]比較了牛乳經(jīng)25株乳酸菌發(fā)酵后ACE體外活性,發(fā)現(xiàn)不同菌種間存在著差異,且與水解度存在相關(guān)性;同時(shí)采用RP-HPLC、MS和氨基酸測序方法獲得了Lactobacillus jensenii發(fā)酵產(chǎn)物中兩個(gè)ACE活性肽,即LVYPFPGPIHNSLPQN和LVYPFPGPIH。牛乳經(jīng)Enterococcus faecalis發(fā)酵后可產(chǎn)生多種ACE抑制肽,其中五肽LHLPLP和十九肽LVYPFPGPIPNSLPQNIPP的IC50值分別為5.5、5.2μmol/L[27]。在發(fā)酵過程中鈣離子濃度變化對ACE活性存在一定影響[28]。
在干酪成熟過程中,多數(shù)乳蛋白在內(nèi)源性蛋白酶、凝固劑和微生物酶的作用下被降解成大量的多肽。在干酪制作過程中尤其是熟處理會產(chǎn)生大量的ACE抑制肽,目前,已經(jīng)從Gou..da等多種奶酪中獲得了氨基酸結(jié)構(gòu)明確的降壓肽[29]。Butikofer等[30]于2007年采用液質(zhì)聯(lián)用方法測定了44種傳統(tǒng)奶酪制品中降壓三肽VPP和IPP的含量分別在0~224mg/kg和0~95mg/kg之間,且奶酪水提物降壓活性與三肽含量存在相關(guān)性;但是品種間、同一品種不同樣品間三肽含量差異較大,因此應(yīng)當(dāng)采用高重復(fù)性的制備工藝以提高降壓肽含量。
東方傳統(tǒng)的大豆發(fā)酵食品是ACE降壓肽的另外一個(gè)重要來源。我國傳統(tǒng)調(diào)味品豆豉(埃及曲霉Aspergillus egyptiacus發(fā)酵)富含ACE抑制肽,發(fā)酵48h的豆豉曲及經(jīng)胃蛋白酶單酶解、胃蛋白酶和胰蛋白酶雙酶解、水豆豉的IC50值分別為5.09、0.16、0.057、4.54mg/mL[31]。韓國傳統(tǒng)大豆發(fā)酵食品Doenjang、Cheonggukjang、Kochujang等含有大量的生物肽,其中分子質(zhì)量小于3kD的ACE抑制肽的IC50值為0.5mg/mL,500~999D的IC50值為 0.094mg/mL[32]。
1.3 酶解法
酶解法是目前研究的最多的一種方法。有大量研究報(bào)道利用消化道源蛋白酶如:胃蛋白酶、胰蛋白酶、糜蛋白酶等獲得各種功能生物肽。用胃蛋白酶水解牡蠣蛋白,然后采用Sephadex LH-20凝膠層析和RP-HPLC方法分離得到了一種降壓活性較好的九肽[33]。Contreras等[34]用胃蛋白酶等水解酪蛋白,獲得具有體內(nèi)外降壓活性的生物活性肽RYLGY和AYFYPEL。與此同時(shí),微生物和真菌來源的蛋白水解酶也可用來水解各種蛋白以制備生物活性肽,這些商業(yè)化生產(chǎn)的蛋白酶因其價(jià)格低、安全性好和產(chǎn)量高而倍受關(guān)注。Ueno等[35]從瑞士乳桿菌Lactobacillus helveticusCM4中分離和純化到可產(chǎn)生降壓肽的內(nèi)切酶,該酶在底物的C端處理中發(fā)揮重要作用。采用9種不同的商業(yè)化蛋白酶水解酪蛋白以獲得ACE抑制肽,發(fā)現(xiàn)曲霉菌Aspergillus oryzae來源的蛋白酶可高效釋放降壓三肽VPP和IPP[36]。
近年來,采用高壓、熱變性和功率超聲等技術(shù)改變蛋白結(jié)構(gòu)以提高蛋白水解效率是另一研究熱點(diǎn)。與常壓條件下相比,高壓狀態(tài)(400MPa)胰蛋白酶水解蛋白發(fā)生了質(zhì)和量的變化,其中疏水性肽增加[37]。Henandez-Ledesma等[38]用嗜熱菌蛋白酶水解乳球蛋白發(fā)現(xiàn),水解溫度60~80℃與37℃和50℃相比,會產(chǎn)生新的生物活性肽LDA、LKPTPEGD和LQKW,其中四肽LQKW據(jù)文獻(xiàn)報(bào)道具有降壓活性。研究表明長時(shí)間高密度超聲產(chǎn)生的·OH和剪切力可降低α-淀粉酶活性,但是短暫的超聲處理可促進(jìn)酶解。Jia Junqiang等[39]用堿性蛋白酶水解小麥胚蛋白制備ACE降壓肽,發(fā)現(xiàn)用超聲波處理的樣品與常規(guī)處理相比,其結(jié)合常數(shù)KA增加22.2%,米氏常數(shù)(Km)降低了13.0%,且ACE抑制活力增加21.0%~40.7%。
1.4 遺傳重組
基因工程技術(shù)的發(fā)展為降壓肽的開發(fā)利用帶來了新的契機(jī)。Liu Dong等[40]將降壓肽KVLPVP連接成六拷貝的串聯(lián)多肽,并利用基因工程手段克隆到大腸桿菌融合表達(dá)載體上,構(gòu)建了重組降血壓肽基因工程菌,表達(dá)的融合蛋白GST-ACEIP經(jīng)蛋白酶消化后獲得了體內(nèi)外活性較高的重組降壓肽。由于釋放目標(biāo)肽段時(shí)需要添加額外蛋白酶,因而增加了分離和純化的成本。Rao Shengqi等[41]成功表達(dá)了包含11種降壓肽的融合蛋白,經(jīng)消化道酶消化后,多肽ACE抑制率達(dá)85%以上。
近來,人工神經(jīng)網(wǎng)絡(luò)和QSAR建模方法被用于基于結(jié)構(gòu)-活性數(shù)據(jù)構(gòu)建統(tǒng)計(jì)計(jì)算機(jī)模型,已識別出了影響食物源ACE抑制肽效能的部分結(jié)構(gòu)特征。許多描述符已經(jīng)被公認(rèn)為QSAR模型中的關(guān)鍵變量,如分子質(zhì)量、分子形狀、疏水性電荷和靜電特征[42]。大多數(shù)ACE抑制肽序列較短,一般為2~12個(gè)氨基酸;這與Natesh等[43]的結(jié)果一致,他們的晶體學(xué)研究證明ACE的活性位點(diǎn)不能容納大的多肽分子。構(gòu)效關(guān)系研究表明,C末端三肽殘基在競爭性結(jié)合ACE活性位點(diǎn)中起關(guān)鍵作用。大多數(shù)有效的ACE抑制肽在C-端包含Tyr、Phe、Trp,以及可能含有Pro,而且Leu可能對增加多肽的ACE抑制潛力具有顯著作用。此外,其他支鏈脂肪族氨基酸在高抑制肽活性中占有主要地位,如Ile和Val。帶正電荷的Lys(ε-氨基)和Arg(胍基)作為C末端有助提高抑制活性。ACE抑制肽有不同于非活性肽的特征結(jié)構(gòu),如在C-末端有相似的正電位,在離C末端3個(gè)氨基酸位置上需要L-構(gòu)型氨基酸等。此外,ACE抑制肽C端Pro的cis-trans構(gòu)象的變化可能引起與酶相互作用的顯著變化。
在目前所發(fā)現(xiàn)的各種具有生物活性的多肽之中,具有抗高血壓活性的多肽備受關(guān)注,其抗高血壓的活性在包括體外實(shí)驗(yàn)、動物模型和人體實(shí)驗(yàn)中被檢測過,并且被添加于各種不同的食品中。然而,相互矛盾的臨床實(shí)驗(yàn)結(jié)果和不同的健康法規(guī)使得這一領(lǐng)域的研究顯得更加迫切。此前的各類研究都證實(shí)了這類多肽的穩(wěn)定性、可吸收性及其在生物體內(nèi)的活性形態(tài)。隨著分析技術(shù)的發(fā)展,已經(jīng)能夠在模型生物或者人體內(nèi)的復(fù)雜基質(zhì)或者生物體液中追蹤微量多肽及其衍生物并進(jìn)行動力學(xué)分析。同樣,隨著營養(yǎng)基因?qū)W和營養(yǎng)遺傳學(xué)等新學(xué)科的發(fā)展,將能夠通過識別新的更加復(fù)雜的生物標(biāo)記來研究生物體內(nèi)的生物活性物質(zhì)。
[1] MURRAY B A, FITZGERALD R J. Angiotensin converting enzyme inhibitory peptides derived from food proteins: biochemistry, bioactivity and production[J]. Curr Pharm Des, 2007, 13(8): 773-791.
[2] ROBERS P R, BURNEY J D, BLACK K W, et al. Effect of chain length on absorption of biologically active peptides from the gastrointestinal tract[J]. Digestion, 1999, 60(4): 332-337.
[3] MEISEL H, FITZGERALD R J. Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects[J]. Curr Pharm Des, 2003, 9(16): 1289-1295.
[5] OSHIMA G, SHIMABUKURO H, NAQASAWA K. Peptide inhibitors of angiotensin Ⅰ-converting enzyme in digests of gelatin by bacterial collagenase[J]. Biochimica et Biophysica Acta (BBA)-Enzymology,1979, 566(1): 128-137.
[6] HERNANDEZ-LEDESMA B, RECIO I, AMIGO L.β-Lactoglobulin as source of bioactive peptides[J]. Amino Acids, 2008, 35: 257-265.
[7] BYUN H G, KIM S K. Purification and characterization of angiotensinⅠ converting enzyme (ACE) inhibitory peptides from Alaske Pollack(Theragra chalcogramma) skin[J]. Process Biochem, 2001, 36(12):1155-1162.
[8] HE Hailun, CHEN Xiulan, WU Hao, et al. High throughput and rapid screening of marine protein hydrolysates enriched in peptides with angiotension-Ⅰ-conveting enzyme inhibitory activity by caprillary electrophoresis[J]. Bioresour Technol, 2007, 98(18): 3499-3505.
[9] YOSHII H, TACHI N, OHBA R, et al. Antihypertensive effect of ACE inhibitory oligopeptides from chicken egg yolks[J]. Comp Biochem Physiol C Toxicol Pharmcol, 2001, 128(1): 27-33.
[10] MARCZAK E D, USUI H, FUJITA H, et al. New antihypertensive peptides isolated from rapeseed[J]. Peptides, 2003, 24: 791-798.
[11] YUST M M, PEDROCHE J, GIRON-CALLE J, et al. Production of ace inhibitory peptides by digestion of chickpea legumin with alcalase[J].Food Chem, 2003, 81(3): 363-369.
[12] AOYAGI Y. An angiotensin-Ⅰconverting enzyme inhibitor from buckwheat (Fagopyrum esculentumMoench) flour[J]. Phytochemistry, 2006,67(6): 618-621.
[13] KAMATH V, NIKETH S, CHANDRASHEKAR A, et al. Chymotryptic hydrolysates ofα-kafirin, the storage protein of sorghum (Sorghum bicolor) exhibited angiotensin converting enzyme inhibitory activity[J].Food Chem, 2007, 100(1): 306-311.
[14] MATSUI T, LI C, OSAJIMA. Preparation and characterization novel bioactive peptides responsible for aniotensin Ⅰ- converting enzyme inhibition from wheat germ[J]. J Cereal Sci, 1999, 5(7): 289-297.
[15] MARUYAMA S, MIYOSHI S, KANEKO T, et al. Angiotensin Ⅰ-converting enzyme inhibitory activities of synthetic peptides related to the Tandem repeated sequence of a maize endosperm protein[J]. Agric Biol Chem, 1989, 53(4): 1077-1081.
[16] KIM J M, WHANG J H, KIM K M, et al. Preparation of corn gluten hydrolysate with angiotensinⅠ-converting enzyme inhibitory activity and its solubility and moisture sorption[J]. Process Biochem, 2004, 39(8): 989-994.
[17] CHEN Qihe, XUAN Guodong, FU Mingliang, et al. Effect of angiotensinⅠ-converting enzyme inhibitory peptide from rice dregs protein on antihypertensive activity in spontaneously hypertensive rats[J]. Asia Pac J Clin Nutr, 2007, 16(Suppl 1): 281-285.
[19] 李衛(wèi), 李斌, 寧正祥. 應(yīng)用生物技術(shù)生產(chǎn)活性肽[J]. 糧油食品科技,2005, 13(4): 50-52.
[20] HERNANDEZ-LEDESMA B, CONTRERAS M M, RECIO I. Antihypertensive peptides: production, bioavailability and incorporation into foods[J]. Adv Colloid Interface Sci, 2011, 165(1): 23-35.
[21] SHIMIZU M. Food-derived peptides and intestinal functions[J].Biofactors, 2004, 21(1/4): 43-47.
[22] JIMENEZ-ESCRIG A, ALAIZ M, VIOQUE J, et al. Health promoting activities of ultra-filtered okara protein hydrolysates released byin vitrogastrointestinal digestion: identification of active peptide from soybean lipoxygenase[J]. Eur Food Res Technol, 2010, 230(4): 655-633.
[23] QUIROS A, CHICHON R, RECIO I, et al. The use of high hydrostatic pressure to promote the proteolysis and release of bioactive peptides from ovalbumin[J]. Food Chem, 2007, 104(4): 1734-1739.
[24] MAJUMDER K, WU J. AngiotensinⅠconverting enzyme inhibitory peptides from simulatedin vitrogastrointestinal digestion of cooked eggs[J]. J Agric Food Chem, 2009, 57(2): 471-477.
[25] FITZGERALD R J, MURRAY B B A. Bioactive pepides and lactic fermentations[J]. Int J Dairy Technol, 2006, 59(2): 118-125.
[26] PIHLANTO A, VIRTANEN T, KORHONEN H. AngiotensinⅠconverting enzyme (ACE) inhibitory activity and antihypertensive effect of fermented milk[J]. Int Dairy J, 2010, 20(1): 3-10.
[27] QUIROS A, RAMOS M, MUGUERZA B, et al. Identification of novel antihypertensive peptides in milk fermented withEnerococcus faecalis[J].Int Dairy J, 2007, 17(1): 33-41.
[28] GONZALEZ-GONZALEZ C R, TUOHY K M, JAUREGI P. Production of angiotensin-Ⅰ-converting enzyme (ACE) inhibitory activity in milk fermented with probiotic strains: effects of calcium, pH and peptides on ACE- inbitory activity[J]. Int Dairy J, 2011, 21(9): 615-622.
[29] SAITO T, NAKAMURA T, KITAZAWA H, et al. Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese[J]. J Dairy Sci, 2000, 83(7): 1434-1440.
[30] BU..TIKOFER U, MEYER J, SIEBBER R, et al. Quantification of the angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in hard, semi-hard and soft cheeses[J]. Int Dairy J, 2007, 17(8): 968-975.
[31] ZHANG Jianhua, TATSUMI E, DING Changhe, et al. AngiotensinⅠ-converting enzyme inhibitory peptides in douchi, a Chinese traditional fermented soybean product[J]. Food Chem, 2006, 98(3): 551-557.
[32] KIM J E, HWANG K, LEE S P. ACE inhibitory and hydrolytic enzyme activities in textured vegetable protein in relation to the solid state fermentation period usingBacillus subtilisHA[J]. Food Sci Biotechnol,2010, 19(2): 487-495.
[33] WANG Jiapei, HU Jianen, CUI Jinzhe, et al. Purification and identification of a ACE inhibitory peptide form oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats[J].Food Chem, 2008, 111(2): 302-308.
[34] CONTRERAS M M, CARRN R, MONTERO M J, et al. Novel casein-derived peptides with antihypertensive activity[J]. Int Dairy J,2009, 19(10): 566-573.
[35] UENO K, MIZUNO S, YAMANOTO N. Purification and characterization of an endopeptidase that has an important role in the carboxyl terminal processing of antihypertensive peptides inLactobacillus helveticusCM4[J]. Lett Appl Microbiol, 2004, 39(4): 313-318.
[36] MIZUNO S, NISHIMURA S, MATSUURA K, et al. Release of short and proline-rich antihypertensive peptides from casein hydrolysate with anAspergillus oryzaeprotease[J]. J Dairy Sci, 2004, 87(10): 3183-3188.
[37] CHICON R, LOPEZ-FANDIO R, QUIROS A, et al. Changes in chymotrypsin hydrolysis ofβ-lactoglobulin A induced by high hydrostatic pressure[J]. J Agric Food Chem, 2006, 54(6): 2333-2341.
[38] HENANDEZ-LEDESMA B, RAMOS M, RECIO I, et al. Effect ofβlactoglobulin hydrolysis with thermolysin under denaturing temperatures on the release of bioactive peptides[J]. J Chromatogr A, 2006, 1116(1/2): 31-37.
[39] JIA Junqiang, MA Haile, ZHAO Weirui, et al. The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein[J]. Food Chem, 2010, 119(1): 336-342.
[40] LIU Dong, SUN Haiyan, ZHANG Lijun, et al. High-level expression of milkderived antihypertensive peptide inEscherichia coliand its bioactivity[J]. J Agric Food Chem, 2007, 55(13): 5109-5112.
[41] RAO Shengqi, SU Yujie, LI Junhua, et al. Design and expression of recombinant antihypertensive peptide multimer gene inEscherichia coliBL21[J]. J Microbiol Biotechnol, 2009, 19(12): 1620-1627.
[42] PRIPP A H, ISAKSSON T, STEPANIAK L, et al. Quantitative structure-activity relationship modeling of ACE-inhibitory peptides derived from milk proteins[J]. Eur Food Res Technol, 2004, 219(6): 579-583.
[43] NATESH R, SCHWAGER S L U, STURROCK E D, et al. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex[J].Nature, 2003, 421: 551-554.
A Review of Angiotensin Converting Enzyme (ACE) Inhibitory Peptides Derived from Foods: Production and Quantitative Structure-Activity Relationship
WANG Ling-zhi,ZHANG Yan-ling,WANG Yuan-ming,QIAO Yan-jiang*
( School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100102, China)
Bioactive peptides are peptides with physiological functions in the body, such as immunomodulatory, antimicrobial,anticancer, antivirus, antithrombotic and antihypertension functions. Currently, peptides from foods with angiotensin converting enzyme (ACE) inhibitory activity are the focus of intense study. ACE plays a vital role in the regulation of blood pressure by producing potent vasoconstrictor angiotensine II, as well as by inactivating the vasodilating bradykinin. ACE inhibitory peptides have widely been produced by gastrointestinal digestion, fermentation and maturation process, enzymatic hydrolysis and genetic recombination. These inhibitory peptides may be incorporated into functional foods and several products are currently commercially available or under development. This paper presents an overview of antihypertensive peptides derived from food protein.
bioactive peptides;angiotensin converting enzyme (ACE);hypertension
Q514.3
A
1002-6630(2012)15-0314-04
2011-10-26
國家自然科學(xué)基金項(xiàng)目(81102750)
王靈芝(1974—),女,講師,博士,研究方向?yàn)樯镏扑?。E-mail:yanyan30186@sina.com.cn
*通信作者:喬延江(1956—),男,教授,博士,研究方向?yàn)橹兴幮畔⒐こ獭⒅兴幮畔㈤_發(fā)。E-mail:yjqiao@263.net