周俊東,宋衛(wèi)東,徐傳友
(1.阜陽師范學(xué)院數(shù)學(xué)系,安徽 阜陽 236037;2.安徽師范大學(xué)數(shù)學(xué)系,安徽 蕪湖 241000)
關(guān)于de Sitter空間中類空子流形的一些剛性定理
周俊東1,宋衛(wèi)東2,徐傳友1
(1.阜陽師范學(xué)院數(shù)學(xué)系,安徽 阜陽 236037;2.安徽師范大學(xué)數(shù)學(xué)系,安徽 蕪湖 241000)
研究了de Sitter空間中具有常數(shù)量曲率的類空子流形,利用活動標(biāo)架的方法,證明了這類子流形的某些剛性定理,推廣了已有的一些結(jié)果.
類空子流形;de Sitter空間;常數(shù)量曲率;全臍
本文研究了de Sitter空間中具有常數(shù)量曲率的類空子流形,并獲得下面的一些剛性定理.文獻(xiàn)[2]研究了de Sitter空間中具有常數(shù)量曲率的類空子流形,得到了與第二基本形式模長平方相關(guān)的剛性定理,在定理1.2中得到與平均曲率有關(guān)的剛性定理,在定理1.3中得到了與數(shù)量曲率有關(guān)的剛性定理,在定理1.4中得到了與截面曲率有關(guān)的剛性定理.
致謝感謝審稿專家的寶貴意見.
[1]Li Haizhong.Global rigidity theorems of hypersurfaces[J].Ark.Mat.,1997,35:327-351.
[2]劉建成,張德燕.de Sitter空間中具有常數(shù)量曲率的完備類空子流形的間隙現(xiàn)象 [J].數(shù)學(xué)年刊:A輯, 2008,29(5):689-696.
[3]Liu Ximin.Space-Like Submanifolds in the deSitter spaces[J].Journal of Geometry and Physics,2002,40:370-378.
[4]朱業(yè)成,宋衛(wèi)東.de Sitter空間中具有常數(shù)量曲率的類空超曲面[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2008,24(4):788-792.
[5]Santos W.Submanifolds with parallel mean curvature vector in spheres[J].Tohoku Math.J.,1994,46:403-415.
[6]Stefka Hineva.Submanifolds for which a lower of the Ricci curvature is achieved[J].J.Geom.,2008,88:53-69.
[7]Cheng S Y,Yau S T.Hypersurfaces with constant scalar curvature[J].Math.Ann.,1977,225:195-204.
Rigity theorems on space-like submanifolds in de Sitter spaces
Zhou Jundong1,Song Weidong2,Xu Chuanyou1
(1.Department of Mathematics,Fuyang Normal College,Fuyang 236037,China;
2.Department of Mathematics,Anhui Normal University,Wuhu 241000,China)
In this paper,we study the space-like submanifolds with constant scalar curvature in de Sitter spaces,and obtain some rigity theorems by using moving-frame method,and this rigity theorems generalize some previous results.
space-like submanifolds,de Sitter spaces,scalar curvature,totally umbilical
O186.12
A
1008-5513(2012)01-0073-07
2011-08-11.
安徽省教育廳自然科學(xué)基金(KJ2008A05ZC);阜陽師范學(xué)院科研資助項(xiàng)目(2010FSKJ11);國家特色專業(yè)(TS11496).
周俊東(1983-),碩士,講師,研究方向:微分幾何.
2010 MSC:53C42,53C50